
Applied Soft Computing 110 (2021) 107613

t
r
a
o
w
a

a
b

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

On the diversity and robustness of parameterisedmulti-objective test
suites
Estefania Yap ∗, Mario Andrés Muñoz, Kate Smith-Miles
School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia

a r t i c l e i n f o

Article history:
Received 6 July 2020
Received in revised form 26 May 2021
Accepted 8 June 2021
Available online 21 June 2021

Keywords:
Multi-objective optimisation
Benchmark suites
Experimental evaluation
Exploratory landscape analysis
Algorithm ranking

a b s t r a c t

The development of optimisation algorithms heavily relies on comparing performance across bench-
mark problem suites. In continuous unconstrained multi-objective optimisation, the most popular
suites are ZDT, DTLZ and WFG. For each problem in these suites, there are construction parameters that
control characteristics such as the degree of multimodality or deceptiveness. Despite encouragement
from the suites’ authors to do otherwise, experiments are largely performed using only the original
values of these parameters. It is important to understand the robustness of these test problems, and
their potential to create a diversity of challenging problem landscapes to guide future algorithm testing
and development. In this paper we propose a methodology for evaluating robustness of the benchmark
test problems by strategically varying construction parameters and exploring how problem difficulty
and landscape characteristics are affected. Our methodology adopts both Latin Hyper-cube Sampling
and a design and analysis of experiments model to construct more diverse problem instances within
the benchmark problem classes. These problem variants are evaluated for eight diverse multi-objective
optimisation algorithms to contribute to our understanding of problem robustness. We measure
robustness of problems indirectly in terms of impacts on algorithm performance and rankings, and
directly in terms of Exploratory landscape Analysis (ELA) metrics that are used to establish problem
robustness from a landscape characteristics perspective. Our results show that only eleven of the 21
benchmark problems are robust for algorithms in absolute terms, nine in relative terms, and seven
which provide evidence of both types of algorithm robustness. There are also nine problems which
satisfy requirements for landscape robustness. Of these, only four of the 21 benchmark problem
classes are robust across all measures. These results highlight the importance of diversity in selecting
benchmark problems, as the majority of the test suite problems, if only default construction parameters
are considered, do not support robust conclusions to be drawn in general about how algorithms
perform in the presence of various constructed characteristics intended to challenge algorithms. The
existing benchmark test problems are currently insufficient for understanding algorithm performance,
certainly with the popularly used default parameters, and more efforts in generating diverse problem
instances would serve the research community well.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Multi-objective optimisation problems (MOOP) are an impor-
ant class within optimisation due to their applicability to model
eal world problems. In MOOPs, two or more conflicting goals
re simultaneously minimised and/or maximised, with trade-
ffs between these objectives being observed. A classic example
ithin the economics domain involves the minimisation of risk
longside maximisation of profit.
In practice, to solve a MOOP it is necessary to select and

pply a well-performing algorithm. However, it is established
y the No Free Lunch Theorems [1,2] that no single algorithm
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can be expected to be best across the whole set of problems.
Instead, an algorithmmay only display superior performance over
a subset of problems which exhibit certain characteristics that
the algorithm exploits. This results in the challenge of identifying
the relationship between different problem characteristics and
algorithm performance. Suites of synthetic benchmark problems
exist for the purpose of exploring this relationship and comparing
performance. Synthetic problems are able to support the devel-
opment and testing of algorithms since their characteristics and
optimal solutions are conveniently known. A diverse range of
difficulties and problem types can be artificially constructed and
algorithms systematically tested. In contrast, real-world problems

are typically solved by completing experiments. Therefore, the
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ime required, financial cost and constraints on experimental re-
ources often result in the inability to replicate experiments. Con-
equently, this limits the volume of real-world problems available
o study. By using synthetic problems to achieve a better under-
tanding of algorithm behaviours across the diverse set of prob-
ems, performance on real-world ones with similar characteristics
an be inferred.
As a consequence, benchmarks play an essential role in de-

ermining an algorithm’s performance against different problem
haracteristics. The motivation for Deb’s initial paper introducing
MOOP generating toolkit was to systematically test algorithms
n problems with controlled difficulty [3]. Deb asserted that the
rue efficiencies of an algorithm are only revealed when evalu-
ted over challenging problems, hence the need for controllable
ifficulty. As such, its test suite had tuneable parameters that
ffected the landscape of the resulting MOOP. This approach was
ollowed by the authors guiding the development of the ZDT [3,4]
nd WFG [5] suites, who encourage the development of different
ypes of problem classes and instances using their provided toolk-
ts. However, over one decade later the original test problems
ith default parameters are still commonly used for evaluating
lgorithm performance [6–14] without exploring the impact of
onstruction parameters on the difficulty and conclusions drawn.
he few exceptions of variations in parameters are where the
umber of decision variables and objectives are changed [15,16].
s such, the effect that tuning the construction parameters has on
he difficulty of the landscape, and its consequential impact on
lgorithm performance, is rarely explored. However, it is likely
hat each one of these test suites is capable of generating a
uch greater diversity of landscapes than is typically studied
hen default parameters are assumed. This limits our ability to
ain further insights into the true efficiencies of an algorithm.
oreover, benchmark problems are treated as the representative
roblem of their combination of constructed characteristics, but
his may not hold true and should be confirmed with testing. Liao,
olina and Stützle conclude that the ranking of algorithms is
ependent on the chosen benchmark set [17], and thus more care
hould be taken in their selection to ensure efficient information
ain for each algorithm.
Therefore, one aim should be to understand the potential of

ach test suite problem to generate a diversity of landscapes,
nd to explore their robustness in terms of landscape difficulty
nd impact on algorithm performance. This is relevant because
n algorithm may perform differently on problems with differ-
nt levels of specification of a characteristic (e.g. from a few
o hundreds of local optima). This information would be useful
or the construction of new benchmarks, and guiding algorithm
evelopment and tuning by understanding their strengths and
eaknesses. The concept of robustness is commonly associated
ith algorithms, rather than problems, where an algorithm is
onsidered robust if similar performance is obtained despite al-
orithm parameter tuning [18]. Alternatively, a robust problem
s one whose landscape is resistant to change despite parameter
ariations, such that the performance of a group of algorithms
n both relative and absolute terms, does not change. In other
ords, the characteristics present using default parameters will
ersist despite tuning. Similarly, non-robust problems produce a
reater variety of landscape characteristics after tuning, leading
o changes on performance and a better understanding of the
trengths and weaknesses of an algorithm. Understanding which
est problems are robust, and which have potential to generate
greater diversity of landscapes, is important to ensure that the
vailable test suites are fully understood for their potential. The
earned information can provide guidance to the next generation
f test suite constructions.
Given the similarity of concepts between robustness of al-

orithms and problems in the face of parameter tuning, in this
 a
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paper we propose an extension of the framework posed by Eiben
and Smit [18] for analysing parameter tuning robustness of algo-
rithms. In contrast to their definition of algorithm robustness, we
evaluate problem robustness considering the landscape difficulty
using two approaches: directly by calculating landscape metrics
and exploring the change in such metrics over the parameter
space; and indirectly, using algorithm performance as a proxy
measure of difficulty, considering no changes in absolute perfor-
mance metric1 for each algorithm as an indication of robustness
of difficulty, as well as relative robustness using algorithm rank-
ing statistics. We assert and will later demonstrate that tuning
of construction parameters results in controllable difficulty not
only between different problem classes, but also within different
instances of a problem class, enabling a much greater diversity
of useful problems to be studied from the test suites than those
typically reported on using only the default parameters. As such,
our work complements ongoing research into the construction
of benchmarks that will challenge MOOP algorithms [5,13,14,
20–25,25–28], as well as the abundant research into the devel-
opment and refinement of algorithms [21,29–31] that perform
well for certain landscape difficulties, by providing information
on whether algorithm performance can be generalised [32] to
problems that may differ from those studied.

With this framework in mind, we investigate the effects of
strategic variations of the construction parameters for continu-
ous, unconstrained multi-objective benchmark test problems. A
portfolio of eight state-of-the-art Evolutionary Algorithms (EA) is
initially evaluated on three popular benchmark suites, i.e., ZDT,
DLTZ and WFG, which have as an advantage their clear con-
struction method. Then, variations in construction parameters are
introduced in two phases, and the same algorithms are evalu-
ated again on these new instances of each problem. In the first
phase the variation is introduced by Latin Hyper-cube Sampling
(LHS) of the parameter space to generate diverse samples of the
construction parameters using a space filling design. In the next
phase, a Design and Analysis of Experiments (DACE) model is
used to strategically explore the relationship between construc-
tion parameters and problem difficulty for each algorithm across
the DTLZ and WFG suites. We then utilise the model to search
for construction parameter combinations that generate harder
problems for each algorithm. These variants of problem instances
– attempting to push the diversity and difficulty of the test suite
problems beyond their default parameter settings – form the
basis for our analysis of robustness. It is imperative to note that
the contribution of this paper is not to explore new techniques
to evolve harder problems as has previously been done [33,34].
However, we do generate new difficult test instances using a
simple DACE model in order to demonstrate the importance of
diverse problem instances for exploring the full potential of the
test suites, and challenging conclusions about algorithms on test
problems that may only be valid for particular parameter settings.

This paper is organised as follows. We describe the test suites
and problems used in Section 2. In Section 3 we present our
method of generating problem variants in a suite by strategically
adapting construction parameters using a DACE model. Further-
more, we define the concept of problem robustness, and how
it is measured. Empirical results in Section 4 demonstrate that
there is potential for most test problems to be made harder, and
that algorithm performance changes across instances within the
parameter domain. We further extend our analysis to include two
suites that are more recent. Section 5. Section 6 concludes the
paper with a discussion of the implications of this study and the
future direction of this research.

1 We use a modified version of the Inverted Generational Distance
IGD+) [19] metric named IGD+M as our performance metric, but this choice could
e replaced with any other common measure capable of comparing performance
cross different problems.
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. Test suites

Test problems are constructed to contain characteristics that
an challenge optimisation algorithms. A collection of these prob-
ems forms a test suite. Deb [3] first introduced a method by
hich benchmarks for multi-objective problems could be con-
tructed in order to address the lack of such problems in MOOPs.
eb suggested constructing bi-objective test problems using three
unctions, with f1 controlling the difficulty of algorithms along the
Pareto-optimal front (PF), g controlling problem characteristics,
and h defining the shape of the PF. This toolkit was utilised by
Zitzler et al. [4] to develop the ZDT test suite. The ZDT test suite
has received criticism [5,35,36] due to the lack of difficulty, and
although it is no longer popularly used, we study it due to its
recognition within the community. Deb et al. created the DTLZ
problems [35] to address this, using a different method of con-
struction for scalable test problems that were no longer limited
to bi-objective problems and had desirable properties such as
known PFs. However, despite the flexibility in the number of ob-
jectives, the DTLZ suite lacked the flexibility of Deb’s initial toolkit
in the construction and inclusion of problem characteristics.

Upon review of the existing multi-objective test suites, Huband
et al. introduced the WFG toolkit [37] that could control desired
characteristics by using a series of transformations that deter-
mined their presence. The toolkit resulted in the WFG test suite
which included problems with characteristics not included in
prior suites.

Test suites are designed to allow for conclusions to be drawn
by testing algorithms across a variety of characteristics. However,
it is impractical for test suites to contain all possible combinations
of characteristics. Moreover, it is too computationally expensive
to run each algorithm on every combination. Instead, they are
constructed alongside guidelines that suggest the types of prob-
lems to be included [5]. Problems that are chosen to represent a
characteristic or combination of characteristics within a test suite
have fixed construction parameters which are selected by their
designers.

The choice of test problems in a suite is crucial since the
conclusion of a superior algorithm is supported by its stronger
performance over the test suite. If the benchmarks with fixed
construction parameters are not stable for algorithm performance
when construction parameters are varied, the conclusions drawn
may be accidentally misleading. We investigate these concepts
of problem robustness on the popular ZDT, DTLZ and WFG test
suites after briefly reviewing their construction.

2.1. ZDT test suite

The ZDT test suite was built using Deb’s toolkit which used
three functions to construct problems:

Minimise F(x) = (f1(x1), f2(x)) (1)
s.t. f2(x) = g(x2, . . . , xm)h(f1(x1), g(x2, . . . , xm), α, q)

where x ∈ Rm, and m is the number of decision variables. The
function f1 is only a function of the first decision variable x1, g is
a function of the remaining m − 1 variables and h is a function
of both f1 and g . As a result, f2 is a function of all m decision
variables, with g(x2, . . . , xm) defining the problem characteristic.
The construction parameters α and q for each problem (where
applicable) are defined within h. The shape of the PF is convex
when α < 1, concave when α > 1 and linear when α = 1, and q
controls the number of discontinuous PFs.

Although one of the most popular multi-objective benchmark
test suites, the ZDT test suite [4] has been criticised for being
simplistic and restricted to bi-objective problems [5,38], and thus

not difficult for algorithms. There are only five unconstrained,
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continuous test problems (ZDT1-ZDT4, ZDT6) within this test
suite as specified, which are chosen to represent a variety of char-
acteristics. Due to the problem construction, all PFs are formed
with g(x) = 1 and are used to measure algorithm performance.

2.2. DTLZ test suite

The seven unconstrained DTLZ test suite problems (DTLZ1-
DTLZ7) are developed using a bottom-up approach where the
PF is defined first, and subsequently the search space is con-
structed by adding surfaces parallel to the PF. For M objective
functions, the decision variable vector can be partitioned into M
non-overlapping groups

x ≡ (x1, x2, . . . , xM−1, xM) (2)

and the problem can be defined as:

Minimise f1 (x1) , (3)
Minimise f2 (x2) ,

...

Minimise fM−1 (x) ,

Minimise fM (x) = g (xM) h
(
f1 (x1) , f2 (x2) , . . . ,

fM−1 (xM−1) , g (xM)
)
,

s.t. xi ∈ R|xi|, for i = 1, 2, . . . ,M

Similarly to the ZDT problems, the Mth objective is formed by
two functions, g and h. The PF is described by solutions which
are the global minimum of g(xM ) (at g*):

fM = g*h(f1(x1), f2(x2), . . . , fM−1(xM−1), g*) (4)

where g controls the problem characteristics and h controls the
shape of the PF. Although the DTLZ problems are scalable to
any number of objectives and decision variables, their method of
construction results in many restrictions for the characteristics
which can be introduced [5]. Therefore, this suite lacks variety
when testing algorithms. The standard problems are tri-objective.

2.3. WFG test suite

The construction of the WFG toolkit uses a different approach
compared to ZDT and DTLZ. Starting with an initial vector of
parameters2 x the presence of each problem characteristic is in-
troduced sequentially by applying a series of transition vectors, ti
where i = 1, . . . , p represents the ith characteristic. The inclusion
of each additional transition vector provides added complexity
until finally a vector w is derived, which is associated with the
objective functions. EAs are only able to indirectly manipulate w
through the manipulation of x. The format of the WFG toolkit is
defined as:

Given x = {x1, . . . , xn} (5)
Minimise fm=1:M (w) = DwM + Smhm(w1, . . . , wM−1)

where w = {w1, . . . , wM}

= {max(tpM , A1)(t
p
1 − 0.5)+ 0.5, . . . ,

max(tpM , AM−1)(t
p
M−1 − 0.5)+ 0.5, tpM}

tp = {tp1 , . . . , t
p
M} ←− [ tp−1 ←− [ ...

←− [ t1 ←− [ x[0,1]
x[0,1] = {x1,[0,1], . . . , xn,[0,1]}

= {x1/x1,max, . . . , xn/xn,max}

2 In the original paper of Huband et al. [5] the vector of parameters is referred
o as z, not x. We use x for decision parameters to keep the nomenclature
consistent in this paper.
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here M is the number of objectives, w is a vector of the M
nderlying parameters, x the set of decision variables , D > 0 is

the distance scaling constant, A1:M−1 ∈ {0, 1} are the degeneracy
onstants where each Ai = 0 reduces the dimensionality of the
F by one, h1:m are shape functions determining the shape of the
F, S1:M > 0 are scaling constants, t1:p are transition vectors with
‘←− [’’ indicating each sequential transition.

For further information regarding the composition of the WFG
oolkit and problems, the reader is referred to the original pa-
er [5].

. Methodology

Fig. 1 illustrates our methodology to evaluate problem ro-
ustness. Starting with a problem suite, such as ZDT, DTLZ or
FG, a set of algorithms and a performance metric to evalu-

te them, we generate an initial set of problem instances using
atin Hyper-cube Sampling (LHS) of the parameter space. After
ollecting performance data, a Design and Analysis of Computer
xperiments (DACE) model is used to select parameter combina-
ions that create more difficult test problems. Once enough new
nd diverse test instances have been constructed, we evaluate
roblem robustness indirectly through observing changes in al-
orithm performance as the parameters of a test problem are
aried, as well as directly where the landscape changes. Impact
n algorithm performance across the parameter space is mea-
ured in both absolute terms of the performance measure, and
n relative terms by measuring whether the best algorithm and
anking statistics have changed from the original problem ranking
f algorithms. As a more direct measure of whether parameter
ariation has effectively changed the nature of the intended prob-
em characteristics established by the default parameter setting,
e use exploratory landscape analysis (ELA) metrics to sum-

arise test problem characteristics. These ELA metrics are used as

4

eature vectors on the entire problem collective to generate a t-
istributed stochastic neighbour embedding (t-SNE) visualisation
f the problem space containing all variants. The mean and stan-
ard deviation of the distances between the original problem and
he problem variants is then calculated to measure the magnitude
f any landscape change. A conclusion of problem robustness
s supported when statistical testing and exploration provides
oth indirect and direct evidence that problem characteristics
ersist despite variation in the default parameter settings. A lack
f robustness of a test problem means that the intended char-
cteristics may not persist if the non-default parameter setting
s used, but a greater landscape diversity can be explored if
eneficial to gain further insights into algorithm strengths and
eaknesses. Further details within each step are now presented

n the remainder of this section.

.1. Algorithms and performance metric

Experiments were run on the existing benchmark test prob-
ems and all generated instances in the bi-objective ZDT, and
ri-objective DTLZ and WFG test suites using notable algorithms.
he focus of this paper is not on the strengths and weaknesses of
articular algorithm instances obtained through tuning a generic
lgorithm. Instead, it is about the insights into problem instance
obustness and diversity evident from considering a portfolio
f diverse algorithms reflecting a wide distribution of perfor-
ances. To ensure this, state-of-the-art algorithms were chosen

o cover a diverse range of elitism and niching strategies [39,40].
f course, other algorithms could be chosen, and the methodol-
gy is repeatable. The chosen algorithms fall into four different
lasses [41]:

• Pareto dominance: NSGA-II [42], NSGA-III [15] and SPEA2

[43]
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Fig. 2. The difference in the rescaled IGD+ calculation for approximate fronts below and above the nadir point (filled circle). The total distance of the solid lines are
caled by the total distance of the dotted lines. (a) The case where the approximate front (square) is below the nadir point, based on the Pareto Front (open circle).
alculating the IGD+N will result in a value bounded between [0, 1]. (b) When the approximate front (cross) is above the nadir point, IGD+ metric will be above 1.
N
Table 1
Problem variation design for the ZDT and DTLZ test suites. The original
parameter values used for each benchmark problem are included.
Problem Parameter Design Original

ZDT1 α ∈ {1, 2, . . . , 30} α = 0.5

ZDT2 as ZDT1 α = 2

ZDT3 {α, q} ∈ [0, 30]2
α = 0.5

q = 5

ZDT4 α ∈ {1, 2, . . . , 30} α = 0.5

ZDT6 α ∈ {0.5, 1, 2, . . . , 30} α = 2

DTLZ1

p1 ∈ {1, 2, . . . , 100}

p2 ∈ [0, 1]

p3 ∈ [0, 100]

p1 = 10

p2 = 0.5

p3 = 100

DTLZ2 p1 ∈ [0, 1] p1 = 0.5

DTLZ3

p1 ∈ {1, 2, . . . , 100}

p2 ∈ [0, 1]

p3 ∈ [0, 100]

p1 = 10

p2 = 0.5

p3 = 100

DTLZ4
p1 ∈ [0, 100]

p2 ∈ [0, 1]

p1 = 10

p2 = 0.5

DTLZ5 p1 ∈ [0, 1] p1 = 0.5

DTLZ6 p1 ∈ [0, 1] p1 = 0.1

DTLZ7
p1 ∈ [0, 100]

p2 ∈ [0, 10]

p1 = 3

p2 = 1

• Decomposition: MOEA/D (Tchebycheff decomposition) [44]
and RVEA [36]
• Grid-based: GrEA [45]
• Indicator-based: HypE [46] and IBEA [47].

We use the PlatEMO toolbox [21] for algorithms and perfor-
ance indicators, run with a budget of 104 evaluations using
efault algorithm settings in PlatEMO. Our reasoning for using
nly default parameters for the algorithm implementations is
hree-fold: firstly, algorithm parameter tuning requires function
valuations and we do not have sufficient budget (104 evalua-
ions) to perform both problem solving and algorithm parameter
uning (to optimality). Secondly, we consider the default pa-
ameters to be representative of the most likely performance of
he algorithm in practice, since users are often content to use
efault parameter settings when trialling algorithms. Thirdly, the
urpose of our study is to establish the robustness of problem
nstances, and the performance metrics of an arbitrary set of
lgorithms and their implementation is used as a proxy measure
or robustness to ascertain the stability of the performance of
he algorithms amidst problem construction parameter variation.
5

The choice of the algorithms and their parameters settings is
therefore less critical as it is only a means to observe stability and
robustness. If different algorithm parameter setting were chosen
for an algorithm implementation, we would consider that to be a
different algorithm for the purposes of this study.

Our next step is to choose a performance metric. There is
no single metric for MOOPs that can identify the best solutions
for every aspect of convergence, diversity and spread, and num-
ber of solutions [48]. This is due to the existence of the PF
and the multiple solutions required to be generated by an EA.
Therefore, we consider only metrics which take into account con-
vergence and diversity. Both IGD+ and Hypervolume (HV) satisfy
this requirement. The relationship between the two metrics is
consistent on convex PFs and can therefore be jointly used to
assess solution set optimality [49]. However, on concave PFs, they
are not consistent [48] and HV may be a misleading measure
of performance [50]. Additionally, HV generally prefers knee and
boundary points rather than well distributed ones [51]. It is for
these reasons that we choose IGD+ as our comparative metric.
The original IGD metric is calculated as:

IGD(Z, A) =

(∑
|Z |
i=1 d

2
i

)1/2

|Z |
(6)

where di = mins⃗∈A |F (z⃗i)− F (s⃗)|, z⃗i ∈ Z , and di is the smallest
distance from each solution in the PF z⃗i ∈ Z to the closest
solutions in the approximated front s⃗ ∈ A. The distance from each

z⃗i to the solution s⃗ is calculated as
√∑

|Z |
i=1

(
s⃗i − z⃗i

)2. While IGD
does not factor in the dominance relation [19], IGD+ does so by

modifying the distance calculation to
√∑

|Z |
i=1 max

(
z⃗i − s⃗i, 0

)2.
However, since we are making comparisons across problems

and potentially different PFs, it is important that we select a
measure that allows for such comparison. We propose a modified
version of IGD+ to allow this. Firstly, we normalise IGD+ by
dividing by the mean distance between nadir point r , and the PF
as our reference set, resulting in:

IGD+N (Z, A) =
(
∑
|Z |
i=1 d

2
i )

1/2

(
∑
|Z |
i=1 n

2
i )1/2

(7)

where ni is the smallest distance from every z⃗i ∈ Z to r . The
solutions between or equivalent to the true PF and r will result in
IGD+N ∈ [0, 1]. However, since obtained solutions may be worse
than the r as in Fig. 2, it is possible for IGD+N →∞ as performance
worsens. Since the extent of poor performance beyond r is not
important, we propose another modification to truncate these
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Table 2
Problem variation design for the WFG test suites. The original parameter values used for
each benchmark problem are included.
Problem Parameter Design Original

WFG1

p1 ∈ (0, 1)

p2 ∈ (0, 1)

p3 ∈ (0, 1)

p4 ∈ (0, 1)

p5 ∈ (0, 10]

p6 ∈ (0, 10]

p7 ∈ {1, 2, . . . , 10}

p1 = 0.35

p2 = 0.8

p3 = 0.75

p4 = 0.85

p5 = 0.02

p6 = 1

p7 = 5

WFG2

p1 ∈ (0, 1)

p2 ∈ (0, 10]

p3 ∈ (0, 10]

p4 ∈ {1, 2, . . . , 10}

p1 = 0.35

p2 = 1

p3 = 1

p4 = 5

WFG3 p1 ∈ (0, 1) p1 = 0.35

WFG4

p1 ∈ (0, 1)

p2 ∈ {1, 2, . . . , 100}

p3 ∈ [0, 100]

p1 = 0.35

p2 = 30

p3 = 10

WFG5

p1 ∈ (0, 1)

p2 ∈ (0, 0.1]

p3 ∈ (0, 0.1]

p1 = 0.35

p2 = 0.001

p3 = 0.05

WFG6 p1 ∈ (0, 1) p1 = 0.35

WFG7

p1 ∈ (0, 1)

p2 ∈ (0, 1)

p3 ∈ (0, 1]

p4 ∈ (0, 100]

p1 = 0.35

p2 = 0.98/49.98

p3 = 0.02

p4 = 50

WFG8

p1 ∈ (0, 1)

p2 ∈ (0, 1)

p3 ∈ (0, 1]

p4 ∈ (0, 100]

p1 = 0.35

p2 = 0.98/49.98

p3 = 0.02

p4 = 50

WFG9

p1 ∈ (0, 1)

p2 ∈ (0, 1)

p3 ∈ (0, 100]

p4 ∈ (0, 100]

p5 ∈ (0, 0.1]

p6 ∈ (0, 0.1]

p7 ∈ {1, 2, . . . , 100}

p8 ∈ [0, 100]

p1 = 0.35

p2 = 0.98/49.98

p3 = 0.02

p4 = 50

p5 = 0.001

p6 = 0.05

p7 = 30

p8 = 95
results that show poor performance:

IGD+M =

{
1− IGD+N 0 ≤ IGD+N ≤ 1

1
IGD+N
− 1 1 < IGD+N

(8)

This results in the convenient format where IGD+M = 1 oc-
curs when the obtained solutions are equivalent to the PF, and
problems become harder (as indicated by worse performance) as
IGD+M →−1. Consequently, we can consider IGD+M as a goodness
metric.

3.2. Strategic construction of problem variants

Instance generation is used to test the robustness of algorithm
performance by perturbing construction parameters. We use the
MATSuMoTo surrogate model toolbox [52] for problem instance
generation. Problem dimensions are not altered and are instead
held constant to best demonstrate how construction parameters
affect algorithm performance. With the exception of ZDT3, all
other ZDT problems have only one parameter that is varied on
evenly-spaced increments. The remainder problems are varied in
three stages: (a) generating an initial set of 30 diverse problem
 d

6

instances; (b) fitting a model to predict the expected difficulty
of the combination of different construction parameters for each
algorithm; and (c) iteratively generating up to 5 new instances
for each algorithm by maximising the expected improvement
(EI) [53] of the fitted model. Tables 1 and 2 show the construction
parameter domains we explore for the ZDT, DTLZ and WFG3

test suites. Since the α parameter in the ZDT suite is used to
control the extent of the convexity/concavity of the Pareto front,
for problems with only this single parameter (all but ZDT3), we
explore only integer values because the shape will be convex
when α < 0, linear when α = 0 and concave when α = 1. Here
we are less concerned with minor degrees of convexity and as
such, the original benchmark of ZDT1 and ZDT4 cover the single
convex versions among all the instances. We also do not look
at problem robustness of growing dimensionality for problems,
and instead hold the number of decision and objective variables
constant, while only altering construction parameters.

3 Parameters for the WFG problems are subject to constraints. The reader is
irected to the paper by Huband et al. [5] for further information.
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.2.1. Initial problem generation via latin hyper-cube sampling
Our design of experiments uses LHS design to generate diverse

amples from multi-dimensional distributions, consisting of 30
nstances within each problem class. These are also later referred
o as ‘‘LHS perturbations’’ in this paper. Within the WFG test suite,
here are several restrictions on the construction parameters for
he shape and transformation functions. LHS is used for each
eparate characteristic that is then compiled together for each
roblem. For the transformations with constraints on relation-
hips such as the multi-modal shift requiring (4p2 + 2)π ≥ 4p3,
e generated 100 LHS combinations and retain only the first 30
hat satisfy the constraints.

.2.2. Design and analysis of computer experiments (DACE) model
New problem instances are generated by fitting a model to the

nitial sample of the previously described 30 LHS instances, and
teratively searching for potentially more difficult variants. The
ACE model [54] is a surrogate modelling technique that iden-
ifies the approximate relationship between inputs and outputs.
n advantage of a DACE model is that it focuses on maximising
ifficulty (smaller IGD+M ) while minimising uncertainty. As such,

while difficulty is used as the output for the DACE search, its pur-
pose is not only to generate harder problems, but also balancing
this with finding inputs which are expected to iteratively increase
model accuracy. As such, we obtain problems which are not only
harder, but also ones which are potentially more diverse. Assume
we have a model of a stochastic process in the form:

y(c(i)) = µ+ ϵ(c(i)) (9)

where µ is the mean response, ϵ(c(i)) ∼ N(0, σ 2) is the error,
(i) is the sampled input and y(c(i)) the corresponding estimated
utput.
Unlike in linear regression where the error terms are inde-

endent, the DACE approach assumes that if ci and cj are close,
heir errors ϵ(ci) and ϵ(cj) must also be close. To account for cor-
relations differing across distances, a special weighted distance
function is used:

d(c(i), c(j)) =
k∑

h=i

θh|c
(i)
h − c(j)h |

ph
, (θh ≥ 0, ph ∈ [1, 2]) (10)

ith this function, the correlation between c(i) and c(j) is:

orr
[
ϵ(c(i)), ϵ(c(j))

]
= exp

[
−d(c(i), c(i))

]
(11)

he DACE model has a total of 2k + 2 parameters:
µ, σ 2, θ1, . . . , θk, p1, . . . , pk

}
which are estimated by maximis-

ng the likelihood of the sample input–output observations given
he model.

Let y =
(
y(1), . . . , y(n)

)′ denote the n-vector of observed
unction values, R denote the n × n matrix whose (i, j)’s are
orr

[
ϵ(c(i)), ϵ(c(j))

]
, and 1 denote the n-vector of ones, which

ultiplies the scalar µ. We initialise the model with θ1, . . . , θk
with the correlation function parameters, and p1, . . . , pk with
values of 2. The likelihood function is then written as:

L =
1

(2π )n/2(σ 2)n/2|R|
1
2
exp

[
−

(y− 1µ)′R−1(y− 1µ)
2σ 2

]
(12)

nd maximised using calculus to estimate optimal µ and σ 2 as:

µ̂ =
1′R−1y
1′R−11

, (13)

ˆ
2
=

(y− 1µ̂)′R−1y− 1µ̂
n

(14)

The values of µ̂ and σ̂ 2 are then substituted into Eq. (12) and this
function is again maximised to obtain estimates for θ̂ and p̂ .
h h

7

For the purpose of this study, we generate a surrogate model
for each algorithm on each problem, with construction parame-
ters as inputs and the respective IGD+M as the outputs.

Since problems become easier as IGD+M → 1, The DACE model
is then used to search for optimal construction parameter vectors
c that generate new instances that minimise IGD+M for each algo-
rithm. The model is used to iteratively identify the next instance
c whose improvement I(c) in reducing IGD+M as a function of
arameters, is maximised. This expected improvement (EI) is
efined as:

[I(c)] = E [max(fmin − Y, 0)] (15)

ere fmin denotes the model’s best obtained value of IGD+M so far,
nd Y the random variable being modelled by y(c). EI is large
here the uncertainty is large or when there is a high likelihood
hat y(c) will be smaller than fmin. As a result, EI is able to balance
ocal and global search by modelling the uncertainty at c and
dentifies the next instance that it believes can lead to a more
ifficult problem.
Due to the stochastic nature of the algorithms’ search mecha-

isms and dependence on the initial population, we evaluate each
lgorithm 30 times and obtain the mean IGD+M as the target model
utput.

.3. Evaluating problem robustness

In the existing literature, algorithm robustness in the context
f parameter tuning is defined in relation to the variance of
lgorithm performance across three dimensions: the problem
nstances, tuneable algorithm parameter vectors, and random
eeds [18]. Our study is related to understanding the impact of
roblem instance variation through the tuning of the problem
onstruction parameters. Therefore, we define problem robust-
ess in two ways: through directly observing the change in land-
cape, as well as indirectly by using algorithm performance as
proxy measure. While changes in landscape are considered a
irect measure of diversity, in isolation this information is insuf-
icient. If algorithms perform the same across diverse landscapes,
e do not gain much new information about algorithms on these
pdated characteristics (although we could conclude the algo-
ithm performs similarly on all instances of that problem class).
s such, understanding how algorithms respond to these changes
s important too. Conversely, with only indirect measures, infor-
ation is lost on what changes are occurring in the landscape that
re causing the algorithm performance variation. For this reason,
e need to consider both types of measures, direct and indirect,

n evaluating problem robustness.

.3.1. Indirect measures of robustness
Indirectly, problem robustness is measured by the variation

f algorithm performance on the problem instances generated
hen construction parameters are varied. Algorithm performance
omparisons can be made using:

1. absolute performance as the difference in performance
measure (IGD+M ) values (irrespective of the portfolio), and

2. relative performance in terms of the final ranking of each
algorithm (within a portfolio) based on a performance met-
ric.

he importance of the two different measures depends on
hether the motivation of a study is to understand the algo-
ithm’s performance in absolute or relative terms. As such, we
reat these as separate measures of robustness to changes in
roblem specification and construction parameters. It is impor-
ant to note that for indirect measures which use algorithms as
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Table 3
Features calculated to characterise multi-objective landscapes, captured via a random walk.
Description First autocorrelation Average

Proportion of dominated solutions #inf_r1_rws #inf_avg_rws
Proportion of dominating solutions #sup_r1_rws #sup_avg_rws
Proportion of incomparable solutions #inc_r1_rws #inc_avg_rws
Proportion of non-dominated solutions #lnd_r1_rws #lnd_avg_rws
a proxy for evaluating problem difficulty, the algorithm’s robust-
ness, for a fixed setting of algorithm parameters, is evaluated over
construction parameter variation in order to evaluate problem
robustness.

For consistency, we adapt the definitions of algorithm ro-
ustness from Eiben and Smit [18] when indirectly measuring
roblem robustness through absolute algorithm performance. In
he same way that a problem instance represents a given pa-
ameter setting for a problem, an EA instance represents an
lgorithm with a given parameter setting. We follow Eiben and
mit’s definitions of robustness being applicable to individual EA
nstances and not all versions of the EA in general. In Eiben and
mit’s framework, robustness is evaluated on the collection of
enchmark problems Fi ∈ F , and conclusions about algorithm

robustness are drawn based on the overall performance on the
entire collection, F . In our case, we are interested in the ro-
bustness of each individual Fi, by considering a set of parameter
variations p̄k. As such, we draw algorithm conclusions for each
Fi based on the performance on the collection of all k instances.
Eiben and Smit define six types of algorithm robustness, of which
we will adopt the four of highest relevance: widely applicable,
fallible, tuneable, and stable. Originally, an algorithm A, tuned
with parameters p̄ is considered robust if it demonstrates con-
sistently strong absolute performance (above a threshold) across
a large number of problems. It is the tuned algorithm A(p̄) which
is robust, not the problems Fi ∈ F . Eiben and Smit define this
robustness as widely applicable. Furthermore, if A(p̄) shows a large
range of absolute performance when evaluating across F , A(p̄)
is deemed fallible. It is important to note that wide applicabil-
ity and fallibility can co-exist, as they measure two different
phenomenon. However, wide applicability implies that fallibility
is limited to a small number of Fi. We adapt both terms for
absolute performance by substituting Fi with Fi(p̄) and F for Fi.
In the case of relative performance, we adapt the term stable
when the relative performance for the best algorithm (on the
original benchmark) stays consistently best over new instances.
In Eiben and Smit’s framework, stability is defined as when the
difference between the best and worst runs of A(p̄) is small,
when initialising on different random seeds. We consider these
as similar measures, since they account for the change in/from
best. Unlike for absolute performance, we do not measure the
range of deviation from best. Lastly, we adapt the term tuneable
to define problems where construction parameter variation leads
to significant differences in landscape characteristics, rather than
describing algorithms with a large performance variation induced
by changes in algorithm parameter values as per the original
definition [18].

We summarise our adaptation of the Eiben and Smit’s frame-
work of algorithm robustness [18] with the following definitions:

Definition 1. An algorithm is robust - in indirect absolute terms -
if it is widely applicable and/or non-fallible across all construction
parameter variations

Definition 2. An algorithm is robust - in indirect relative terms
- if its ranking within a portfolio of algorithms is stable across all
construction parameter variations
8

Definition 3. The problem landscape is robust if it is not tune-
able, such that construction parameter variations do not signifi-
cantly change the landscape characteristics

Definition 4. A problem Fi is robust if both indirect and direct
measures demonstrate robustness, i.e. algorithm robustness and
problem landscape robustness must both be satisfied

To confirm the validity of our results, Mann–Whitney U tests
were conducted for both wide applicability and stability. In the
former, we compared the individual runs for each algorithm on
instances created by LHS perturbation (problems generated using
LHS) and DACE, against runs on the original benchmark. An α
level of 0.05 is used to reject the null hypothesis that there is
no change in difficulty, hence a small p-value supports a claim
of difficulty varying and simultaneously, wide applicability and
fallibility. In the case of stability, a Mann–Whitney U test was
used with the individual runs and their ranks are compared. An
α level of 0.05 is used to reject the null hypothesis that there is
no change in ranking of the original best algorithm, hence a small
p-value supports a claim of algorithm instability.

3.3.2. Direct measures of robustness
In measuring robustness directly through the landscape, we

consider the problem itself as tuneable to the construction pa-
rameters if there is variation in the landscape. Problem land-
scapes can be measured by extracting features which characterise
their topology. These features can be used to quantify challenges
that algorithms may encounter while solving the problem, but
the impact of different landscapes on algorithms may differ.
As such, we consider the absence of significant changes in the
landscape in our definition of problem robustness. We define
the landscape by measuring existing multi-objective features via
random walks that are shown to correlate with characteristics of
benchmarks [55]. While the selected features will impact the vari-
ation present between landscapes, we argue that the presence of
any observed change in landscape, regardless of chosen features,
demonstrates a lack of robustness.

Features were calculated during a random walk of length
103, with 10 neighbours selected for each sample. Thereafter,
the proportion of dominated, dominating, incomparable and non-
dominated in the neighbourhood were obtained. Measures were
taken for the first autocorrelation across the 103 samples, as
well as the average. Features used are summarised in Table 3.
T-distributed stochastic neighbour embedding (t-SNE) separated
by Euclidean distance is used for dimension reduction to measure
the average deviance between instances, as well as to provide
visualisations in 2d. Thereafter, the means and standard deviation
between and original benchmark problem and the problem vari-
ants are calculated using their co-ordinates in the t-SNE problem
space. Problems which are tuneable will demonstrate large mean
and standard deviations between distances.

Understanding the robustness of suites can provide infor-
mation to guide algorithm development. The concepts of wide
applicability, non-fallibility, stability and tuneability establish the
formal definition of problem robustness we use in this paper.
The combination of the first three signify that conclusions drawn
by algorithms on a single instance are likely to hold across the
entire problem class, while problems that lack robustness and are
also tuneable are valuable since they allow for more diversity in
generating new problems for systematic testing.
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he obtained p-values when comparing the difference in distribution between the benchmark problem against the generated instances by perturbation and DACE
excluding ZDT for DACE). Significant differences at an α level of 0.05 are bold, denoting wide applicability.
Problem GrEA HypE IBEA MOEA/D NSGA-II NSGA-III RVEA SPEA2

Pert. DACE Pert. DACE Pert. DACE Pert. DACE Pert. DACE Pert. DACE Pert. DACE Pert. DACE

ZDT1 .597 – .000 – .638 – .000 – .751 – .022 – .001 – .000 –
ZDT2 .000 – .000 – .000 – .000 – .000 – .000 – .000 – .000 –
ZDT3 .226 – .000 – .011 – .262 – .054 – .450 – .178 – .069 –
ZDT4 .262 – .000 – .003 – .072 – .348 – .101 – .870 – .013 –
ZDT6 .459 – .478 – .026 – .000 – .029 – .067 – .061 – .003 –
DTLZ1 .000 .000 .000 .000 .003 .000 .000 .000 .003 .000 .005 .000 .008 .000 .001 .000
DTLZ2 .226 .015 .000 .000 .731 .817 .226 .567 .047 .001 .209 .000 .965 .022 .110 .000
DTLZ3 .054 .000 .04 .000 .000 .200 .000 .000 .000 .001 .006 .000 .001 .000 .002 .001
DTLZ4 .423 .856 .001 .060 .517 .365 .406 .409 .047 .390 .423 .150 .155 .559 .000 .008
DTLZ5 .900 .559 .000 .000 .389 .499 .670 .016 .638 .000 .690 .948 .022 .000 .022 .000
DTLZ6 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
DTLZ7 .000 .000 .000 .000 .000 .000 .000 .000 .003 .000 .000 .000 .000 .000 .001 .000
WFG1 .000 .000 – – .000 .000 .000 .000 .000 .000 – – – – – –
WFG2 .003 .000 .000 .000 .000 .000 .003 .000 .003 .012 .029 .000 .029 .002 .002 .000
WFG3 .249 .013 .209 .027 .900 .121 .110 .000 .957 .789 .203 .022 .296 .153 .067 .005
WFG4 .004 .000 .002 .000 .147 .000 .198 .000 .000 .000 .000 .000 .000 .000 .000 .000
WFG5 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
WFG6 .044 .079 .893 .972 .226 .261 .517 .318 .011 .001 .282 .371 .237 .075 .113 .067
WFG7 .110 .002 .000 .000 .469 .471 .015 .000 .005 .000 .000 .000 .002 .000 .000 .000
WFG8 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
WFG9 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
Fig. 3. Boxplots showing the potential impact of parameter variation on instance difficulty, measured by mean IGD+M for generated instances from the ZDT problem
uite. The IGD+M values for the original problem are denoted by open circles. Outliers are denoted by dots.
. Results

In this section we present the direct and indirect measures
in absolute and relative terms – of algorithm and problem

obustness, including statistical testing for significance.

.1. Algorithm robustness: Absolute performance

Algorithms are considered widely applicable if they show good
erformance on a large range of instances within a problem class,
9

and fallible if their performance metric (IGD+M ) varies greatly
across these instances [18]. It is important to discuss the notion
of problem difficulty or hardness for an algorithm, in order to
establish if the absolute performance value reflects an algorithm
finding a problem more or less challenging. It should be noted
that while we refer to difficulty or hardness, we do not establish
a threshold value, and instead refer to difficulty relative to per-
formance on the original benchmark problem. The table of the
p-values for each test suite can be found in Table 4 which can be
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s

Fig. 4. Boxplots showing the potential impact of parameter variation on generating difficulty, measured by mean IGD+M for generated instances from the DTLZ problem
uite. The IGD+M values for the original problem are denoted by open circles. Outliers are denoted by dots. The performance of algorithms on the DACE instances are
shown in blue.
used as a simultaneous measure of wide applicability and falli-
bility by comparing the distributions of the original benchmark
against the newly generated instances.

4.1.1. ZDT suite
The α parameter in the ZDT suite has a direct effect on the

degree of convexity or concavity. The boxplots are shown in Fig. 3.
For ZDT1, ZDT3 and ZDT6, the boxplots show that most algo-
rithms find the original problem easier. In contrast, the bench-
mark ZDT2 is found to be more difficult than the alternative
instances by all algorithms except NSGA-II and RVEA. ZDT4 is
shown to easier or harder depending on algorithm. RVEA is a
strong performer on the original benchmark problems, but shows
poorer performance in any other perturbed instance.

Overall, the observed variation in IGD+M is small in only ZDT6,
with larger variations for some algorithms (e.g RVEA and NSGA-
III). As such, algorithms are considered fallible for all but ZDT6.
Setting the IGD+ of the original benchmark as the threshold
M

10
value, it is clear that most algorithms perform above this thresh-
old for all problems except ZDT2 and ZDT3. Thus, for this suite,
algorithms are widely applicable on all problems except ZDT2 and
ZDT3. Table 4 confirms that ZDT4 and ZDT6 are widely applicable,
with p-values above 0.05.

4.1.2. DTLZ suite
Within the original benchmarks of the DTLZ suite, all problems

except DTLZ3 are easy, as shown in Fig. 4. Of these, Table 4
shows only DTLZ2, DTLZ4 and DTLZ5 are unchanging in absolute
difficulty and therefore algorithms widely applicable on them,
being easy problems for all algorithms with little variation in per-
formance created by perturbations and DACE. Variation in DTLZ4
is able to introduce slightly more difficulty. In both DTLZ6 and
DTLZ7, most perturbations result in similar performance. How-
ever, the DACE instances are able to introduce more difficulty and
discrimination across performance. DTLZ1 and DTLZ3 are shown
to be hard and discriminating but fallible for algorithms given the
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Fig. 5. Boxplots showing the potential impact of parameter variation on generating difficulty, measured by mean IGD+M for generated instances from the WFG problem
suite. The IGD+M values for the original problem are denoted by open circles. Outliers are denoted by dots. The performance of algorithms on the DACE instances are
shown in blue.
possibility of creating instances where algorithms perform worse
than the threshold (the IGD+M of the original benchmark). The per-
formance of all algorithms on the benchmark DTLZ3 is originally
similar. However, with the introduction of new instances, a larger
range of discrimination between algorithms is observed.

The majority of the original DTLZ suite is easy for our portfolio
of algorithms, but varies once the construction parameters are
varied, and considerably harder instances can be found. Algo-
rithms are not widely applicable on DTLZ1, DTLZ3, DTLZ6 and
DTLZ7 since there are many problems performing worse than the
threshold value. Given the range in IGD+M , they are also fallible.
The newly generated problems provide evidence that strong al-
gorithm performance on the benchmark may not reflect strong
performance across all problem instances on this popular suite.

4.1.3. WFG suite
Fig. 5 shows the WFG suite has more stable construction than

that of DTLZ, with WFG2-WFG6 being consistent in difficulty.
Problem instances generated by perturbation on these are unable
11
to generate more difficulty in many of the problems. WFG1,
WFG7, WFG8 and WFG9 prove the existence of varying difficulty.
However, we do observe the same pattern of the benchmark
instances in the suite being easy in all but WFG1. HypE, NSGA-III,
RVEA and SPEA2 were unable to run for WFG1 perturbations due
to the algorithms being unable to solve the generated instances
(complex numbers forming part of the solutions and guiding the
algorithms into complex space).

Interestingly, WFG3 and WFG6 both share the same single
construction parameter p1, and neither are able to generate more
difficulty. This suggests that independently, p1 has no relation to
difficulty. Table 4 confirms that these two are the only problems
which are non-fallible. Both WFG7 and WFG8 also share identical
parameters, with only the order of transitions being different.
Both show promise in generating difficulty, with WFG7 showing
more distinction between algorithms. Algorithms are widely ap-
plicable on all but WFG1, WFG7, WFG8 and WFG9 which show
many instances with performance below that of the original
benchmark.
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Table 5
Average feature vector distance and standard deviation after rescaling, between instances for each problem in 2d t-SNE
projection.
Problem Mean Std Dev. Problem Mean Std Dev. Problem Mean Std Dev.

ZDT1 0.103 0.013 DTLZ1 0.076 0.158 WFG1 0.741 0.246
ZDT3 0.403 0.476 DTLZ2 0.113 0.065 WFG2 0.220 0.230
ZDT4 0.044 0.013 DTLZ3 0.108 0.197 WFG3 0.145 0.091
ZDT6 0.155 0.625 DTLZ4 0.155 0.264 WFG4 0.270 0.076

DTLZ5 0.161 0.097 WFG5 0.324 0.454
DTLZ6 0.242 0.288 WFG6 0.143 0.066
DTLZ7 0.220 0.147 WFG7 1.044 0.263

WFG8 0.329 0.122
WFG9 0.971 0.323
Fig. 6. The p-value distribution of the Mann–Whitney U test when comparing between the performance of 30 runs of the best algorithm on the original problem,
nd the best algorithm for each problem variant on: (a) ZDT problems. (b) DTLZ problems. (c) WFG problems.
Despite the WFG suite originally being composed to be more
ifficult, the performances of all algorithms within our portfolio
re quite high, with WFG1 being the only original problem offer-
ng challenging difficulty. Additionally, very little discrimination
s visible among the algorithms within the portfolio. With the
ntroduction of variation, more diversity in problem difficulty is
vident. This again shows algorithm weaknesses across different
nstances of the same problem.

.2. Algorithm robustness: Relative performance

Best-ranking algorithm stability is observed for problems
here the best algorithm on the original problem instance (with
efault construction parameters) remains unchanged in ranking
hen new instances are introduced. We compare the best per-

orming algorithm on the original problem with the best on each
roblem instance to evaluate ranking changes. The distribution of
he p-values for each test suite can be found in Fig. 6.
12
Fig. 6(a) of the ZDT suite shows algorithm stability with almost
all variants sharing the same ranking for the best algorithm on the
original problem. Change in ranking is only observed in few ZDT3
and ZDT4 instances.

For the DTLZ suite, most problems are not consistent for
relative difficulty, and thus unstable for algorithm performance.
Only DTLZ2 shows the best algorithm remaining the same across
almost all variants. For DTLZ5 there are changing ranks observed
in the DACE variants. At least 25% of instances for all other prob-
lems show ranking changes, but are consistent in the majority of
instances.

Similarly to ZDT and DTLZ, the majority of problems in the
WFG suite are unstable. The best algorithm on WFG3, WFG4 and
WFG6 almost never changes, but for WFG1, WFG2, WFG5, WFG7
and WFG9 the rankings change in at least 25% of instances. WFG1
shows the most extreme change, with the best algorithm on each
instance differing from the original best in most instances from
LHS and the DACE model generation. WFG5 and WFG8 show
minor changes in ranking.
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Fig. 7. The distribution of landscape features for different instances of bench-
mark problems, visualised using t-SNE. ZDT1 and ZDT2 share the same points,
as they are identical variations to ZDT1 (since they are the same problem with
a different α parameter).
13
Fig. 7. (continued).

Table 6
Summary of types of robustness satisfied by each problem.
Problem Robustness

Absolute Relative Landscape

ZDT1 ✓ ✓
ZDT2 ✓ ✓
ZDT3 ✓ ✓
ZDT4 ✓ ✓ ✓
ZDT6 ✓ ✓
DTLZ1
DTLZ2 ✓ ✓ ✓
DTLZ3
DTLZ4 ✓
DTLZ5 ✓ ✓
DTLZ6
DTLZ7 ✓
WFG1
WFG2 ✓ ✓
WFG3 ✓ ✓ ✓
WFG4 ✓ ✓
WFG5 ✓
WFG6 ✓ ✓ ✓
WFG7
WFG8
WFG9

4.3. Landscape robustness

Table 5 provides the rescaled average distance and standard
deviation of the feature vectors of the benchmark problems and
their new instances, using the eight features described in Table 3.
Small mean distances of ZDT1, ZDT2 and ZDT4 demonstrate that
these problems are not particularly tuneable. While ZDT6 shows
a small mean distance, the standard deviation suggests that it is
possible to generate instances with a different feature landscape.
ZDT3 is both large in average distance and standard deviation,
and thus is tuneable. DTLZ1, DTLZ3, DTLZ4 and DTLZ6 all show
larger deviance than that of their average distance, much like
ZDT6. DTLZ2, DTLZ5 and DTLZ7 seem to be non-tuneable. For
the WFG suite, only WFG3, WFG4 and WFG6 are shown to have
robust landscapes, making them less tuneable.

We further investigate the landscape robustness by visualising
the feature vectors of each problem variant in a dimensional re-
duced 2d space, and observing whether any clusters have formed.
Fig. 7 shows the projection of all problem variants using t-SNE,
where we see that most of the problem variants from ZDT1, ZDT2
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Table 7
Suggested construction parameter alternatives for problems which are non-robust for at
least two of absolute, relative and landscape measures, based on the setup which maximises
the Euclidean distance between the variant and the original benchmark on the t-SNE plot.
Problem Suggested Original

DTLZ1

p1 = 10

p2 = 0.9451

p3 = 81.5176

p1 = 10

p2 = 0.5

p3 = 100

DTLZ3

p1 = 1

p2 = 0.3623

p3 = 64.9709

p1 = 10

p2 = 0.5

p3 = 100

DTLZ4
p1 = 8.3135

p2 = 0.3156

p1 = 10

p2 = 0.5

DTLZ6 p1 = 0.0438 p1 = 0.1

DTLZ7
p1 = 50

p2 = 1

p1 = 3

p2 = 1

WFG1

p1 = 0.9656

p2 = 0.9984

p3 = 0.9922

p4 = 0.9335

p5 = 0.0109

p6 = 9.6587

p7 = 10

p1 = 0.35

p2 = 0.8

p3 = 0.75

p4 = 0.85

p5 = 0.02

p6 = 1

p7 = 5

WFG5

p1 = 0.5292

p2 = 0.1

p3 = 0.01

p1 = 0.35

p2 = 0.001

p3 = 0.05

WFG7

p1 = 0.9900

p2 = 0.0100

p3 = 0.6543

p4 = 0.0100

p1 = 0.35

p2 = 0.98/49.98

p3 = 0.02

p4 = 50

WFG8

p1 = 0.3376

p2 = 0.4167

p3 = 0.4952

p4 = 86.8786

p1 = 0.35

p2 = 0.98/49.98

p3 = 0.02

p4 = 50

WFG9

p1 = 0.1512

p2 = 0.8386

p3 = 2.4272

p4 = 56.4503

p5 = 0.0953

p6 = 0.0704

p7 = 94

p8 = 8.6592

p1 = 0.35

p2 = 0.98/49.98

p3 = 0.02

p4 = 50

p5 = 0.001

p6 = 0.05

p7 = 30

p8 = 95
and ZDT4 are closely clustered, while ZDT3 and ZDT6 show each
have two separate groupings of problems. DTLZ1, DTLZ3, DTLZ4
mostly exist within one cluster, but have a few instances which
are further away. DTLZ2 has one cluster but shows a lambda
shape, while DTLZ5 shows a hook shape, suggesting that both
these problems, given their single construction parameter, are
confined within their respective regions. DTLZ6 and DTLZ7 are
clustered closely together. As expected, compared to the ZDT
problems which mostly have only one α parameter (except for
DT3), the DTLZ suite clusters show larger variation in landscapes.
his is also visible in the WFG suites. WFG2, WFG3, WFG6 and
FG8 largely exist within clear clusters. While Table 5 did not
emonstrate much diversity for WFG4, upon investigating the
isualisation we see that WFG4 actually occupies three separate
lusters. There is also a great deal of diversity and overlap in the
pace across the WFG suite, which is promising for developing
ore diverse problems and instances in future. Overall, WFG1,
FG4, WFG5, WFG7 and WFG9 are capable of generating a wider
ange of problems beyond the default parameter setting, and
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therefore demonstrate tuneability and an absence of landscape
robustness.

5. Extending onto recent suites

The ZDT, DTLZ and WFG suites are older suites, and therefore
we further extend our analyses to two suites that are more
recent, with parameterisable construction. Both the problems
generated in the RMMEDA [28] and IMMOEA [25] papers are
chosen for our analyses and will henceforth be referred to as
the RMMEDA and IMMOEA suites. Both suites are constructed
using the ZDT1, ZDT2 and ZDT6 problems, with different variable
linkages and g functions included. As such, we only perturb the α
construction parameter to be consistent with our treatment of the
ZDT problems. We consider these suites an interesting extension
since they are ZDT problems with newly introduced character-
istics (linkages, landscape search functions) intended to inject
additional problem difficulty. Problems 4 and 8 for each suite
are DTLZ2 variants, but are excluded from our analysis since the
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Table 8
The obtained p-values when comparing the difference in distribution between the benchmark problem against the generated instances by
perturbation. Significant differences at an α level of 0.05 are bold, denoting wide applicability.
Problem GrEA HypE IBEA MOEA/D NSGA-II NSGA-III RVEA SPEA2

IMMOEA_F1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
IMMOEA_F2 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00
IMMOEA_F3 0.00 0.45 0.00 0.17 0.07 0.15 0.81 0.00
IMMOEA_F5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
IMMOEA_F6 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00
IMMOEA_F7 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.00
IMMOEA_F9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
IMMOEA_F10 0.54 0.12 1 0.15 0.14 0.94 0.21 0.35
RMMEDA_F1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RMMEDA_F2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RMMEDA_F3 0.00 0.00 0.00 0.19 0.00 0.01 0.02 0.01
RMMEDA_F5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RMMEDA_F6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RMMEDA_F7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RMMEDA_F9 0.00 0.00 0.01 0.11 0.03 0.07 0.00 0.04
RMMEDA_F10 0.5 0.64 0.85 0.01 0.15 0.08 0.62 0.18
Table 9
Average feature vector distance and standard deviation after
rescaling, between instances for each problem in 2d t-SNE
projection.
Problem Mean Std Dev.

IMMOEA_F1 0.060 0.011
IMMOEA_F2 0.059 0.009
IMMOEA_F3 0.010 0.000
IMMOEA_F5 0.077 0.026
IMMOEA_F6 0.069 0.024
IMMOEA_F7 0.017 0.003
IMMOEA_F9 0.647 0.131
IMMOEA_F10 0.018 0.001
RMMEDA_F1 0.065 0.015
RMMEDA_F2 0.056 0.013
RMMEDA_F3 0.017 0.019
RMMEDA_F5 0.073 0.015
RMMEDA_F6 0.053 0.013
RMMEDA_F7 0.013 0.000
RMMEDA_F9 0.175 0.393
RMMEDA_F10 0.030 0.001

variable linkage replaces the DTLZ2’s construction parameter. Ta-
ble 8 confirms that IMMOEA_F3, IMMOEA_F10 and RMMEDA_F10
are widely applicable and/or non-fallible in this suite, with p-
values above 0.05. In terms of relative performance, Fig. 8 shows
that only IMMOEA_F3, IMMOEA_F7, RMMEDA_F1, RMMEDA_F2
and RMMEDA_F5, RMMEDA_F6, RMMEDA_F7 are stable. In the
updated t-SNE plot in Fig. 9, we observe similar behaviours for
all the IMMOEA, RMMEDA and ZDT suites. While there is some
dispersion introduced in the visual plot, the landscape projections
tend to collect together in a concentrated area. This is expected,
as we have previously observed the extent of landscape change by
the α parameter. Table 9 shows similar mean distances and stan-
dard deviations for all but IMMOEA_F9 and RMMEDA_F9. As such,
all but these two problems are considered robust in landscape
(not tuneable). Interestingly, while most of these problems are
not tuneable by varying the construction parameter α, the change
in g functions and linkages shift the location of these problems,
compared to the ZDT problems from which they are built upon.
We therefore conclude based on this evidence that the α con-
struction parameter in the IMMOEA and RMMEDA suites tends
to generate similar behaviours of robustness as with the ZDT
suite, despite the additional linkages and changes in landscape
functions. A summary of the robustness types is found in Table 10.
It is important to consider that the landscape features discussed
here may not be sufficiently capturing information regarding the
change in linkages, and further investigation into appropriate

features will be an important research area in the future.
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Table 10
Summary of types of robustness satisfied by each of the IMMOEA and
RMMEDA problems.

Robustness

Problem Absolute Relative Landscape

IMMOEA_F1 ✓
IMMOEA_F2 ✓
IMMOEA_F3 ✓ ✓ ✓
IMMOEA_F5 ✓
IMMOEA_F6 ✓
IMMOEA_F7 ✓ ✓
IMMOEA_F9
IMMOEA_F10 ✓ ✓
RMMEDA_F1 ✓ ✓
RMMEDA_F2 ✓ ✓
RMMEDA_F3 ✓
RMMEDA_F5 ✓ ✓
RMMEDA_F6 ✓ ✓
RMMEDA_F7 ✓ ✓
RMMEDA_F9
RMMEDA_F10 ✓ ✓

6. Conclusions

Researchers use benchmark test instances to compare algo-
rithms and draw conclusions about their relative merits. In this
paper we have investigated the robustness of test suites and
whether such conclusions when based on the default parameter
settings for the popularly used ZDT, DTLZ and WFG benchmarks.
Problems are required to be robust if broader conclusions re-
garding algorithm performance and suitability for problems with
certain characteristics are to be accurate and reliable. A mod-
ification of the original IGD metric, IGD+M , was introduced as
a performance metric to allow for comparison across different
PFs. A methodology for evaluating problem robustness – through
two indirect measures of algorithm robustness and one direct
measure of landscape robustness – was presented, extending the
work of Eiben and Smit [18] from Algorithm Tuning to Prob-
lem Tuning. We found evidence of algorithm weaknesses that
would otherwise not be identified when using only the default
benchmark instances. In most cases, variation in construction
parameters led to more difficult instances within problem classes.
Notably, the ranking order for the best algorithm also changed for
many of these problems. This suggests that the default parameter
settings have created popular benchmark test problems that may
not support conclusions as robustly as required to understand
algorithm strengths and weaknesses. As such, these problems
could serve the research community better if additional parame-
ter settings were explored to create more diverse instances with
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Fig. 8. The p-value distribution of the Mann–Whitney U test when comparing between the performance of 30 runs of the best algorithm on the original problem,
nd the best algorithm for each problem variant on: (a) IMMOEA problems. (b) RMMEDA problems.
he same general characteristics. We have provided a table with
ome suggestions for alternative instances to consider for a more
omprehensive evaluation of MOOP algorithms.
For the ZDT test suite, the α parameter did not greatly im-

pact difficulty for most algorithms across ZDT3, ZDT4 and ZDT6.
Within the other suites, only instances of DTLZ2, DTLZ4, DTLZ5,
WFG2, WFG3, WFG4 and WFG6 remained at a similar level of
difficulty. The benchmark DTLZ suites showed a larger range of
difficulty than the original WFG, but the WFG problems were
more consistent pertaining to algorithm performance. However,
despite the goal of the WFG toolkit to generate more difficult
problems, all algorithms in our portfolio found the WFG bench-
mark problems, except WFG1, to be easy. By exploring con-
struction parameter variation, problem instances of increased
difficulty for different algorithms were generated. As a result, we
were able to observe more diversity in algorithm performance
across an expanded test suite.

Hypothesis testing was performed to check if the conclusions
drawn based on the ranking performance of the best algorithm on
a benchmark problem would change if problem parameters were
varied. Results showed that a total of nine benchmark problems
were stable for algorithm ranking. DTLZ2, WFG3, WFG4, WFG6,
and all of the ZDT suite, almost always had the same rank for
best algorithm across their respective instances.

The original best algorithm on WFG1 is not shared for the
majority of other instances. This highlights the dangers of draw-
ing misleading conclusions using only the original problem with
default construction parameters, especially if the conclusion at-
tempts to discuss the suitability of an algorithm in the presence
of the problem characteristic in general.

The introduction of DACE problems, while successfully intro-
ducing greater diversity of instance difficulty did not necessarily
introduce more algorithm instability. This is a reasonable out-
come, as the objective of each DACE model was to generate
problems that were more difficult for a given algorithm, which
may not affect rankings if all algorithms also struggled with these
instances. It is an interesting future direction to extend the DACE
approach to generate new problem instances that are simulta-
neously more difficulty and more discriminating of algorithm
performance.

We also investigated the landscape changes using t-SNE to
visualise and measure the diversity of the benchmark problems,
and to evaluate problem robustness (tuneability). We observed
that all problems which were non-tuneable were either widely
applicable or non-fallible (or both) for algorithms. This is ex-
pected, as algorithms which exploit information on landscapes

should be expected to perform consistently if it remains largely
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unchanged. Conversely, problems which are tuneable provide us
with an opportunity to further explore algorithm performance in
the presence of changes in existing problem characteristics after
changing construction parameters. Interestingly, DTLZ7 was the
only problem for which algorithm performance was not robust,
despite evidence of landscape robustness (non-tuneability).

The robustness of test suites plays an important role in how
their respective problems should be used. Table 6 summarises
our findings which support that both robust and non-robust
problems exist in the ZDT, DTLZ and WFG suites, and is likely
the case for other suites, as demonstrated by our extension into
the RMMEDA and IMMOEA suites. Ultimately, of the main suites
we studied, only ZDT4, DTLZ2, WFG3 and WF6 satisfy all problem
robustness requirements. Problems which are robust are advan-
tageous because they ensure that drawing broader conclusions
about algorithm performance holds, without requiring additional
evaluations on alternate instances. This provides an opportunity
for exploring the relationship between the properties and param-
eters within a problem and algorithm performance, e.g., how does
an algorithm’s performance change when we vary the degree of
convexity in a problem, or move the global optima? Alternatively,
when robustness does not hold, we are afforded the opportunity
to tease out more diverse characteristics of problems and under-
stand their influence on algorithm behaviour. As such, both types
of problems – robust and non-robust – are important, but we
must understand this robustness property for all test problems in
order to ensure they are fit for purpose. In this study, we focused
on bi- and tri-objective problems. When dealing with problems
beyond three objectives, Pareto geometry may sometimes be-
come unclear [5]. Investigation of whether the robustness types
remain the same when scaling problems to higher dimensions is
an interesting future direction.

While the development of new test suites is important for pro-
viding more diversity and broadening our understanding of algo-
rithm applicability on different properties, our study provides the
basis for a more granular exploration of specific characteristics.
By generating new instances, we can measure algorithm response
to changes in each additional global minima or discontinuous
front, instead of entirely new problems. The 2d t-SNE plots also
showed that we can generate more diversity in the already ex-
isting suites. Thus combining this exploration of instances with
additional suites will provide us with a comprehensive space
for studying continuous multi-objective problems. We can then
build instance spaces [56] which allow us to understand which
features of problems affect algorithm performance, and how to
best select a well-performing algorithm on a newly encountered
black-box problem. By extracting features of a black-box problem
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Fig. 9. The updated distribution of landscape features for different instances of
benchmark problems with IMMOEA and RMMEDA problems included, visualised
using t-SNE. ZDT1 and ZDT2 share the same points, as they are identical

variations to ZDT1 (since they are the same problem with a different α

arameter).
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and mapping it to the instance space, an algorithm can be allo-
cated based on whether it exhibits dominant performance over
that region. Furthermore, we provide suggestions in Table 7 for
alternative parameter choices for problems which were not found
to be robust for at least two of absolute, relative and landscape
measures. These are made by identifying the parameter choice
which is located furthest from the original problem in the t-
SNE plots in Fig. 7. While these are not the only choices which
will lead to further understanding of performance, they provide a
basis upon which algorithms can be studied on a different version
(instance) of the same problem class, to support the need for
generalisable conclusions [17].

This paper demonstrates the importance of using a diverse set
of problem instances when evaluating algorithms to maximise
the information gained from existing problem classes. When
more challenging problem instances were generated, we have
observed evidence of variation in landscape, algorithm perfor-
mance, as well as changing ranks of the best algorithm. Many
of the problems in the test suites, when considered using only
their default parameter configuration, do not support algorithm
robustness on given characteristics and consequently, the con-
clusions they draw. Diverse problem instances would serve the
research community well in studying the influence of charac-
teristics on algorithm performance. While we have focused on
generating new instances within the ZDT, DTLZ and WFG test
suites here, new diverse problems should continue to be gener-
ated to provide different challenges for algorithms. Furthermore,
our study focused on bi- and tri-objective problems. However,
we consider the assessment of robustness and diversity in higher
dimensions to be an important future research direction.
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