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=========== Abstract—In recent years, there has been a
continuous stream of development in evolutionary multi-objective
optimization (EMO) algorithms. The large quantity of existing
algorithms introduces difficulty in selecting suitable algorithms
for a given problem instance. In this paper, we perform instance
space analysis on discrete multi-objective optimization problems
(MOPs) for the first time under three different conditions.
We create visualizations of the relationship between problem
instances and algorithm performance for instance features previ-
ously identified using decision trees, as well an independent fea-
ture selection. The suitability of these features in discriminating
between algorithm performance and understanding strengths and
weaknesses is investigated. Furthermore, we explore the impact
of various definitions of ‘“good” performance. The visualization
of the instance space provides an alternative method of algorithm
discrimination by showing clusters of instances where algorithms
perform well across the instance space. We validate the suitability
of existing features and identify opportunities for future devel-
opment.

Index Terms—Multi-objective optimization, black-box combi-
natorial optimization, landscape analysis, feature-based perfor-
mance prediction.

I. INTRODUCTION

Many real world problems consist of two or more, often
conflicting, objectives. These are known as multi-objective
optimization problems (MOPs), whose solution consists of a
set of optimal trade-offs between the objectives. Evolutionary
Multi-objective Optimization (EMO) algorithms are used to
solve MOPs, due to their ability to maintain a diverse popula-
tion of solutions spanning the trade-offs in a single simulation
run.

Since the pioneering work of Schaffer [1], there has been
substantial interest in the development of EMO algorithms.
The now large number of available algorithms leads to the
question of which one to choose, since the quality of the
solution is affected by the choice of algorithm. This challenge
is known as the algorithm selection problem [2] which aims
to predict which algorithm will perform well with minimized
cost to solve a given problem, where cost is measured in
the resources used such as time. However, understanding the
relationship between algorithm performance and problem in-
stances is not a simple task. This is because problem difficulty
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is affected by many factors, such as multi-modality or rugged-
ness [3]. If the optimization problem can be stated analytically,
such factors can be measured, but typical MOPs are black-box
problems described only by sample input (decision variables)
and outputs (objective function values). Given that no a priori
information is available for black-box problems, how can
we identify the relationship between instance features and
algorithm performance?

The fitness landscape of black-box optimization problem
instances offers an analysis framework, extracting features
that characterize instance topology. These features quantify the
challenges encountered by algorithms, independent of problem
classes. Landscape analysis in single-objective optimization
has receiving growing interest [4], with new features being
developed. However, while they can be extended to multi-
objective optimization, there may be features that are not
relevant due to additional challenges incurred by the conflict-
ing nature of the objectives. To counter this, features that
are multi-objective in nature are necessary to characterize
these problems. Such research exists [5]-[9] but many require
enumeration of all Pareto optimal solutions and are therefore
impractical for the algorithm selection problem which is
attempting to predict performance based only on instance data,
not algorithm performance data.

In recent work, Liefooghe et al. [10] introduce several
new cheap features using short random and adaptive walks.
This work showed significant features that helped discriminate
between the performance of three algorithms (IBEA [11],
MOEA/D [12], NSGA-II [13]) on a range of problem in-
stances using pmnk landscapes. Liefooghe et al. used a CART
decision tree to provide an easily interpretative model to
distinguish which algorithm is likely to be best for a given
instance. A more complex random forest model [14] was also
explored.

In this paper, we build upon this work by carrying out
the first Instance Space Analysis (ISA) [15] of combinatorial
multi-objective problems using the same instances, features
and algorithms as [10]. Our aim is twofold: to create a
visual complement using the CART decision tree features,
and explore how the strengths and weaknesses of algorithms
depend on the chosen criteria for good performance (i.e. best
performing algorithm, or close to best). ISA also provides
insights into how features change across the space and their
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correlation with algorithm performance. As such, we are able
to generate a mapping of each algorithm’s “footprint,” i.e., the
regions of the space where it has strengths or weaknesses.
Support vector machines (SVMs) are then used to decide
which algorithm is recommended across various regions of the
instance space, based on a set of calculated features. Through
this analysis, we also assess the diversity of the pmnk problem
instances, and identify sparse areas in the instance space. Our
analysis is comprised of three stages:

1) visually supporting conclusions of [10] — performing
the first instance space analysis on the CART subset of
features to see if similar rules can be visualized,

2) extending explanations — analysis using feature selection
methods to consider additional features that may provide
further insights, and

3) relaxing performance — exploring the impact when the
definition of “good” is relaxed from best hyper-volume
to be within 1% of best hyper-volume.

The remainder of this paper is organized as follows. In
Section II, we introduce the general multi-objective combi-
natorial optimization problem, and the benchmark instances
used for evaluation. We then describe the features that are
utilized in this paper. In Section III we describe the instance
space methodology for generating a 2D visualization of al-
gorithm performance across instances. Results are presented
in Section IV where we validate the relationship between
features and algorithm performance in the previous paper [10].
Alternative instance spaces generated by different features
are also presented, and we investigate the impacts of relaxed
conditions of “good” performance to obtain stronger insights
into algorithm strengths and weaknesses. Section V concludes
the paper with a discussion of future research directions.

II. BACKGROUND
A. Definition

Without loss of generality, consider a multi-objective mini-
mization problem with m objectives and n decision variables:

min y = f(x) = (f1 (X), ..., fmn (X))

where x = (21, ...,2,) € X
Y= (yla -~-aym) €y

where x is known as the decision vector, X is the search space,
y the objective vector and Y the objective or fitness space,
and f(x) the fitness function. In multi-objective combinatorial
optimization, X is a discrete set, i.e. X := {0,1}". Given
two solutions xV and x(?, x(1) dominates x(?) (denoted as
x() < x(®)y if it is better in at least one objective, and at least
as good in all others. Solution x(1) is said to be non-dominated
with respect to x(?), and x(?) is dominated with respect to x().
This relation then holds for the objective vectors, with y(!) is
non-dominated with respect to y(?). A solution x* is Pareto
optimal (PO) if there is no solution x € X that dominates it.
Similarly, 4* € Y is non-dominated if there does not exist any
y € Y such that y* is dominated by y. The set of PO solutions

forms the Pareto set, and their corresponding mapping into the
objective space is known as the Pareto front (PF). Generating
a good approximation of the PF is the main goal in solving
MOPs.

B. Benchmark Instances

The selection of a representative subset of MOP instances
is required in order to study the problem domain. For the
purposes of the study, pmnk-landscapes [8] are used to
construct the test instances for combinatorial MOPs. This
is due in part to their ability to control properties such as
multimodality and objective correlation. A pmnk-landscape
can be formally defined as:

1O ,
maxfi(x):ﬁZfij(xj,le,...xjk) ied{l,...,m}
j=1

s.t. z; € {0,1} je{l,...,n}

where n is the number of bits in the decision space, m the
number of objectives and k the number of epistatic interactions
influencing the contribution of each x;. The fitness f; (x) of
a solution x € X corresponds to the average value of the
contributions in its n fitness components. Problem instances
can be tuned from smooth to rugged by increasing k& from 0
to (n — 1). The parameter p > —

—— controls the degree of
correlation between the objectives.

C. Features

The purpose of features is to quantify structural character-
istics about a problem instance. They are used to summarize
instances, and to identify the cause of difficulty. Features
are used for gaining insights into the relationship between
algorithms and instances, and consequently enabling suitable
algorithm selection using performance prediction.

Multi-objective landscapes require the inclusion of multiple
PO solutions, due to the trade-offs resulting from conflicting
objectives. Similarly to the single-objective case, character-
istics such as multimodality and ruggedness are empirically
linked to instance difficulty and algorithm performance [16],
[17]. Therefore, it is desirable to identify features that correlate
well with these characteristics. In particular, useful features
should be captured using the fewest function evaluations.

Liefooghe et al. [10] introduced local features which com-
pute landscape information by using random or adaptive walks
to sample the neighbourhood of solutions. The neighbourhood
relation is defined as N: X — 2% and is here based on the
1-bit-flip operator. In a random walk, a random neighbour is
selected at each step. During an adaptive walk, an improving
(i.e., dominating) neighbour is selected at each step using a
Pareto hill climber (PHC) [8].

During a walk of size ¢, the neighbourhood N of each
sample is explored. The proportion of dominated (#inf), dom-
inating (#sup), incomparable (#inc), non-dominated (#Ind),
and supported (#lsupp) solutions in the neighbourhood are
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TABLE I: Features collected via sampling methods, used in this paper.

Description

Random walk Adaptive walk

estimated correlation between objectives
length of walk

f_cor_rws
length_aws

First autocorrelation  Average Average

proportion of dominated solutions
proportion of dominating solutions
proportion of incomparable solutions
proportion of non-dominated solutions
proportion of supported solutions
hyper-volume covered by a single solution

difference of hyper-volume covered by a single solution and its neighbourhood

hyper-volume covered by the entire neighbourhood

#inf_rl_rws
#sup_rl_rws
#inc_rl_rws

#inf_avg_rws
#sup_avg_rws
#inc_avg_rws

#inf_avg_aws
#sup_avg_aws
#inc_avg_aws

#Ind_r1_rws #Ind_avg_rws #Ind_avg_aws
#lsupp_rl_rws #lsupp_avg_rws  #lsupp_avg_aws
hv_rl_rws hv_avg_rws hv_avg_aws
hvd_rl_rws hvd_avg_rws hvd_avg_aws
nhv_rl_rws nhv_avg_rws nhv_avg_aws

measured. Features relating to the hyper-volume are also
calculated. These include the hyper-volume covered by each
solution (hv), the difference between the hyper-volume cov-
ered by the neighbour and current solution (hvd), and the
hyper-volume covered by the whole neighbourhood (nhv).

For samples collected during random and adaptive walks,
features are measured and averaged. Additionally, the first
autocorrelation coefficient of random walks is known to char-
acterize the ruggedness of the single-objective landscapes [16].
Therefore, to accommodate this in the multi-objective case,
the first autocorrelation coefficient of the above features during
random walks is also measured. Lastly, the correlation between
objectives is measured during the random walk. The full list
of 26 features obtained during random and adaptive walks can
be found in Table L

D. Prior Work

Several new local features defined above were introduced in
the work of Liefooghe et al. [10] with the intention of char-
acterizing the structure of combinatorial MOPs. Tree-based
predictive models were used to highlight the differences in
important features between local and global search heuristics
on small instances.

Large scale experiments were also performed for feature-
based performance prediction. We utilize the same experimen-
tal setup in this paper. A total of 1,000 pmnk-landscapes
are created using latin hypercube sampling. The parame-
ters of these instances are generated within the domains of
n € {64,...,256}, k € {0,...,8,}, m € {2,...,5,} and
p € [—1,1] with p > m;_ll The local features in Section II-C
are measured, as well as the values of m and n, as they are
known parameters in black-box settings.

Three state-of-the-art EMO algorithms were chosen as rep-
resentatives of different evolutionary approaches. The indicator
based method is represented by IBEA [11], scalarization by
MOEA/D [12], and dominance by NSGA-II [13]. These are
run using default parameters in jMetal 4.5 [18]. All algorithms
use a population size of 100, 2-point crossover with a rate of
0.9, and a bit-flip mutation rate of 1/n. The budget is set
at 10° evaluations. Performance is measured by the hyper-
volume metric, with “good” initially defined as the best hyper-

volume. Later we relax this goodness definition to be within
1% of best hyper-volume.

A CART decision tree was used in [10] to distinguish
between the preferred algorithm for an instance, based on mea-
sured features. The features selected in the decision tree in-
cluded Ind_avg_aws, hv_rl_rws, hvd_avg_rws, Ind_avg_aws
and hv_avg_aws. A randomized trees model was used to
generate the final output, with an error rate of 0.014 for the
best statistical rank.

III. METHODOLOGY

Instance Space Analysis (ISA) is a methodology that allows
the visualization of a group of problem instances in a 2D
space. Within the instance space it is possible to observe trends
in algorithm performance; hence, we are able to identify and
objectively measure the regions of strength (and conversely,
weaknesses) for an algorithm, which are known as footprints.
Moreover, ISA gives us information about the distribution of
the instances, allowing us to identify sparse regions where new
instances may be needed. First described by Smith-Miles et
al. [15], ISA can be automatically performed through publicly
available webtools [19] or using the MATLAB toolkit [20]. In
general, ISA involves the following steps:

1) collecting the meta-data, which corresponds to a table
where each row represents a test instance and each
column is a feature or the performance of an algorithm;

2) selecting a subset of features which best distinguish
between different algorithm performances, and variations
in problem instances;

3) projecting onto a 2D space for visualization;

4) measuring the algorithm footprints; and

5) generating new test instances in sparse regions.

In this study, we will not be generating new test instances,
and instead focus on the analysis of the algorithm footprints.
Details on all the steps of the ISA methodology can be found
in previous work [21], [22]. However, we briefly summarise
them here for reference. Once the meta-data has been col-
lected, a binary performance measure is calculated that defines
when an algorithm is “good.” As mentioned above, “good” is
here initially defined as largest hyper-volume or, later, as being
within 1%. Then, the features are pre-processed by bounding
the outliers within the mean plus or minus five times the
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interquartile range. Next, both the features and performance
measures are normalized and standardized using Box-Cox and
Z transformations.

We filter out those features that are not highly predictive of
algorithm performance, by calculating the absolute value of
the Pearson correlation between them. Then, we cluster these
meta-features using as similarity metric 1 — |p, |, where p, ,
is the correlation between two features. Silhouette analysis
is used to determine the number of clusters. Retaining one
meta-feature per cluster to reduce redundancy, we consider
all valid combinations. Using PCA with two components as
dimensionality reduction, and Random Forests (RF) to predict
the binary measure, we determine which projection has the
highest out-of-the-bag average accuracy. We use PCA and RFs
as they are cheaper alternatives than the algorithms used in
the following stages. This approach ensures that our selected
meta-features are predictive of algorithm performance across
the portfolio.

Next, we use the Prediction Based Linear Dimensionality
Reduction (PBLDR) method [22] to find the final 2D projec-
tion, which creates the most linear trends of algorithm perfor-
mance and feature values across the instance space, to assist
visualization of directions of hardness and feature correlations.
BFGS is used to solve numerically the underlying optimization
problem in PBLDR, which is known to have infinite solutions.
As such, we calculate 30 different projections and select the
one with the highest topological preservation, defined as the
correlation between high- and low-dimensional distances.

The instance space analysis assists in guiding automatic
algorithm selection by highlighting which algorithms are
compatible within regions of the space. For new instances,
features are measured and projected onto the instance space.
The location of this instance and whether it lies within any
algorithm’s footprint can be used to guide selection. We
repeat this analysis for each of the three stages mentioned
in Section I: (A) supporting conclusions drawn using the
CART subset, (B) extending explanations through the use
of the feature selection method used above and (C) relaxing
performance by defining “good” performance as within 1% of
best hyper-volume.

IV. RESULTS
A. Supporting Conclusions

The final projection matrix of the generated instance space
using the CART features, shown in Fig. 2, is defined by the
following linear projection to 2D. Each instance is a point in
the 2D space shown in Fig 2, defined by:

—0.1628 —0.6232 71" Ind_avg_rws
0.4698 0.1364 hv_rl_rws
ZoarT = | —0.4443 0.079 hvd_avg_rws [¢))
—0.3854 —0.048 Ind_avg_aws
—0.249 0.7237 hv_avg_aws

While MOEA/D is the algorithm that performs best on
average, good performance is almost evenly split between
NSGA-II, as seen in Fig. 1b and lc. The footprints for each

IBEA hv avg

MOEAD hv avg

+ GOOD
BAD

NSGAII hv avg

3 + GOOD
BAD

(©)

Fig. 1: Algorithm footprints in the projected instance space of
(1) using the CART subset of features.

algorithm are mostly clustered. Fig. 2 shows hv_avg_aws has
a good correlation with the splitting of spaces in which each
algorithm is superior. NSGA-II performs well on instances
with a larger value, while the opposite is true for MOEA/D.
This is a similar recommendation given by the CART model.
This feature is known to strongly negatively correlate with
the number of objectives m [10], suggesting that MOEA/D
is preferred for more objectives. Thus, our approach shows
an alternative approach to the CART model and generates a
visual representation of performance.

In all generated instance spaces, it is evident that IBEA
only performs well on a subset of the instances that NSGA-II
performs well on. Fig. 7 shows that it is never recommended
by the SVM as the preferred algorithm. The SVM in Fig. 7a
shows that MOEA/D and NSGA-II are each selected as the
preferred algorithm in approximately half of the instances.

B. Extending Explanations

When using feature selection on the complete set, only
two features were shared with those in the CART subset
(hv_avg_aws, Ind_avg_rws) shown in Fig. 4. The final pro-
jection matrix of the generated instance space in Fig. 4 is
defined by:

0.2209 —0.2881 1" [ sup_avg_rws
—0.3158 0.1127 hvd_avg_aws
0.2037 0.3388 inc_avg_rws
Zcatselect = | —0.3081  —0.0352 hv_avg_aws 2)
—0.1906 0.0698 nhv_avg_aws
0.2783 0.3268 Ind_avg_rws
0.4636 —0.0265 m
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hv rirws

hv avg aws

(@ (b)

hvd avg rws

© (d)

Ind avg rws

Fig. 2: Distribution of normalized CART subset of features
in the projected instance space of (1). The color scale corre-
sponds to normalized feature values.

We observe the negative correlation between m and
hv_avg_aws, with MOEA/D’s footprint occupying instances
with larger m. The performance of MOEA/D on larger values
of sup_avg_rws is also observed. This feature is correlated
with the objective correlation p [10], suggesting that MOEA/D
performs well when p is larger, i.e. when the degree of conflict
between the objectives is small.

The subset of features selected shows a similar partition-
ing of the instance space between MOEA/D and NSGA-II’s
performance, as shown in Fig. 3b and 3c. However, the
projection seems to favour NSGA-II slightly, showing a clearer
partition of best performance. Here, the feature hv_avg_aws
correlates with algorithm performance, as do inc_avg_rws and
Ind_avg_rws. As a result, these features are able to generate
a useful instance space for inferring algorithm performance.

The projection of the instance space here is more advan-

IBEA hv avg

MOEAD hv avg

NSGAII hv avg

2 : - GOOD
15 BAD

(©)

Fig. 3: Algorithm footprints in the projected instance space of
(2) using feature selection.

tageous for NSGA-II, as seen earlier in its footprint. This
is visible in Fig. 7b for the SVM, showing preference on
NSGA-II for more than half of the instances.

C. Relaxing Performance

If we now relax the definition of good performance to in-
clude algorithms whose hyper-volume is within 1% of the best,
a different set of features are selected to explain performance.
The final projection matrix of the generated instance space in
Fig. 6, can be defined by:

0.5246  —0.189 1" [ Ind_avg_aws
—0.0935 0.1986 hv_avg_aws
0.1557 —0.5934 m
Zyclazedperf = | —0.3895  —0.1462 length_aws ©)
0.4879 —0.0472 Inc_avg_aws
0.0813 0.3494 hvd_avg_aws
0.0447 0.2091 nhv_avg_aws

The feature hv_avg_aws is once again selected as a good
predictor for algorithm performance.

In relaxed conditions of “good”, Fig. 5c shows that the
space where NSGA-II displays good performance is more
cleanly partitioned. However, MOEA/D performs so strongly
that its footprint overlaps with that of NSGA-II's, without any
clear separation. While the earlier analyses showed the two
algorithms complementing each other, here the performance
of MOEA/D is superior. Due to the shared good performance
on much of the space, the SVM has difficulties in identifying
clustered regions within the instance space where MOEA/D
performs well. Therefore, the features currently used may
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hv avg aws

hvd avg aws

2 -2 0
3 2 1 1 2 3 -3 2 1 0 1 2 3
z, z,
(a) (b)
2 inc avg rws 5 Ind avg rws 1

2 -2 0
3 2 1 1 2 3 -3 2 1 0 1 2 3
Z1 Z1
© ®
sup avg rws

(®

Fig. 4: Distribution of normalized subset of features in the
projected instance space of (2).

not be sufficient as the definition of best becomes more
lenient. The feature hv_avg_aws remains correlated with the
performance of NSGA-II. Another feature that correlates is
length_aws, an estimator of the number of local optima [10].
The larger the length, the larger the size of the basin of
attraction, and thus the lower number of local optima. Since

IBEA hv avg

MOEAD hv avg

+ GOOD
BAD

(©)

Fig. 5: Algorithm footprints in the projected instance space of
(3) using feature selection when performance is relaxed.

NSGA-II does not perform well for smaller values length_aws,
we infer that it struggles when there is a larger number of local
optima.

The boundaries of NSGA-II’s footprint are once again
clearer than MOEA/D’s. The few instances MOEA/D per-
formed poorly on were scattered within the domain where
both MOEA/D and NSGA-II performed well, and thus the
SVM shown in Fig. 7c always conservatively recommended
NSGA-II over that entire domain.

D. Algorithm Selection Results

The test instances for all analyses cover a large portion of
the instance spaces generated with minor empty pockets closer
to the origin, as seen in Fig. 7. We conclude that the set of
test instances studied are quite diverse and span the instance
space sufficiently to infer performance behaviours across the
instance space.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we carried out the first Instance Space
Analysis (ISA) of combinatorial MOPs, using as a basis the
work by Liefooghe et al. [10]. ISA complements that of
the decision tree analysis, offering additional insights into
algorithm strengths and weaknesses through visualizations.
The development of such insights into the transparency of
algorithm performance allows for better automated algorithm
selection for new, untested instances. When an untested in-
stance is encountered, features are evaluated mapped into
their instance space co-ordinates. Given these co-ordinates, the
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hv avg aws

hvd avg aws

N0 05
04
e 03
0.2
-2
0.1
3 -3 0
3 2 1 1 2 3 -3 2 1 0 1 2 3
z, z,
(a) (b)
3 inc avg aws 3 length aws 1

N0 N o 0.5
04
-1 El 03
02

2 2
0.1
3 3 0

3 2 1 1 2 3 3 2 1 0 1 2 3

3 -3 0
3 2 1 0 1 2 3 -3 2 1 0 1 2 3
z, z,
(e) ®
nhv avg aws

Fig. 6: Distribution of normalized subset of features in the
projected instance space of (3) when performance is relaxed.

suitable algorithms can be inferred by selecting those which
show dominant performance over the region. Moving forward,
there is the opportunity to extend the approach to consider a
broader range of algorithms and instance features to explore a
more comprehensive understanding of algorithm behaviours.
Investigation of the algorithm footprints showed that

MOEA/D displays strong performance under relaxed condi-
tions of goodness, as seen in Fig. 5. However, its weaknesses
are sparsely located. Therefore, despite MOEA/D being the
higher performing algorithm, the SVM selected NSGA-II more
often due to NSGA-II’s consistent region of good performance.
While these features may be sufficient in selecting the best
algorithm by hyper-volume, when the condition of goodness is
relaxed, they may not provide enough information to separate
algorithm performance.

We therefore focus our attention toward developing features
that hold more discrimination between algorithms in future, as
well as expanding our algorithm portfolio. Furthermore, we
are interested in developing features that can be calculated
cheaply to minimize the total cost of function evaluations.
The amalgamation of this work will provide further insights,
assisting with better informed algorithm selection in future in
the multi-objective space.
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