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Informing Multiobjective Optimization Benchmark
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Abstract—The role of carefully constructed benchmark suites
in algorithm design and testing is critical. Within the continuous
multiobjective optimization domain, existing suites include the
general purpose ZDT, DTLZ, and WFG suites, and more recent
ones specifically designed to explore the impacts of a partic-
ular problem characteristic. However, the relationship between
existing suites is not clear, and the field would benefit from a
“stock-take” assessment. This article investigates the coverage
of current continuous multiobjective suites using the instance
space analysis (ISA) methodology. Exploratory landscape analy-
sis is used to measure critical features of each problem suite.
Thereafter, we generate a 2-D visualization of the existing
problem instances by locating them in the instance space, assess-
ing their diversity, and identifying whether there are sparse areas
of value to fill with new problem instances. Our findings show that
the current suites are restricted in diversity when representing
the entire problem instance space. We propose and evaluate three
problem construction methods: 1) problem tuning; 2) toolkit
hybridization; and 3) new function injection. Problem tuning is
shown to generate problems surrounding existing instances, while
hybridization creates problems falling between existing suites.
Furthermore, utilizing the insights afforded by ISA, we show
how problem features can be identified to inform the creation
of new functions which fill gaps toward the boundaries of the
instance space.

Index Terms—Benchmark suites, experimental evaluation,
instance space analysis (ISA), multiobjective optimization (MO),
problem generation.

I. INTRODUCTION

MULTIOBJECTIVE optimization (MO) involves the
simultaneous optimization of two or more objective

functions. For a problem within this class, solutions are repre-
sented as decision values which map to a vector of correspond-
ing objective values. Optimality is defined as the best tradeoffs
between conflicting objectives, demonstrated by a Pareto front
(PF). Many real-world problems are multiobjective, often with
the added complexity caused by the absence of mathematical
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models that capture the relationship between the decision
variables and objective functions. Instead, such “black-box”
problems require resource-intensive simulations or experi-
ments to evaluate the objective functions based on carefully
chosen samples in the decision space. Therefore, efficient
search methods are required to sample promising areas of
the decision space and find an acceptable set of solutions
that approximate the PF. Thereafter, a single solution can be
identified for implementation in real-world scenarios.

Evolutionary algorithms (EAs) are popular approaches for
solving MO problems, since they maintain a set (or population)
of solutions corresponding to an estimated PF. A wide variety
of EAs have been developed, each following a unique strategy
to generate, evaluate, and select new solutions. Such a variety
of search strategies naturally leads to a spectrum of perfor-
mances of algorithms, with no one algorithm dominating all
others for all test problems [1]. Indeed, the strengths and weak-
nesses of each algorithm appear to depend on how well aligned
the search strategy is to the mixture of characteristics exhibited
by the problem, such as multimodality and variable interde-
pendence [2]. The algorithm selection problem [3] attempts
to learn this relationship, in order to identify the optimal
algorithm for a given problem instance. However, learning to
predict the best algorithm does not result in any transparency
into the strengths and weaknesses of algorithms.

Contemporary approaches to the ASP rely on experimen-
tal results from an algorithm portfolio across a large set of
benchmark problems, which are then presented to a machine
learning algorithm as training data to learn to predict the algo-
rithm performance based on the problem characteristics. Since
real-world problems are often underrepresented in benchmark
sets, synthetic problems have been designed to exhibit spe-
cific characteristics known to be challenging for algorithms
[2], [4], [5], under the assumption that real-world problems,
now or in the future, may also exhibit these characteristics, and
we need to understand how they affect algorithm performance.
Even from a purely theoretical perspective, without concern for
real-world application, there is an argument for constructing
synthetic instances with challenging characteristics to expose
algorithm strengths and weaknesses in their entirety.

Clearly, well-constructed benchmarking studies are essential
if we are to collect reliable data to help us better understand
algorithm behavior in the presence of various problem char-
acteristics, and enable robust comparisons [6]. In particular,
they are necessary to support three major areas: 1) solving
the ASP; 2) exploring the strengths and weaknesses of exist-
ing algorithms; and 3) leveraging the insights into algorithm
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behaviors to support the refinement of existing algorithms and
design of new ones.

A key element of such studies (e.g., [5], [6], and [7]) is
test suites that are: 1) comprehensive, ranging in difficulty
to challenge an algorithm in different ways; 2) representa-
tive of their problem class or characteristics, so that algorithm
performance can be generalized and inferred from the class;
3) easily scalable and tunable, with adjustable properties. In
other words, the degree, presence, or location can be tweaked,
such as for dimension, variable dependency, PF geometry,
and location of optima; and 4) have known optimal solu-
tions, such that algorithm solution quality can be assessed
and compared accurately. These design principles have led
to the ZDT [8], DTLZ [7], and WFG [5] general-purpose
suites, aimed to challenge MO algorithms across differ-
ent characteristics. Complementing them are problem suites
focused on specific challenges, such as bias [9] and large-scale
problems [10].

While these efforts have taken us a long way toward a
comprehensive set of benchmarks, it remains unclear whether
the whole problem space is being sufficiently represented. For
example, Zhou et al. [11] asserted that many MO benchmark
problems have not been rigorously analyzed, are poorly con-
structed and, above all, lack diversity. However, the diversity
of benchmarks is difficult to quantify when problems are usu-
ally only described using broad labels such as “nonseparable”
or “multimodal,” without further quantification of the degree
of such characteristics. Therefore, having a quantifiable mea-
sure of the similarity between problems, and evaluating their
distribution in the problem space, can better inform benchmark
evaluation and construction.

Yamamoto et al. [12] conducted a visual inspection of the
relationship between the ZDT, DTLZ, and WFG suites. The
performance of each algorithm in a portfolio was assessed
using their median hypervolume (HV) metric, and for each
problem instance, the algorithms were ranked based on this
metric. The location of each problem was then projected into a
2-D plane using multidimensional scaling (MDS) based on the
ranking of algorithms with Spearman rank correlation as the
distance metric. Their analysis showed that problems within
each benchmark suite are closely related in terms of algorithm
ranking, but the space has many sparse areas. However, due to
their choice to define problem instances by algorithm rankings
only, their analysis could not explain which types of problems
are missing, nor how to construct them.

In our recent work [13], we explored the diversity of the
ZDT, DTLZ, WFG, IMMOEA, and RMMEDA suites using
measurable properties of the suites themselves. Using a com-
bination of design of experiment (DoE) methods, exploratory
landscape analysis (ELA) features, and visualization tech-
niques, we confirmed that using these suites with the com-
monly used default construction parameters leads to a limited
diversity of problems in terms of their landscape characteris-
tics. We then strategically tuned the parameters, transforming
the landscapes of several problems, which also resulted in
algorithm performance variations. However, there was a limit
to the diversity that can be achieved with this parameter
tuning strategy, with some problems being quite robust and

nontuneable, and it was difficult to control the characteristics
of the resulting benchmarks.

In this article, we continue this line of investigation by
considering the most comprehensive set of benchmark suites
to date, and examining their diversity. For this purpose, we
use instance space analysis (ISA) [14], a recent method-
ological framework that teases out the relationships between
the problem characteristics and algorithm performance. A
2-D instance space is constructed that shows an empirical
boundary within which all MO problems could lie—based
on the estimated bounds for each calculated feature—and the
location of current benchmarks. The problem instances are
represented as feature vectors that capture their relevant char-
acteristics, measured through existing [15], [16] and new ELA
metrics. The performance of algorithms across the instance
space, measured by a modified version of the inverted gen-
erational distance (IGD+

M) [13], [17], can be inspected to
understand how performance depends on problem characteris-
tics. Leveraging the visual insights made available by ISA, we
explore several novel strategies to construct new benchmarks
that fall within targeted sparse areas of the instance space.
Our results demonstrate that these strategies afford far greater
flexibility than mere tuning of construction parameters of exist-
ing problems suites can achieve. They also provide greater
control over the characteristics of the generated benchmarks,
enabling harder or more varied problems to be constructed
through hybridization choices based on insights. Finally, we
propose some diverse new benchmark problems based on the
insights gained through the ISA methodology.

The remainder of this article is organized as follows. In
Section II, we perform the first ISA of MO problems to eval-
uate the diversity of existing benchmark suites. This includes
devising some new features of MO problems to capture their
intrinsic difficulties. Based on this instance space view of
existing benchmarks, in Section III, we explore a system-
atic approach to the generation of new diverse benchmarks.
Results are discussed in Section IV. We conclude this article
and discuss the future research directions in Section V.

II. INSTANCE SPACE ANALYSIS OF EXISTING

MULTIOBJECTIVE BENCHMARKS

A. Instance Space Analysis

ISA is a methodology first introduced by
Smith-Miles et al. [14] that generates a 2-D visualiza-
tion of a collection of problem instances and analyzes their
impact on algorithm performance. The instance space allows
for trends in hardness to be observed across the space for
different algorithms, providing a method for identifying and
objectively measuring the region of the superior performance
of an algorithm (known as its footprint). Moreover, the
mapping into the instance space facilitates insights into the
distribution of existing instances, which allows us to identify
sparse, unoccupied regions where new benchmark instances
should be generated for a more comprehensive problem
set. ISA can be automatically performed through publicly
available Web tools [18] or using the MATLAB toolkit [19].
The pseudocode for the algorithms used to develop ISA can
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also be found in the supplementary materials. In general, ISA
involves the following steps.

1) Collecting the metadata regarding test instances:
their measured features and corresponding algorithm
performance metrics.

2) Selecting a subset of features that best capture similar-
ities and differences in the problem instances, and best
discriminate between the performance of algorithms in
the portfolio.

3) Projecting a visualization of the problem instances from
the high-dimensional feature space into a 2-D instance
space.

4) Quantitatively measuring the algorithm footprints, and
qualitatively describing them in terms of instance
features.

5) Generating new test problem instances to occupy sparse
regions.

In the following sections, we will describe the elements of
the metadata for our ISA of MO.

B. Benchmark Test Suites

We utilize most of the available benchmark problems in
the PlatEMO toolbox [20], discarding those with extremely
sparse solutions, as this affects the feature calculation proce-
dure described in Section II-C. Therefore, we utilize the bi- and
tri-objective continuous problems in the VNT [21], ZDT [8],
DTLZ [7], WFG [5], RMMEDA [22], IMMOEA [23], BT [10],
IMOP [24], and SMOP [25] test suites, as well as UF1–10 [26].
The default implementation in the PlatEMO toolbox is used
for each suite, ranging in dimensionality across problems (2, 7,
10, 12, 22, 30, and 100). The dimensionality of each problem
is available in the supplementary materials. The VNT prob-
lems have a discrete set of PFs, while the ZDT, DTLZ, and
WFG problems are general purpose and contain a mix of PF
geometries and landscape functions. The IMOP suite focuses
on complicated PF shapes. The UF problems are constructed to
exhibit challenging shapes (such as spirals) of Pareto-optimal
solutions in the decision space, rather than challenging PFs
themselves. The IMMOEA and RMMEDA suites build upon the
ZDT and DTLZ suites, with the addition of variable linkages.
The SMOP suite contains problems with adjustable sparseness
in the PF, and the BT suite contains problems with bias. We
refer to this set of all these suites as Benchmark Instances,
with the ZDT, DTLZ, and WFG problems separately labeled
as General-purpose Benchmark Instances.

Furthermore, we include the tuned versions of the ZDT,
DTLZ, and WFG problems from our previous work [13].
These suites have construction parameters, which control the
presence (or absence) of characteristics beyond the dimen-
sionality or number of objectives. For example, in WFG4,
multimodality can be tuned for the magnitude of hill sizes, as
well as the number of modes. The inclusion of such problems
allows us to observe the impact of tuning and the extent of
diversity introduced into the instance space for each problem.
This is important to understand, since tunability is a key
characteristic for benchmark design. The parameter tuning
strategy for generating instances has two phases. In the first,

we used Latin hypercube sampling (LHS) on the parameter
space to generate 30 combinations. This is to ensure diversity
in the construction parameters through a space-filling design.
Eight state-of-the-art algorithms—including the six described
in Section II-D, and two less competitive algorithms (RVEA
and NSGA-III) [13]—were evaluated on all problem instance
variations, and their average performance on the IGD+

M met-
ric, which is described in detail in Section II-D, was estimated.
This generated a set of 600 problem instances based on varying
construction parameters of the General-purpose Benchmark
suites, that we will refer to as Perturbed Instances.

Thereafter, we used the design and analysis of experi-
ments (DACEs) [27] surrogate modeling technique to strate-
gically generate harder or more diverse problem instances
for each algorithm based on the DTLZ and WFG prob-
lems, but excluding the ZDT problems, as most of them
had only one construction parameter, which was perturbed
for {0.5} ∪ {1, 2, . . . , 30}. The inputs to the DACE model
are the construction parameters, while the average algorithm
performance is the output. Therefore, the DACE model pre-
dicts the IGD+

M for any construction parameter combination
for a problem instance.

The DACE model then efficiently searches for construction
parameter combinations to evaluate for each algorithm by bal-
ancing two objectives: 1) exploration, i.e., reducing the model
uncertainty by searching for combinations that maximize the
expected improvement (EI) in model error and 2) exploita-
tion, i.e., minimizing the performance measure IGD+

M to create
harder problem instances for each algorithm. The selection of
new construction parameter combinations is balanced using a
single metric known as EI [28]. Algorithms are then evaluated
on these new instances, added to the model, and the process
is repeated five times per algorithm. We refer to this set as
Harder instances.

We use all default parameter settings within PlatEMO to
initialize the Benchmark Instances, and tune the construc-
tion parameters accordingly for the Perturbed and Harder
instance. In total, there are 1314 instances considered across
the three instance classes of Benchmark, Perturbed, and Harder
Instances.

C. Features

ELA is the term used for extracting from a sample a set
of quantitative features that describe the topology of problem
instances [29]. While research into single-objective features
has grown steadily [2], [30], [31], [32], the MO extensions
have not been as prolific. While single-objective features could
be used to explore each objective separately and then combine
into MO metrics using ratios or linear scalarizations [15], this
approach cannot account for the tradeoffs between conflicting
objectives. In our preliminary experimental studies supporting
this article, we found such ratios to be insufficient. Instead, we
believe it is important to adapt single-objective features for the
MO case, using procedures such as dominance ranking to truly
capture the interplay of objectives.

Previous work on understanding such tradeoffs in MO land-
scapes is limited to combinatorial problems [34], [37], [38],

Authorized licensed use limited to: University of Melbourne. Downloaded on December 02,2022 at 01:11:12 UTC from IEEE Xplore.  Restrictions apply. 



YAP et al.: INFORMING MO BENCHMARK CONSTRUCTION THROUGH ISA 1249

TABLE I
LIST OF THE 35 MO FEATURES USED IN THIS ARTICLE AND THE CHARACTERISTICS THEY CAPTURE.

THE NUMBER OF FEATURES IN EACH CLASS IS DENOTED BY PARENTHESIS IN THE FIRST COLUMN

[39], [40], [41], with few exceptions [42], [43]. These studies
often propose features for understanding the landscape through
global enumeration or a large sample, which can be infea-
sible in practice, especially for high-dimensional problems
and expensive function evaluations. Therefore, MO features
which can be obtained through sampling are necessary. In
this section, we contribute to this challenge first by adapting
both single-objective features and combinatorial MO problem
features to the continuous MO domain; and second by propos-
ing a set of new features. Table I summarizes the features
employed in this article, with details discussed in the following
sections.

1) Adapting Existing Features: Several combinatorial MO
features were proposed by Liefooghe et al. [16], which
were measured by sampling locally during random and adap-
tive walks. We modify the concept for the continuous MO
domain first by generating a sample in the decision space
of size 103 using LHS, from which a sequence is con-
structed using nearest neighbor search, with Euclidean dis-
tance as metric. This sequence now represents the random
walk.

Definition 1: A walk is defined by sequentially connecting
generated samples using a nearest neighbor search.

Then, a larger sample of 3 × 105 is taken from the deci-
sion space, which is grouped into 104 clusters using K-means.
These clusters divide the decision space into neighborhoods.
Next, for each point in the sequence, we identify its neigh-
borhood and take up to ten neighboring points from the larger
sample.

Definition 2: A neighborhood is defined by mapping new
points into preexisting clusters. Points in the same cluster are
considered neighbors.

For sparse problems which may not have ten neighbors,
we obtain the maximum number of neighbors. The upper
and lower bounds of the walks and neighborhoods are scaled
relative to the domain of each problem’s respective xi in
the decision space. Only the sequence and its neighboring
points are evaluated on the benchmark function, so as to mini-
mize computational costs. We then calculate the proportion of
neighbors dominating, dominated by, nondominated by, and
incomparable to each sample of the random walk. The aver-
ages and first autocorrelations of these measures are calculated
along the walk for each instance. For more robust evalua-
tions for each of these features, repeated sampling can be
used. However, for the purposes of this study, a larger sample
size has been chosen to ensure consistency of feature mea-
sures, following minimum sample recommendations [44]. In
our experimental studies, our findings showed that when using
a similar budget, a longer walk provided a smaller error rate
in comparison to repeated short walks.

In the simplest case, we calculate the kurtosis for each
objective individually and then calculate univariate statistics
across these kurtosis values. We also adapt features from
single-objective optimization, with an approach taken to honor
the multiobjective nature of the problem. For features which
can only be calculated on a single objective, we use the
concept of nondominated ranking [45]. In other words, each
solution belongs to a front in the Pareto space, and each front
has a ranking. This ranking is used instead of the respective
single-objective value.

We measure the accumulated escape probability [33] by sub-
stituting the nondominated ranking as fitness. Similarly, we fit
a linear model on the ranks versus the decision variables and
capture the model R2 and the range of its coefficients. We also
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obtain the proportion of nondominated solutions, the optimal
number of K-means clusters in the objective space using the
Calinski–Harabasz criterion and the minimum, maximum, and
range of the proportion of solutions within the clusters. Since
nondominated ranking is a measure of relative performance
and not an absolute measure in the objective space, it is
not applicable for adapting many single-objective techniques.
However, ranking is sufficient for the purposes of the fea-
tures above, since they are able to provide information from a
relative hierarchy. Finally, we use Stowell and Plumbley’s esti-
mator [35] to calculate the entropy in the objective space, as
well as the joint entropy of the decision and objective space,
and the entropic significance [36]. The usefulness of these
additional features is demonstrated by an experimental study
(provided in the supplementary materials) that shows their
effectiveness at predicting algorithm performance compared
to existing features in the literature.

2) New Set of Continuous MO Landscape Features: While
the modification of features by Liefooghe et al. [16] is
a promising development, they have also been shown to
be insufficient for truly discriminating between algorithm
performance for continuous MO [46]. As such, in this arti-
cle, we propose a novel set of features, specifically to address
a broader range of relevant characteristics.

Dec_range is a feature to measure dissimilar parameter
domains. Since each decision variable xi is bounded by a lower
bound li, and upper bound ui, the dissimilar domains can be
calculated as the magnitude of the difference between the max-
imum upper and minimum lower bounds. This should evaluate
the impact of variable scaling on algorithm performance [5]

dec_max_range = max
i

(ui) − min
i

(li) (1)

Obdisc is a set of measures that attempt to identify dis-
continuous fronts. Large gaps along the best-ranked (first
nondominated) front suggest potential discontinuities. This
metric utilizes the pairwise distance

d2
ij =

(
f1
i − f1

j

)�(
f1
i − f1

j

)
(2)

where f1
i represents the ith point in the rank 1 (nondominated)

front. The maximum, IQR, and mean are then calculated
from these pairwise distances for obdisc_max, obdisc_iqr, and
obdisc_mean, respectively.

Nbr_dist is a metric which calculates the total distance
walked across the objective space by each neighborhood using
the summation of the pairwise distance metric as in obdisc.
This is then used to measure the differences in the distance
in the objective space traversed by each neighborhood. The
minimum, average, and first autocorrelation are collected for
the walk, as defined in Definition 1. A high autocorrelation
demonstrates that the distance across the objective space does
not change much between neighborhoods (and therefore is
more likely to be neutral), while a low one means there is
a large change between neighborhoods. Therefore, when the
minimum (min_nbr_dist) and average distance (nbr_dist_avg)
are small and the autocorrelation (nbr_dist_r1_rws) is large,
we can infer that the landscape is neutral.

Nbr_rank_best measures the average rank for each neigh-
borhood that contains a nondominated (for the entire sam-
ple) solution. The nondominated front ranking is used to
determine the “goodness” of each solution. Since only neigh-
borhoods with at least one nondominated solution are used,
nbr_rank_best measures along the neighborhoods surrounding
only the best solutions. The average, minimum, and maximum
across all neighborhoods are then recorded. These are used as
measures to identify whether there is ruggedness. When the
average is high, the nondominated solutions are surrounded
by inferior solutions. Simultaneously, it may be a measure of
deceptiveness since it is measured using a sample. When prob-
lems are highly deceptive and the nondominated solution is
away from this solution, a low value of avg_nbr_rank_best will
be obtained, since their approximate best neighborhoods will
seem similar. Conversely, if the nondominated solution is the
global optimal found and the remainder of the neighborhood is
filled with poor solutions with high rank, avg_nbr_rank_best
will be high.

Obdist measures the average paired distance between the
nondominated front and the second-ranked front in the objec-
tive space.

Obdist =
∑(

f1
i − f2

j

)�(
f1
i − f2

j

)

|f1| + |f2| . (3)

This captures the improvements between the two best fronts.
When this distance is large, there may be bias away from
the PF.

Decdist measures the distance in the decision space for solu-
tions across and between the first- and second-best ranked
front. This is the equivalent of obdist in the decision space.
The purpose of this feature is to capture whether large muta-
tions in algorithm populations are required to identify superior
solutions. The average distance is recorded.

D. Algorithms and Performance Metric

The selected benchmark problems were evaluated using a
portfolio composed of six state-of-the-art algorithms, across
four different classes, ensuring the representation of diverse
elitism and niching strategies [47].

1) Pareto-Dominance: NSGA-II [48] and SPEA2 [49].
2) Decomposition: MOEA/D (Tchebycheff decomposi-

tion) [50].
3) Grid-Based: GrEA [51].
4) Indicator-Based: HypE [52] and IBEA [53].
All algorithms were run 30 times on each benchmark, with

each run having a budget of 104 evaluations. Default settings
of each algorithm were used based on the PLATEMO imple-
mentation [20]. To ensure comparability across problems, we
evaluate algorithm performance using the average IGD+

M (a
modified IGD metric) across runs [46]. This metric is used
instead of HV, since HV favors knee and boundary points
over the distribution of solutions on the PF [10]

IGD(S, P) =
(∑|S|

i=1 d2
i

)1/2

|S| (4)

Authorized licensed use limited to: University of Melbourne. Downloaded on December 02,2022 at 01:11:12 UTC from IEEE Xplore.  Restrictions apply. 



YAP et al.: INFORMING MO BENCHMARK CONSTRUCTION THROUGH ISA 1251

(a) (b) (c)

Fig. 1. Location of specific benchmark instance problem classes highlighted against all instances in gray. H and P denote the Harder and Perturbed Instances,
respectively. The empirical boundary of the space is shown in orange. (a) General-purpose Benchmark suites. (b) Perturbed and Harder Instances. (c) Other
suites.

where P is the true PF reference set, S is the nondom-
inated objective vector obtained, and di is the Euclidean
distance from the elements of p ∈ P with its nearest neigh-
bor in set s ∈ S. IGD+ modifies the distance calculation
as

√∑|Z|
i=1 max(�pi − �si, 0)2 to account for dominance rela-

tions [54]. However, to allow for comparisons across problems,
the metric must be normalized. We, therefore, use IGD+

M ,
which is defined as follows:

IGD+
M =

{
1 − IGD+

N 0 ≤ IGD+
N ≤ 1

1
IGD+

N
− 1 1 < IGD+

N
(5)

where IGD+
N is IGD+ normalized by dividing by the mean

distance between nadir point r, with the PF as the reference
set. IGD+

M = 1 is bounded between [ − 1, 1], where problems
become harder as IGD+

M → −1. For the ISA that follows,
we consider an algorithm’s performance to be “good” on a
problem instance if its IGD+

M metric is within 1% of the best
IGD+

M obtained by the portfolio.

E. Preliminary Instance Space

We generate an instance space by adopting the method-
ology [14] for the continuous MO metadata described
above. Each instance of the benchmark suites described
in Section II-B is initially summarized as a 35-D feature
vector. The top 10 most discriminating features for distin-
guishing between good and bad algorithm performance are
identified during a feature selection process within the ISA
methodology. In this process, a subset of features which
best summarizes the key features of the instances that affect
algorithm performance is identified. This is achieved by cal-
culating Pearson correlations between features and algorithm
performance. Features which share the highest correlations
with algorithm performance are retained, and k-means clus-
tering is used to group similar features together. To identify
the best combination of features, one feature from within
each cluster is taken, forming a feature subset, and this is
repeated for all possible combinations. The optimal feature
vector is selected which demonstrates the lowest predictive
error when classifying whether an algorithm is good, based on
a user-defined metric, upon projection onto 2-D using principal

component analysis (PCA). With these features selected, an
optimization problem is then solved to determine the best lin-
ear transformation for projecting the instances from 10-D to
2-D, such that the feature distributions and algorithm perfor-
mances are as linear across the instance space as possible to
aid the interpretation of trends

[
Z1
Z2

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0644 − 0.4298
−0.4963 − 0.3249
−0.0039 0.2565

0.1997 − 0.1846
−0.0086 0.2309
−0.1259 − 0.3304

0.2513 0.1190
0.1950 − 0.0052

−0.3862 − 0.5401
0.1953 − 0.0385

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

inf_avg_rws
inc_avg_rws
decdist
obclust_n
obclust_max
obdisc_max
kurt_max
signif
min_nbrdist
avg_nbr_rank_best

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6)

We can now use the 2-D visualizations to scrutinize the
existing test suites and identify gaps in the current benchmarks.
However, it is important to note that these are not necessarily
robust observations as they are reliant on the metadata and
the instance space generated. Therefore, its sensitivity to the
metadata would need to be comprehensively explored in order
to ensure these observations persist despite small changes in
the metadata. Such sensitivity analysis is beyond the scope of
this article, which is more focused on how to generate addi-
tional instances to a given instance space so that observations
can be supported by the most comprehensive set of instances.

Fig. 1 shows the location of the existing benchmarks within
the instance space given by (6). The empirical boundary of
the instance space is shown by the solid orange lines and
informs on the space that could be filled by new instances. The
General-purpose Benchmark suites in Fig. 1(a) do not demon-
strate much diversity or coverage of the entire space. Problems
within suites are also shown to be close to each other, verifying
the results of Yamamoto et al. [12]. In Fig. 1(b), the instance
space reveals that when considering additional instances gener-
ated by tuning problem construction parameters, the Perturbed
and Harder Instances improve the coverage. As expected,

Authorized licensed use limited to: University of Melbourne. Downloaded on December 02,2022 at 01:11:12 UTC from IEEE Xplore.  Restrictions apply. 



1252 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 6, DECEMBER 2022

Fig. 2. Feature distribution for three features: (a) inf_avg_rws; (b) obclust_max; and (c) avg_rank_nbr_best.

Fig. 1(b) shows that the ZDT problems do not offer much vari-
ation in characteristics of problem instances, while the DTLZ
and WFG show greater diversity within the instance space
when parameters are varied.

Fig. 1(c) shows that problems in other suites tend to clus-
ter with each other. Intuitively, the RMMEDA and IMMOEA
suites, which are built from ZDT and DTLZ problems with the
addition of variable linkages, occupy the lower region, much
like the ZDT and DTLZ suites. However, they do occupy areas
between the suites, suggesting that there are still limitations to
filling the instance space only by the addition of variable link-
ages. Comparing the existing suites to the empirical boundary,
there are clear empty regions in the upper, left, and bottom
right regions. Therefore, the diversity of existing suites still
lacks in a sufficient coverage for a comprehensive problem set.

It is important to note that while the instance space was
generated by combining biobjective and triobjective problems,
these can be studied separately if the focus is on a more
granular separation of characteristics (for each number of
objectives). For the purposes of our study, we retain both in
the same instance space since there are features which should
correlate with the number of objectives, such as objective
correlation.

F. Analysis of the Preliminary Instance Space

Inspecting the distribution of three selected features in
Fig. 2 provides some insights into the kinds of characteris-
tics present in each suite. The feature inf_avg_rws represents
the degree of objective correlation; obclust_max represents the
degree of biasedness to one region in the objective space; and
avg_nbr_rank_best is used to measure ruggedness and decep-
tiveness. Fig. 2 colors the instances blue if they have a minimal
value of a feature, and yellow for a maximal value. Combining
Figs. 1 and 2 allows us to infer some of the characteristics
present in the various suites, but also the characteristics of
any instance based on its 2-D location.

The majority of the BT suite is located just right of the
origin point, with one problem lying in the upper right. This

TABLE II
AREA AND DENSITY OF EACH ALGORITHM’S FOOTPRINT DEFINING

GOOD PERFORMANCE ON THE EXISTING INSTANCES

indicates that there is one problem where there is bias toward
one region. The IMOP and most of the MOEADDE problems
are shown to have low objective correlation and a high degree
of ruggedness. The MOEADM2M suite has medium to high
levels of ruggedness, a sparse distribution and low objective
correlation. SMOP has low to medium sparsity of solutions,
as well as medium objective correlation and ruggedness. The
UF and VNT suites have a combination of low to medium
objective correlation, a range of sparseness, and medium to
high ruggedness.

The performance of algorithms across the instance space is
shown in Table II. Footprint Area measures the coverage of
good performance of an algorithm across the instance space,
while Footprint Density measures the number of instances
within each footprint of good performance. Since these quan-
tities are normalized by the area and density of the convex
hull containing all instances, the density can be greater than
one if a footprint is denser than the convex hull. IBEA shows
the largest coverage of good performance by far, followed
by GrEA and HypE, while NSGA-II has the least cover-
age. Fig. 3(c) shows that IBEA has the largest footprint for
good performance, while Fig. 3(e) NSGA-II has the smallest.
Each blue dot represents an instance where good performance
is observed, and the areas in light blue are where we can
statistically generalize this using the footprint area calcula-
tion. Notably, IBEA shows weak performance specifically on
the instances toward the lower region, and toward the right.
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Fig. 3. Algorithm footprints obtained when using the existing benchmark problems and the performance obtained experimentally for: (a) GrEA; (b) HypE;
(c) IBEA; (d) MOEA/D; (e) NSGA-II; and (f) SPEA2. An algorithm is good if it is within 1% of the best performing algorithm.

Conversely, MOEA/D shows good performance where IBEA
is weak and also performs well toward the lower left regions.

The construction of functions within the Benchmark
Instances specifically aims to address specific characteristics,
and features provide a quantitative measure of the degree of
the characteristic present. For example, SMOP aims to impose
challenges for algorithms in obtaining sparse solutions and
this is confirmed to be true by low to medium values of
obclust_max. Therefore, the instance space confirms that the
construction of each successive suite has been successful in
creating additional diversity within the interior of the instance
space. However, sparseness still remains between suites and
particularly in areas surrounding the boundaries.

The results show that when discussing algorithms in a larger
context beyond only problems with specific characteristics, the
use of a single suite is insufficient for drawing broader con-
clusions, with each suite demonstrating a limited range across
the instance space. In other words, no standalone suite is suf-
ficient for drawing conclusions on an entire problem class or
type, or the hierarchy of algorithm performance. As such, gen-
eralizations that are made about an algorithm’s performance
on problem classes may not hold true—it may still have
weaknesses within unidentified areas, and further opportunity
for developments are possible. By recognizing the diversity
present in problem instances and suites, we can generate bet-
ter informed inferences about where algorithms are likely to
perform well, and use these insights to guide development on

a broader set of instances. For example, if an algorithm per-
forms well on rugged landscapes which have low to medium
bias, but poorly when large bias is present, we can investigate
which mechanisms drive behaviors guiding these strengths
and weaknesses. Given the included suites in this study, there
are unoccupied regions where no suites contribute problem
instances in the top left, middle left, and bottom right. As such,
we now explore how the instance space can inform the gener-
ation of new problems in these regions. Noticeably, the ZDT
problems tend to occupy the boundary of the existing suites at
the bottom right. We investigate this in Fig. 4, which demon-
strates the instance space of existing benchmark instances
labeled by the number of objectives. Visually, we observe that
the biobjective problems have a tendency to occupy the lower
region.

The feature distributions show clear gradients across the
instance space and therefore inform us which characteris-
tics a problem must have, such that it belongs to one of
these empty regions. For example, inf_avg_rws is negatively
correlated with objective correlation, with smaller values sug-
gesting that the problem has a high objective correlation. The
gaps in the left demonstrate that there is a lack of high cor-
relation problems, while the right suggests that there is a
lack of low objective correlation problems. This is important
since practical MO problems typically have conflicting objec-
tives (e.g., [55]). Dominance relations—and therefore elitism
strategies—are affected by the degree of objective conflict.
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Fig. 4. Existing problems by the number of objectives.

When objective correlation is low, there is a smaller chance
of dominated or dominating neighbors [16].

Obclust_max calculates the largest proportion of solutions
within a cluster. As such, it measures whether there is bias
toward one area within the objective space. This is confirmed
by the presence of WFG1 and WFG9 in the upper regions
of the instance space. The gaps at the top can be filled with
biased problems that map to a minimal number of clusters,
while the lower right shows gaps in problems where finding
an even distribution is easy. Avg_rank_nbr_best extracts the
average rank in the neighborhood of each best solution. A
smaller value suggests a consistent neighborhood, resulting in
the neighboring solutions being similar in the objective space.
This serves as a proxy measure for deceptiveness, with large
values of avg_rank_nbr_best showing that neighboring solu-
tions around the best solutions are poor. The gaps on the left
can be filled with problems that are less rugged and more
deceptive. This is confirmed by the existing problems on the
left being DTLZ6 and WFG5, both with a deceptive land-
scape function/transition. Since the selected benchmark suites
lack these types of problems, our knowledge about algorithm
performance is deficient when facing problem instances with
those specific feature combinations.

In Section III, we utilize the insights provided by the fea-
ture distributions to generate new problems with the kind of
landscape features that will enable them to occupy sparse and
empty regions of the instance space. Generating instances in
these regions is important for moving toward a comprehen-
sive benchmark set. It is also critical for understanding the true
strengths and weaknesses of algorithms. We already have some
studies that have identified challenges for some algorithms. For
example, Ishibuchi et al. [56] identified that MOEA/D suffers
from degrading performance on highly correlated objectives,
while NSGA-II and SPEA2 do not. Expanding the instance
space to include new instances will enable us to enrich our
understanding of algorithm strengths and weaknesses, and
make recommendations for appropriate algorithm selection on
real-world problems.

III. CONSTRUCTING NEW BENCHMARKS

The existing suites that we have explored show reasonable
coverage over a wide range of the instance space. However,
they are not yet representative of a comprehensive set. Of
course, the generation of a completely comprehensive set may
be infeasible, due to the large number of instances which need
to be generated to ensure a representative set. Nevertheless, we
should explore methods of expanding the existing instances
through the inclusion of distinctly different problems.

The results of the ISA in the previous section demonstrate
that due to the construction methods of the existing MO suites,
their problems tend to cluster, regardless of the problem prop-
erties available. This raises a question regarding the limitations
imposed by problem generation methods for specific suites.
Further research is required into whether an alternative method
for generating test suites is possible. Within the instance space
of existing suites, we have observed that there are three obvi-
ous areas where test problems are lacking: the top left, middle
left, and bottom right. In the previous section, we identified the
types of problem characteristics represented by features in these
empty pockets of the instance space, by analyzing the trends
in the feature distributions. We now propose some methods for
generating new instances to target such unexplored regions.

A. Methods of Problem Construction

Our motivation for generating new problems is to increase
the diversity of the instances and generate a more compre-
hensive problem set that can expand the instance space. We
consider three methods to achieve this.

1) Method 1—Tuning: The first and simplest method is to
tune instances, expanding our previous work [13] to additional
suites. The tuning of instances has been applied to the land-
scape and PF shape functions of the IMMOEA and RMMEDA
suites. LHS is used to generate combinations of values which
are used for tuning. Fig. 1(b) showed that tuning the General-
purpose suites results in similar problems being generated,
and while we expect this to hold true with the IMMOEA
and RMMEDA suites, we test the method for these suites
nonetheless.

2) Method 2—Hybridizing: For our next two construction
methods, we build onto the LSMOP test toolkit [9] due to
its ease of use and tuneability. The toolkit generates objective
functions defined as⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩
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(
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))
(7)

where xf = (x1, . . . , xm−1) is the first part of the decision vec-
tor and xs = (xm, . . . , xn) is the second remaining part. fi are
the objective functions, where M is the number of objectives.
gi are the landscape functions, hi defines the shape of the PF,
and C is the correlation matrix which controls the correlation
between the objective fi(x) and xs

j . While the original toolkit
is proposed for large-scale problems, hence its omission from
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the Benchmark Instances presented earlier, we now use it to
construct general problems by exploring the diversity that can
be introduced through its different configurations.

We hybridize suites by combining the landscape functions
from DTLZ1–DTLZ7, with the shape function and decision
vectors from LSMOP1. Therefore, the LSMOP construction
is preserved and the characteristics of each DTLZ problem
are already known. In the case of hybridizing, we expect that
it is likely to create functions that exist between the initial
problems. However, since the instance space does not show
many sparse regions in its interior, there may be limitations
to the relevance of this technique.

3) Method 3—Injecting New Functions: Alternatively, new
functions have the potential to create problems that occupy
empty regions with guidance from the feature distributions.
The hybridization technique uses existing functions with
known properties. We can leverage this information when
injecting new functions which have more (or less) extreme
values of certain characteristics. For example, the triobjective
DTLZ6 landscape function for deceptiveness is defined as

g(x3) =
∑
xi∈x3

x0.1
i (8)

where xi are the decision values associated with the third
objective. By construction, the Pareto-optimal solutions cor-
respond to g(x3) = 0. As such, the exponent 0.1 biases
the decision variables away from the PF. This introduces
deceptiveness, with the majority of the objective space lead-
ing toward solutions away from the PF. Simultaneously, as
this exponent increases, neutrality is introduced in the search
space, since objective values which are not optimal will all
approach zero. We can take inspiration from DTLZ6’s land-
scape by selecting functions which share similar traits: a
landscape with neutrality and deception present. For exam-
ple, the following function creates a mostly neutral landscape
with a deceptive optimum and multiple local optima:

g(xM) = 10

∣∣∣∣∣
∑

xi∈xM

(
1

xi

)
− 1

∣∣∣∣∣
0.1

. (9)

Pareto-optimal solutions are obtained when xi = 1 ∀i. The
coefficient of 10 ensures that algorithms will achieve poor
results when away from the PF. The absolute value ensures
positive objective values and a ridge, and in combination
with the exponent 0.1, defines the extent of deceptiveness
and multimodality present. Therefore, if we were exploring
the tuning of this landscape function, there are two tuneable
construction parameters.

B. Problem Construction Methodology

Based on the ISA, we identify three empty areas that are
important to address: 1) the upper region; 2) left; and 3) lower
right. Fig. 4 has already illustrated that the bottom right area is
populated by biobjective problems. Hence, our first step is to
generate such problems to attempt to fill the gap in this region.
To address this, we generate bi- and tri-objective versions of
the LSMOP problems with a dimension of 30.

We then include tuned versions of the IMMOEA and
RMMEDA suites from our previous work [13] as examples

TABLE III
FOUR NEW LANDSCAPE FUNCTIONS INJECTED INTO THE LSMOP SUITE

AND THE PROBLEM COMPOSITIONS USED (FROM LSMOP1 AND

LSMOP6). p1 DENOTES THE CONSTRUCTION PARAMETER THAT

IS ALTERED FOR NEWLY GENERATED INSTANCES

of method 1 to compare problem generation methods.
Furthermore, we demonstrate hybridization (method 2) by
mixing LSMOP1 with each of the DTLZ1–6 landscape
functions.

For the injection of new functions based on insights afforded
by ISA (method 3) we target the empty upper region and left
region. Fig. 2(b) shows that problems located in the upper
region have a larger value of obclust_max. Since this feature
represents the maximum proportion of solutions within one
cluster, we infer that these are unimodal problems with strong
bias toward one region in the objective space. On the other
hand, Fig. 2(a) and (c) suggests that the left region is likely to
be populated by problems with high objective correlation, low
ruggedness and are possibly deceptive. Therefore, we aim to
inject new functions into the LSMOP suite which exhibit such
characteristics to demonstrate the effectiveness of the third
method of new problem construction.

Using method 3 to address the upper region, we inject func-
tions defined in Table III. Since they are biased and unimodal,
we expect these functions to exist in this upper area. For
instance on the left, we must increase the objective correlation
by impacting the local Pareto-optimal solutions. As such, we
use these same functions with reduced upper bounds ui = 1 ∀i.
This is expected to push instances with these properties toward
the left. The full composition of the new test instances is listed
in Table IV.

IV. RESULTS

Fig. 5 demonstrates that the region occupied by the LSMOP
suite is different from the General-purpose suites. The biob-
jective versions occupy locations toward the bottom right
corner, confirming that the biobjective problems are needed
to fill the gap in that region. This result is intuitive given that
the literature has progressively moved away from biobjective
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TABLE IV
COMBINATION OF PROBLEM COMPOSITION, INJECTED LANDSCAPE

FUNCTIONS, BOUNDS, AND CONSTRUCTION PARAMETERS USED TO

GENERATE NEW INSTANCES. O REPRESENTS THE ORIGINAL

BOUND ON THE DECISION VARIABLES, WHILE U REPRESENTS

THE UPDATED UPPER BOUND

problems following the work of Deb [4]. Since biobjective
problems are simpler to construct, we focus our efforts on
more challenging parts of the instance space. Conversely, the
triobjective LSMOP1–9 are located toward the upper region
of the instance space. We observe that the LSMOP suite
originally demonstrates the clustering limitation for problems
within a suite. However, once we reduce the upper bound
for the decision variables and therefore reduce the sparsity
in the decision space, we are able to generate problems in the
previously unoccupied bottom left of the instance space.

A. New Problems

We now examine the effectiveness of the three different
methods we have proposed for new problem generation.

1) Tuning: Problems from the IMMOEA and RMMEDA
suites are tuned to demonstrate the diversity achievable by tun-
ing methods. In Fig. 5, the tuned functions demonstrate similar
behavior to that of the General-purpose Benchmark Instances,
whereby instances tend to cluster together. However, since
both IMMOEA and RMMEDA are located in between the
General-purpose suites, more diversity is introduced to cover
the interior of the instance space. As such, this method is
useful for filling empty areas surrounding existing instances.

2) Hybridizing: The hybridized problems consist of
DTLZ1–6 functions combined with the sphere function within

Fig. 5. Newly generated problems shown by different methods. New prob-
lems include the LSMOP suite, hybrid LSMOP with DTLZ functions, tuned
IMMOEA and RMMEDA, and newly injected functions for bias and deceptive
problems. Biobjective problems are marked by ×.

the construction of LSMOP1. Fig. 5 shows that the hybrid
problems are located between the LSMOP and DTLZ prob-
lems from which they are built—within the region of the WFG
suite. Therefore, hybridizing these two suites may not prove
to be useful for generating diverse new benchmarks. However,
it does provide us with intuition toward which suites can be
hybridized for diversity—but only between suites. These addi-
tional instances are useful for clarifying contradicting areas
and boundaries of performance for algorithms though.

3) Injecting New Functions: The feature distributions
have been used to inform where new functions with
certain characteristics should be injected. We note that
obclust_max captures the bias toward regions and unimodality,
avg_rank_nbr_best measures the deceptiveness and rugged-
ness, while inf_avg_rws captures objective correlation. The
numbers denoted in Fig. 6 relate to the instance numbers in
Table IV. Instance types 1–4 and 8 generate in the upper
region—the area which it is expected to since the triobjective
LSMOP problems are located in this area. However, we note
that these functions do generate problems that push further
toward the top left than the LSMOP problems.

Attempting to create problems in the left region initially
proved more complex, with a limited reach for deceptive
problems using the LSMOP suite construction. In particu-
lar, the lack of problems with objective correlation leaves
this region unoccupied. However, since objective correlation
shares a relationship with the landscape of the local Pareto-
optimal solutions, we targeted this area by forcing a stronger
dominance relation.

Upon reducing the upper bounds to force stronger objective
correlation, the instances move toward the left. Notably, this
comparison is visible by the movement of instance type 6.
Similarly, instance type 8 remains in the upper region since
they have not utilized the reduced upper bounds, while types
5 and 7 do, and are located in the lower left region. We
also note that by instantiating these problems with differ-
ent parameters, we are able to reach a larger area than with
a single instance. Therefore, utilizing the insights from the
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Fig. 6. Focused graph of the tuned and injected functions. Numbers on
the plot for the injected functions detail the instance type generated from
Table IV.

instance space has allowed us to increase problem diversity
by generating instances in regions of interest.

While we have demonstrated the addition of new problems
onto the existing instance space, it is important to note that
bias may be introduced when an excessive number of new
instances are generated toward one area of the instance space.
It is also necessary to recognize that upon the inclusion of a
large number of new instances, the resultant instance space
will likely change shape. Therefore, such bias can be avoided
by conservatively filling new areas, and by iteratively repeat-
ing the ISA methodology to ensure that we are continuing to
generate instances in sparse regions. Furthermore, the removal
of similar instances can be investigated to reduce the num-
ber of redundant instances that may cause oversampling bias.
Therefore, each progressive iteration of the instance space pro-
vides us with the most up-to-date information from which we
can draw conclusions applicable only to the studied instances.
Notably, the purpose of the ISA methodology is to enable the
assessment of the strengths and weaknesses of algorithms once
the metadata (including the instance set) reaches convergence.
Therefore, a strong dependency exists between the instance
space and the metadata. However, in this article, we do not
comprehensively explore the robustness of the instance space
construction to the metadata. Instead, we explore methods of
instance generation to fill gaps en route to creating a final
instance space.

B. Effect on Algorithm Performance

While the diversity of problems is important, it is also
necessary to consider whether the performance of algorithms
changes on these new problems. This allows us to validate
whether the new information can advance our understanding of
the boundaries of performance of an algorithm. Previously, we
noted that IBEA had the largest coverage of good performance,
and this persists with the inclusion of new problems. The
footprint MOEA/D, which previously had an area of 0.310,
increased by over 45% to 0.451, being the algorithm that had
the second largest change in performance. Furthermore, the

Fig. 7. Footprint for MOEA/D obtained after using the complete set of
benchmark problems and the performance obtained experimentally.

footprint of MOEA/D is the most disjoint, with no consistent
footprint section that is larger than the rest. Therefore, will
focus our analysis on MOEA/D. The footprints for all algo-
rithms can be found in the supplementary materials.

Fig. 3(d) shows the footprint of MOEA/D on the orig-
inal instances, whereas Fig. 7 shows the updated footprint
after including the new instances, showing an expansion of
the area of good performance with the additional information
provided by the new functions. In particular, MOEA/D’s foot-
print in the regions below the origin is now much larger.
Notably, the area to the upper right previously did not
form part of its footprint, but now there are demonstrated
strengths. Furthermore, newly generated instances through
function injection on the left and upper right also confirm
good performance, resulting in a change in the shape of the
footprint. Previously, there was a lack of instances in these
regions, and therefore uncertainty on whether MOEA/D would
perform well on such instances. However, with the inclusion
of additional instances, new regions of good performance have
emerged.

The change in the footprint provides additional confidence
in MOEA/D across the instance space by the inclusion of new
instances. MOEA/D mostly suffers poorer performance in the
right and upper left regions of the instance space. Notably,
when considering only the Benchmark Instances, MOEA/D’s
performance is understated in several regions. This validates
the ongoing requirement for the diversity of problems to inves-
tigate and correctly identify algorithm footprints. The updated
footprint generated is still not definitive, as there are still gaps
in the instance space. Therefore, a comprehensive and repre-
sentative instance set is important for correctly inferring the
performance of algorithms, and is an ongoing research chal-
lenge. Since this instance space is still incomplete, there will
continue to be regions of unreliable performance generaliza-
tion for some algorithms—due to sparse instances in these
areas. As more instances are added, the ISA methodology
should be repeated to allow for robust generalizations about
areas of strong algorithm performance.
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V. CONCLUSION

Despite benchmark problem suites playing a large role in
algorithm testing and development, they are typically consid-
ered in isolation or independently. This limits the strength
of the conclusions drawn about algorithms, since superior
performance should be demonstrated using a diverse set of test
problems. The ZDT, DTLZ, and WFG suites were designed
to be general-purpose suites and toolkits. As such, they are
expected to contain a comprehensive and representative set
of problems. However, Yamamoto et al. [12] showed that
problems within each suite tended to cluster together. This
is consistent with what is known in the literature—given the
numerous test suites that have since been developed.

Since the ZDT, DTLZ, and WFG suites, newer suites have
been proposed with specific problems, for the purpose of test-
ing an algorithm on its capacity to account for a combination
of characteristics not typically found in the general-purpose
suites. However, due to the differences between each suite
and their considerations, their contributions toward a more
comprehensive problem set is not transparent.

In this article, we explored the diversity of nine of the
current continuous MO benchmark suites using ISA. Our
research confirmed the results of Yamamoto et al. for the
ZDT, DTLZ, and WFG suites. Furthermore, we observed that
within six other suites, problems still had a tendency to clus-
ter together. While diversity across the problem instances is
present, we also identified opportunities for the development
of new benchmarks, including problems with low correlation,
high correlation, bias, and deceptiveness. The contributions of
this article by creating and analyzing the first instance space
for MO problems are twofold: 1) the identification of which
problems are missing and the features we should target to
create them and 2) the generation of problems which are tune-
able, providing potential for filling a larger surrounding area
of the instance space to create diverse and comprehensive
benchmarks.

We explored three methods for generating new problems
within the instance space perspective: 1) problem tuning;
2) hybridizing; and 3) injecting new functions through analyz-
ing the feature distributions. The three methods were shown
to address different limitations. Method 1 using problem tun-
ing showed the potential to fill the area around the existing
instances. This is particularly useful for generating a larger
density of instances with similar characteristics, for exam-
ple, to identify the partition in feature characteristics between
an algorithm performing strongly or weakly. Method 2 of
hybridizing was able to fill in gaps between the existing suites.
This is useful for generating instances in gaps in the instance
space’s interior and is simple to define since we utilize existing
functions. However, the two methods are limited in their flex-
ibility when attempting to define problems which exist toward
the boundaries of the instance space. Method 3, which injects
new functions into the LSMOP toolkit using insights from
the feature distributions, shows more potential for generating
diverse instances which are important for a comprehensive
problem set, as well as defining the true boundaries of an
algorithm’s footprint. In the future, the identification of further

features which scale with the number of objectives will be
necessary to generate instance spaces beyond triobjective.

By analyzing feature distributions and generating functions
with known characteristics, we have been able to address
gaps in the instance space by creating biased and deceptive
instances, as well as those with higher objective correla-
tion. However, due to the interplay of conflicting objectives,
the injection of functions for method 3 may not result in
transparent movement across the instance space. Furthermore,
our results show that problem suites tend to be restricted in
their movement across the instance space due to the com-
position of their problem generation. However, variable link-
ages show potential in moving problems within the instance
space, as demonstrated by the RMMEDA and IMMOEA link-
ages on ZDT and DTLZ problems. Similarly, reducing the
upper bounds for decision variables (and therefore sparseness)
resulted in a shift away from the initial LSMOP suite. This
is an intuitive result since LSMOP is a large-scale problem
toolkit, and by reducing the large-scale nature of the prob-
lems, LSMOP demonstrates a different range of problems.
Therefore, the clustering limitation observed may be overcome
by strategically changing suite components beyond objective
functions.

The increased diversity in problems also demonstrated an
impact on algorithm performance. Upon the inclusion of
instances in the exterior of the instance space, we were
able to both clarify contradictions in algorithm footprints,
as well as infer larger areas of good performance for each
algorithm. In particular, the footprint of MOEA/D not only
grew but also changed shape. This demonstrates the impor-
tance of a comprehensive and representative test set for
understanding algorithms, since our knowledge about strong
algorithm performance is only verifiable where test instances
are available.

Overall, we find that these three methods are a useful
intermediate step for generating a comprehensive continuous
MO benchmark set. However, limitations imposed by the com-
position of test suites demonstrate the need to find a more
sustainable method of generating MO benchmarks, as there
is still more diversity to be achieved, especially toward the
boundary points of the instance space. While exploring feature
distributions can help inform what type of problem charac-
teristics will occupy target regions, the function combination
required to reach an exact target point is difficult to establish
and requires creativity and intuition. We, therefore, consider
the identification of new functions within this framework to be
an ongoing challenge. One alternative strategy worth exploring
in future research is to evolve new problems that lie at target
locations in the instance space, with a specific feature com-
bination, through the use of genetic programming, expanding
our earlier work on generating new single-objective BBO func-
tions [57], [58]. This may provide an automated approach for
filling the instance space, made feasible by considering fea-
ture information available from ISA, and using target feature
combinations to inform the combination of functions which
fill gaps. It is also necessary to recognize that these artificially
generated problems will not necessarily be representative of
real-world problems. An interesting future direction would be
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the identification of regions where various real-world prob-
lems lie, and therefore algorithms performance comparisons
can be inferred within real-world contexts. However, there may
be limitations since many real-world problems are expensive
and obtaining a large sample and their corresponding feature
vectors may not be possible.

While our study has focused on analysis across problems
and suites, further opportunities exist for the investigation
of within-instance structures of problems. In particular, visu-
alization of instance landscapes [59] is complementary to
ISA. Such studies allow for generation of greater insights
through evaluation of instances through a more granular lens.
Furthermore, an analysis of the sensitivity of features to the
sample size is also necessary. In particular, there is an oppor-
tunity to identify the best sampling methods and sizes for such
problems, as we do not explore this in this article.

Ultimately, this study demonstrates that the instance space
is not yet complete and more data is required. The develop-
ment of new suites, features, and different algorithm portfolios
can be added iteratively to improve upon the current instance
space. The superset of test suites can be considered compre-
hensive when there are no gaps left to fill in the instance space.
For computational efficiency, it is a natural next challenge to
determine the most representative benchmark set possible to
allow for unbiased comparison of algorithms [60], [61].
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