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ABSTRACT
This article proposes a framework that provides early detection of anomalous series within a large collection
of nonstationary streaming time-series data. We define an anomaly as an observation, that is, very unlikely
given the recent distribution of a given system. The proposed framework first calculates a boundary for the
system’s typical behavior using extreme value theory. Then a sliding window is used to test for anomalous
series within a newly arrived collection of series. The model uses time series features as inputs, and a
density-based comparison to detect any significant changes in the distribution of the features. Using various
synthetic and real world datasets, we demonstrate the wide applicability and usefulness of our proposed
framework. We show that the proposed algorithm can work well in the presence of noisy nonstationarity
data within multiple classes of time series. This framework is implemented in the open source R package
oddstream. R code and data are available in the online supplementary materials.
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1. Introduction

Anomaly detection in streaming temporal data has become
an important research topic due to its wide range of possible
applications, such as the detection of extreme weather con-
ditions, intruders on secured premises, gas and oil leakages,
illegal pipeline tapping, power cable faults, and water contam-
ination. The rapid detection of these critical events is vital to
protect valuable lives and/or assets. Furthermore, since these
applications spend the majority of their operational life in a
“typical” state, and the associated data is obtained with the help
of millions of sensors, manual monitoring is ineffective and time
consuming, as well as highly unlikely to be able to capture all
violations (Lavin and Ahmad 2015). Thus, the development of
powerful new automated methods for the early detection of
anomalies in streaming signals is very timely, with far-reaching
benefits.

This article makes three fundamental contributions to
anomaly detection in streaming nonstationary environments.
First, we propose a framework that provides early detection
of anomalies within a large collection of streaming time-series
data. We show that the proposed algorithm works well even
in the presence of noisy signals and multimodal distributions.
Second, we propose an approach for dealing with nonstationary
environments (also known as “concept drift” in the machine
learning literature). We reduce the collection of time series to
a two-dimensional feature space, and then apply a bivariate
two-sample nonparametric test to detect any significant change
in the feature distribution. The asymptotic normality of the
test allows us to bypass computationally intensive resampling
methods when computing critical values. Third, we use various
datasets to demonstrate the wide applicability and usefulness of
our proposed framework to several application domains.
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Fiber optic sensing technology can be used to detect unusual,
critical events such as power cable faults (Jiang and Sui 2009),
electrical short circuits (Krohn, MacDougall, and Mendez
2000), gas or oil pipeline leakages (Yoon et al. 2011; Nikles
2009), intruders to secured premises (Nikles 2009), etc. For
example, a sensor cable may be attached to a fence or buried
along a facility’s perimeter in soil or concrete, and can detect
intrusion attacks such as climbing or cutting a fence, or walking,
running or crawling along a facility’s perimeter (Catalano
et al. 2014). A light signal pulsated through the cable is easily
disturbed by changes in the physical environment, such as
the temperature, strain, or pressure. Thus, changes in the
intensity, phase, wavelength or transit time of light in the fiber
may indicate intrusions. Similarly, sensor cables can monitor
temperature profiles along gas and oil pipelines, allowing the
detection of leakages (Krohn, MacDougall, and Mendez 2000).
Each point of the cable acts as a sensor and generates a time
series. Figure 1 shows the multivariate time series obtained
using a fiber optic cable. (As the dataset contains commercially
sensitive information, the actual application is not given here).

Our aim in this work is to identify the locations of unusual
critical events as soon as possible. We propose an algorithm
which has the ability to (a) deal with streaming data; (b) assist
in the early detection of anomalies; (c) deal with large amounts
of data efficiently; (d) deal with nonstationary data distributions;
and (e) deal with data which may have multimodal distributions.

Section 2 presents the background work on anomaly detec-
tion for temporal data, and the use of EVT in anomaly detection.
Section 3 describes the new framework for the detection of
anomalies in streaming data. It also proposes a way of handling
nonstationary environments. Some simulations illustrating the
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Figure 1. Multivariate time series plot of a dataset obtained using a fiber optic cable. Axis “Cable”represents individual points of the sensor cable. There are 640 time series
each with 1459 time points. Yellow corresponds to low values and black to high values. The black region near the upper endpoint of the cable (around 350–500) indicates
the presence of an anomalous event (e.g., intrusion attack, gas pipeline leak, etc.) that has taken place during the 500–1300 time period.

method are presented in Section 4. An application of the pro-
posed framework is given in Section 5. Section 6 concludes the
article.

2. Background

2.1. Types of Anomalies in Temporal Data

The problems of anomaly detection for temporal data are 3-
fold: (a) the detection of contextual anomalies within a given
series; (b) the detection of anomalous subsequences within a
given series; and (c) the detection of anomalous series within
a collection of series (Gupta et al. 2014).

Contextual anomalies within a given time series are single
observations that are surprisingly large or small, independent of
the neighboring observations. Figure 2(a) provides an example.
This is a well-known problem and has been addressed by many
researchers in data science (Hayes and Capretz 2015). Burridge
and Taylor (2006) called these “additive outliers” and proposed
an algorithm for their detection using EVT.

In contrast, when considering the detection of anomalous
subsequences within a given time series, the primary focus is
not on individual observations, but on subsequences that are
significantly different from the rest of the sequence. An exam-
ple is given in Figure 2(b). Both these problems of detecting
anomalous subsequences or additive outliers can be addressed
either as univariate (Bilen and Huzurbazar 2002) or multivariate
problems (Riani, Atkinson, and Cerioli 2009; Galeano, Peña,
and Tsay 2006; Peña and Prieto 2001). The algorithm proposed
by Schwarz (2008) using EVT is also capable of detecting both
types of outliers, and is derived from the work of Burridge and
Taylor (2006).

The final setting, the detection of anomalous series within
a collection of series, is the primary focus of this article. Fig-
ure 2(c) provides an example of this scenario. Very little atten-
tion has been paid to this problem relative to the other two
problem settings. An exception is Hyndman, Wang, and Laptev

(2015) who proposed a method using principal component
analysis applied to time series features, together with highest
density regions and α-hulls, to identify unusual time series in
a large collection of time series. The recent work of Wilkinson
(2018) also has the capability to address problems of this nature.

2.2. Streaming Data Challenges

Approaches to the problem of anomaly detection for temporal
data can be divided into two main scenarios: (1) batch process-
ing and (2) data streams (Faria et al. 2016; Luts, Broderick, and
Wand 2014). With batch processing, as in Hyndman, Wang, and
Laptev (2015) and Wilkinson (2018), it is assumed that the entire
dataset is available prior to the analysis, and the aim is to detect
all of the anomalies present.

The streaming data scenario poses many additional chal-
lenges, due to its complex nature and the way that the data
evolve over time. Challenges include the large volume and high
velocity of streaming data, the presence of very noisy signals,
and nonstationary data distributions (or “concept drift”). The
latter makes it difficult to distinguish between new “typical”
behaviors and anomalous events. Addressing this issue requires
the detecting algorithm to be able to learn from and adapt to the
changing conditions. These challenges have made it difficult for
the existing batch scenario approaches to provide early detection
of anomalies in the streaming data context (Faria et al. 2016).

2.3. Extreme Value Theory for Anomaly Detection

Our proposed framework is based on extreme value theory
(EVT), a branch of probability theory that relates to the statisti-
cal behavior of extreme order statistics (Galambos, Lechner, and
Simiu 2013).

Let X = {x1, x2, . . . , xm} be a sequence of independent
and identically distributed random variables with cumulative
distribution function (CDF) F and density function f = F′. Let
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Figure 2. Different types of anomalies in temporal data. In each plot anomalies are represented by red color and black color is corresponding to the typical behavior.

Xmax = max(X) and xi ∈ �. The distribution of Xmax can be
investigated by taking several random samples of size m from a
given distribution, recording the maximum of each sample, and
constructing a density plot of the maxima. A similar approach
can be used for the distribution of the minimum. Figure 3
(reproduced from Hugueny 2013, p. 87) shows the empirical
distributions of minima and maxima for the standard Gaussian
distribution (left), and of maxima for the standard exponential
distribution (right) for series of sizes m. Each density plot is
based on 106 data points. Consider the case of m = 1, where
we observe only one data point from f in each trial. The corre-
sponding density plot approximates the generative distribution
f , as the maximum of a singleton set {x} is simply x. However,
the density plots for maxima move to the right as m increases,
implying that the expected location of the sample maximum
on the x-axis increases as more data are observed from f . Let
H+ denote the distribution function of Xmax. This is termed the
extreme value distribution (EVD), as it describes the expected
location of the maximum of a sample of size m generated from
f (Clifton, Hugueny, and Tarassenko 2011). The Fisher–Tippett
theorem (Fisher and Tippett 1928), which is the basis of classical
EVT, explains the possibilities for this H+.

The following expression of the theorem has been adapted
from Theorem 3.2.3 of Embrechts, Klüppelberg, and Mikosch
(2013, p. 121); the notation has been changed for consistency.

Theorem 1 (Fisher–Tippett theorem, limit laws for maxima).
If there exists a centering constant dm(∈ �) and a normalizing
constant cm(> 0), and some nondegenerate distribution func-
tion H+ (“+” refers to the distribution of maxima) such that
c−1

m (Xmax − dm)
d−→ H+, then H+ belongs to one of the three

distribution function types: Fréchet Φ+
α (x), Weibull Ψ +

α (x), or
Gumbel Λ+(x).

Embrechts, Klüppelberg, and Mikosch (2013) discussed
some properties that assist in deciding the maximum domain

of attraction (MDA) of X. If f has a truncated tail, such as
the uniform or beta distribution, then it is in the MDA of the
Weibull distribution. If f has an infinite tail that obeys the power
law, then it is in the MDA of the Fréchet distribution. Examples
include Pareto, F, Cauchy and log-gamma distributions. On
the other hand, if f has an exponentially decaying tail, such as
the exponential, gamma, normal, or log-Normal distributions,
then it is in the MDA of the Gumbel distribution. Interested
readers are referred to the work of Embrechts, Klüppelberg, and
Mikosch (2013) for a detailed discussion of the characterization
of the three classes: Fréchet, Weibull, and Gumbel.

2.3.1. Existing Work for Anomaly Detection Based on EVT
The literature to date has mostly defined anomalies in terms
of either distance or density. When anomalies are defined in
terms of distance, one would expect to see relatively large sep-
arations between typical data and the anomalies. Burridge and
Taylor (2006), Schwarz (2008), and Wilkinson (2018) provided
a few examples of this approach where observations with large
nearest neighbor distances are defined as anomalies. Within this
framework, the “spacing theorem” (Schwarz 2008) in EVT has
been used in the model building process. In contrast, defining
an anomaly in terms of the density of the observations means
that an anomaly is an observation that has a very low chance
of occurrence. The work of Perron and Rodríguez (2003), on
which the method of Burridge and Taylor (2006) was based,
mentioned the possibility of using EVT and nonparametric esti-
mates of tail behavior, but did not provide any detailed discus-
sion. Sundaram et al. (2009), Clifton, Hugueny, and Tarassenko
(2011), and Hugueny (2013) provided a few examples where
EVT has been used to find observations that have extreme
densities. The main focus of these methods was on defining a
threshold for the density of the data points such that it distin-
guishes between anomalies and typical observations.
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Figure 3. Empirical distributions of 106 minima and maxima for the standard Gaussian distribution (left), and of maxima for the standard exponential distribution (right).
(Reproduced from Hugueny 2013, p. 87.)

It can be seen from Theorem 1 that the EVD is parameterized
implicitly by m, the size of the sample from which the extrema
is taken. Thus, different values of m can yield different EVDs
(Figure 3). Clifton, Hugueny, and Tarassenko (2011) proposed
a numerical method for selecting a threshold for identifying
anomalous points when m ≥ 1. In their “� transform method,”
Clifton, Hugueny, and Tarassenko (2011) defined the “most
extreme” of a set of m samples X = {x1, x2, . . . , xm}, distributed
according to pdf f (x), as the most improbable with respect to
the distribution; that is, arg minx∈X[f (x)].

3. Methodology

This section proposes a new framework for anomaly detec-
tion in multivariate streaming time series based on the �-
transformation method proposed by Clifton, Hugueny, and
Tarassenko (2011). The proposed framework involves: (1)
building a model of the typical behavior of a given system;
and (2) testing newly arrived data against the model of typical
behavior. These two phases represent the off-line (Algorithm 1)
and online (Algorithm 2) phases (Faria et al. 2016) of the
framework, respectively. Our proposed method is intended to
overcome two limitations of the proposals of Hyndman, Wang,
and Laptev (2015) and Wilkinson (2018).

First, the method proposed by Hyndman, Wang, and Laptev
(2015) identifies the most unusual time series within a large
collection of time series, whether or not any of them are truly
anomalous. However, in our applications, an alarm should be
triggered only in the presence of an anomalous event. Defining
a boundary of typical behavior and monitoring new data points
that land outside that boundary allows us to overcome this
limitation as it now triggers an alarm only in the presence of
an observation that lands outside the anomalous boundary.

Second, the “HDoutliers” method proposed by Wilkinson
(2018) relies on the assumption that the nearest-neighbor dis-
tances of anomalous points will be significantly higher than
those between typical data points. However, some applications
do not exhibit large gaps between typical observations and
anomalies. Instead, the anomalies deviate from the majority,

or the region of typical data, gradually, without introducing
a large distance between typical and anomalous observations.
This is the case, for example, where the time series are highly
dependent.

Consider a temperature-sensing fiber optic cable attached to
a gas pipeline for the detection of gas leakages. The escape of
pressurized gas changes the temperature not only at the point of
the leak, but also at neighboring points, with a gradually decay-
ing magnitude. Consequently, the observed time series will be
highly dependent, with multiple anomalous points that deviate
gradually from the typical behavior, without introducing a large
distance between the anomalies and the typical observations.

Figure 4 illustrates this point, with panel (c) showing a large
collection of time series obtained via independent sensors. For
each series, we compute a vector of features which are then
reduced to two principal components, plotted in panel (a) (The
process of generating a feature space from a collection of time
series is discussed in Algorithm 1). The two isolated points
shown in black correspond to two anomalous series, and have
relatively large nearest-neighbor distances compared to the typ-
ical observations shown in yellow. These large nearest-neighbor
gaps allow the HDoutliers method to identify the two points as
anomalies. In contrast, panel (b) represents a feature space that
corresponds to a collection of time series obtained via sensors
that are dependent. The corresponding multiple parallel time
series plot is given in panel (d). In the example on the right,
Figure 4(b), the anomalous points are not widely separated
from the typical points in the feature space. As the HDoutliers
algorithm identifies anomalies only using the nearest neighbor
distances, and there is no substantial difference between the
anomalous points and the typical points, it would fail to detect
these anomalous points. However, with respect to density we
can see a clear separation between the anomalous points (cor-
responding to the low density region) and the typical points
(which correspond to higher density regions) (Figure 4(b)).
Therefore, density based approaches are more appropriate for us
to choose a suitable anomalous threshold on the feature space.

Thus, we assume that anomalies have very low density values
compared to those of typical points. To determine the appropri-
ate anomalous density threshold, we use EVT taking account
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of the number of observations in order to properly control the
probability of false positives (Clifton, Hugueny, and Tarassenko
2011).

Our proposed method requires a representative dataset of
the system’s typical behavior. Since, by definition, anomalies are
rare in comparison to a system’s typical behavior, the majority
of the available data must represent the given system’s typical
behavior. It is not necessary to have representative samples of all
possible types of typical behaviors of a given system in order for
the proposed algorithm to perform well. The principal idea is to
have a warm-up dataset from which to obtain starting values of
the parameters of the decision model.

3.1. Algorithm of the Proposed Framework for Streaming
Data

Algorithm 1 (Off-line phase: Building a model of the typical
behavior).

Input: Dnorm, a collection of m time series (which can be of
either equal or different lengths) that are generated under the
typical system behavior.

Output: t∗, anomalous threshold.

1. Extract k features (similar to Fulcher 2012 and Hyndman,
Wang, and Laptev 2015) from each time series in Dnorm.
This produces an m × k feature matrix, M. Each row of
M corresponds to a time series and each column of M cor-
responds to a feature type. This feature-based representa-
tion of time series has many advantages. In this work our
features have ergodic properties and are intended to mea-
sure attributes associated with nonstationarity of the time
series (Kang, Hyndman, and Li 2018). Therefore, our pro-
posed framework is well-suited for a large diverse set of
time series. Further, a feature based representation of time
series allows us to compare time series of different lengths
and/or starting points, as we transform time series of any
length or starting point into a vector of features of fixed
size. It also reduces the dimension of the original multi-
variate time series problem via features that encapsulate the
dynamic properties of the individual time series. Of the 14
features (k = 14) used in this work, eight (mean, variance,
changing variance in the remainder (lumpiness), level shift
using a rolling window (lshift), variance change (vchange),
strength of linearity (linearity), strength of curvature (cur-
vature), and strength of spikiness (spikiness) were selected
from Hyndman, Wang, and Laptev (2015). Following Fulcher
(2012), the remaining five features were defined as follows:
the burstiness of the time series (Fano factor; BurstinessFF),
minimum, maximum, the ratio of the interquartile mean to
the arithmetic mean (rmeaniqmean), the moment, and the
ratio of the means of the data that are below and above the
global mean (highlowmu). Figure 5 provides a feature-based
representation of the time series of Figure 1.

2. Since different operations produce features over different
ranges, normalize the columns of the resulting m × k feature
matrix, M. Let M∗ represent the resulting m × k feature
matrix.

3. Apply principal component analysis to the feature matrix M∗.

4. Define a two-dimensional space using the first two prin-
cipal components (PC) from step 3 (similar to Hyndman,
Wang, and Laptev 2015 and Kang, Hyndman, and Smith-
Miles 2017). Hereafter, the resulting two-dimensional PC
space is referred to as the 2D PC space. This 2D PC space
now contains m instances. Each instance on this 2D PC space
corresponds to a time series in Dnorm. We selected only the
first two PCs to maximize our chances of obtaining insights
via visualization (Kang, Hyndman, and Smith-Miles 2017).

5. Estimate the probability density of this 2D PC space using
kernel density estimation with a bivariate Gaussian kernel
(similar to Luca et al. 2014 and Cuppens et al. 2014). Let f̂2
denote the estimated probability density function.

6. Draw a large number N of extremes (as defined in Clifton,
Hugueny, and Tarassenko 2011) from f̂2, and form an empir-
ical distribution of their densities in the �-transform space,
where the �-transform of the extrema x is defined as

�[f2(x)]=
{

(−2ln(f2(x)) − 2ln(2π))1/2, f2(x) < (2π)−1

0, f2(x) ≥ (2π)−1.

The number of instances of which we consider the extremes is
m, that is, the number of time series in the original collection
Dnorm.

7. Fit a Gumbel distribution to the resulting �[f2(x)] values
(Clifton, Hugueny, and Tarassenko 2011; Hugueny 2013).
The Gumbel parameter values are obtained via maximum
likelihood estimation.

8. Determine the anomalous threshold using the corresponding
univariate CDF, Fe

2 in the transformed �-space and thereby
define a contour t∗ in the 2D PC space that describes where
the most extreme of the m typical samples generated from f2
will lie, to some level of probability (e.g., 0.999) (Farrar and
Worden 2012).

As recommended by Jin and Agrawal (2007), a sliding win-
dow model is used to handle the streaming data context. Given
w and t, which represent the length of the sliding window and
the current time point, respectively, our aim is now to identify
time series that are anomalous relative to the system’s typical
behavior. The sliding window keeps moving forward with the
current time point, maintaining its fixed window length w. As a
result, the model ignores all data that were received before time
t − w. Furthermore, each data element expires after exactly w
time steps.

Algorithm 2 (Online phase: Testing newly arrived data).
Input: W[t − w, t], the current sliding window with m time

series. t∗, anomalous threshold from Algorithm 1.
Output: A vector of indices of the anomalous series within

the time window W[t − w, t]
1. Extract k features (the features defined in step 1 of Algo-

rithm 1) from each of the m time series in W[t − w, t]. This
produces an m × k feature matrix Mtest.

2. Project this new feature matrix, Mtest, on to the same the 2D
PC space of the typical data that was built using the time series
in Dnorm. Let Y = y1, y2, . . . , ym represent data points that
are obtained by projecting Mtest on this 2D PC space.

3. Calculate the probability density values of Y with respect to
f̂2 in step 5 of Algorithm 1.
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Figure 4. Left panel corresponding to a collection of time series obtained via independent sensors. Right panel corresponding to a collection of time series obtained via
sensors that are not independent to one another. Black: high values; yellow: low values. Black dots/lines/shapes are corresponding to anomalous event.

Figure 5. Feature based representation of the time series in Figure 1. There are 640 time series (m = 640). Each plot is corresponding to a feature type extracted from the
640 time series (k = 14). Almost all the features have captured the unusual event near the right endpoint of the cable (around 350–550).

4. Find any yj that satisfies f̂2(yj) < t∗, where j = 1, 2, . . . , m,
and mark the corresponding time series (if any) as anomalous
within the time window W[t − w, t].

5. Repeat Steps 1–4 of the online phase for every new time
window that is generated by the current time point, t.

3.2. Handling Nonstationary Environments

The distribution of the typical behavior of a given system can
change over time due to many reasons such as sensor drift, cyclic
variations, seasonal changes, lack of maintenance as sensors are

deployed in harsh, unattended environments, etc. (Moshtaghi
et al. 2014; O’Reilly et al. 2014). In such situations, current
behavior might not be sufficiently representative of future
behavior (Chandola, Banerjee, and Kumar 2009). Therefore,
it is important that our algorithm is adaptive and robust against
these changes of the typical behavior over time. Cuppens et al.
(2014) highlight the importance of this and mention it as a
possible extension of their proposed algorithm.

In the statistics literature, this is known as nonstationar-
ity, and it can occur in many different forms. According to
O’Reilly et al. (2014), if a system has a stationary data dis-
tribution, the model from which to identify anomalies only
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needs to be constructed once. However, in an environment with
a nonstationary data distribution, it is necessary to regularly
update the model to account for changes in the data distribu-
tion. In the econometrics literature, these nonstationary envi-
ronments are sometimes classified as either “structural breaks”
or “time-varying” evolutionary change (Rapach and Strauss
2008). In the machine learning literature, this phenomenon is
known as “concept drift,” and Gama et al. (2014) and Faria et al.
(2016) describe four classes: sudden, incremental, gradual, and
reoccurring.

According to Gama, Sebastião, and Rodrigues (2013), there
are two approaches that can be used to adapt models to deal with
nonstationary data distributions: blind and informed. Under
the blind approach, the decision model is updated at regular
time intervals without considering whether a change has really
occurred or not, as in Zhang et al. (2010). This is done under the
assumption that the data distribution is nonstationary (O’Reilly
et al. 2014). In contrast, the informed approach updates the
decision model only if a change in the data distribution is
detected (Faria et al. 2016). Under this approach the goal is to
identify a time at which the data distribution changes enough to
justify a model update and thereby reduce the computational
complexity of the algorithm. In O’Reilly et al. (2014) these
two approaches are termed “constant update” and “detect and
retrain,” respectively. According to Rodríguez and Kuncheva
(2008), the former strategy is useful with gradual changes while
the latter is useful with abrupt changes. The informed approach
proposed by Zhang et al. (2010), updates the model of the typical
behavior only when an outlier or boundary point is detected,
under the assumption that they can make a significant impact on
the previous model of typical behavior. However, an outlier or
boundary point may not always cause a significant change in the
data distribution. Moshtaghi et al. (2014) declared a change in
the typical behavior when the number of consecutive anomalies
detected by the algorithm exceeds a predefined threshold. Since
this involves a user defined threshold, it is highly subjective and
does not involve a valid probabilistic interpretation.

Following the definition of Dries and Rückert (2009), we
propose an informed approach for early detection of non-
stationarity that uses statistical distance measures to measure
the distance between the distribution of the 2D PC space
generated from the collection of typical time series in which the
latest model is defined and that generated from the typical series
in the current test window. This allows us to detect whether
there is any significant difference between the latest typical
behavior and the new typical behavior. In an occurrence of a
significant change in the data distribution, an update to the
model is done using the more recent data under the assumption
that data are temporally correlated, with correlation increasing
as temporal distance decreases (O’Reilly et al. 2014).

Algorithm 3 (Detection of non-stationarity).

Input: w, length of the moving window. Dt0 , collection of m
time series of length w that are generated under the latest typical
behavior of a given system in which the current decision model
is defined. W, test stream.

Output: A vector of indices of the anomalous series in each
window.

1. Estimate ft0 , the probability density of the 2D PC space
defined by Dt0 , using kernel density estimation with a
bivariate Gaussian kernel.

2. Let W[t −w, t] be the current test window with m time series
of length w. Extract k features (the same features as were
defined in step 1 of Algorithm 1) from each of these m time
series in W[t − w, t]. This produces an m × k feature matrix,
Mtest.

3. Project Mtest, onto the 2D PC space of Dt0 . Let Y t represent
the newly projected data points on the 2D PC space that
correspond to W[t − w, t].

4. Identify the data points on the 2D PC space that correspond
to the typical series in W[t − w, t], using the anomalous
threshold (output of Algorithm 1) defined using Dt0 . Let
Y tnorm(⊆ Y t)} represent the set of data points in 2D PC
space that correspond to the typical series of W[t − w, t], and
W[t − w, t]norm(⊆ W[t − w, t]) be the corresponding set of
typical time series in W[t − w, t].

5. Let p be the proportion of anomalies detected in W[t − w, t].
If p < p∗, where p∗ > 0.5, go to step (a); otherwise, go to step
(b). In the examples given in this manuscript, p∗ is set to 0.5,
assuming the simple “majority rule.” However, the user also
has the option of selecting a cutoff point other than the default
0.5 to maximize the accuracy or incorporate misclassification
costs.

a. Estimate ftt , the probability density function of Y tnorm , using
kernel density estimation with a bivariate Gaussian kernel.
Let f̂tt denote the estimated probability density function.

b. Estimate ftt , the probability density function of Y t , using
kernel density estimation with a bivariate Gaussian kernel.
Let f̂tt denote the estimated probability density function. In
the case of a “sudden” change, all (or most) of the points in
Y t may lie outside the anomalous boundary, defined by Dt0 .
As a result, all (or most) of those points in Y t will be marked
as anomalies, meaning that the majority (> 0.5) is now rep-
resented by the detected anomalies. This could indicate the
start of a new typical behavior. Thus, it is recommended in
this situation that the decision model be updated using all of
the series in the current window (instead of only the typical
series detected, which now represent the minority), thereby
allowing the model to adapt to the changing environment
automatically. This situation is elaborated further using the
synthetic datasets given in Figures 7–9 in Section 4.2.

6. Using a suitable distance measure (e.g., the Kullback–Leibler
distance, the Hellinger distance, the total variation distance,
or the Jensen–Shannon distance), test the null hypothesis
H0 : ft0 = ftt . Since the distributions of these distance
measures are unknown, bootstrap methods can be used to
determine critical points for the test (Anderson, Hall, and
Titterington 1994). However, these computationally intensive
resampling methods may prevent changes in distributions
from being detected quickly, which is a fundamental require-
ment of most of the applications of our streaming data anal-
ysis. Therefore, following Duong, Goud, and Schauer (2012),
we test the null hypothesis H0 : ft0 = ftt here by using
the squared discrepancy measure T = ∫ [ft0(x) − ftt (x)]2dx,
which was proposed by Anderson, Hall, and Titterington
(1994). Since the test statistic based on the integrated squared
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distance between two kernel based density estimates of the
2D PC space is asymptotically normal under the null hypoth-
esis, it allows us to bypass the computationally intensive
calculations that are used by the usual resampling techniques
for computing the critical quantiles of the null distribution.

7. If H0 is rejected and p < p∗, Dt0 is set to W[t − w, t]norm. If
H0 is rejected and p > p∗, Dt0 is set to W[t − w, t].

8. Repeat steps 1–7 for every new time window, that is, gener-
ated by the current time point t.

4. Experiments

The effectiveness of the proposed frameworks for anomaly
detection in the streaming data context is first evaluated
using synthetic data (these datasets are available online in
supplemental materials). When generating these synthetic
datasets, care has been taken to imitate situations such as
applications with multimodal typical classes, different patterns
of non-stationarity, and noisy signals. However, we acknowledge
that the set of examples that we have used for this discussion
is relatively limited, meaning that these examples should be
viewed only as simple illustrations of the proposed algorithms.
We hope that the set of examples will grow over time as the
performances of the proposed algorithms are investigated
further.

We also performed an experimental evaluation of the
accuracy of our proposed framework. All the experiments
(Figures 6–10) were evaluated using common measures for
binary classification such as accuracy, false positive (FP)
rate, and false negative (FN) rate. According to Hossin and
Sulaiman (2015), these measures are not enough to measure the
performance of the binary classification tasks on imbalanced
datasets. Since our example datasets are highly imbalanced
and are negatively dependent (i.e., containing many more
typical points than anomalous points), we also recorded two
additional measures which are recommended for imbalanced
binary classification problems: optimized precision (OP)
which remains relatively stable even in the presence of large
imbalances in the data (Ranawana and Palade 2006), and
positive predictive value (PPV) which measures the probability
of a positively predicted pattern actual being positive (outlier).
Very low PPV values can be observed for certain rolling
windows in Figures 6(d)–10(d), as those windows are free
from true positives (anomalous events) and that lead the
PPV value to become zero for the corresponding moving
windows.

4.1. Detection of Anomalies in the Streaming Data
Scenario

Our leading example shown in Figure 6(a) aims to demonstrate
the application of Algorithms 1 and 2. In this example, it is
assumed that the typical behavior of the given system has a
stationary data distribution and does not change over time. In
other words it is assumed that the training set is drawn from
a stationary data distribution and the testing stream will also
be drawn from the same distribution. Therefore, the dataset is
generated using a Gaussian mixture of two components with

different means but equal variance such that the 2D PC space
generated by the collection of series consists of a bi-modal
typical class throughout the entire period. We make the anomaly
detection process more challenging by generating these time
series with noisy signals. The corresponding side view of the
dataset is given in Figure 6(b), and demonstrates both the nature
of the noisy signals and the progress and structure of the anoma-
lous event in the 400–1000 time period. Due to the assump-
tion of stationarity, the anomalous threshold was set only once
at Fe

2 = 0.999 using W[1, 150]. The anomalies detected in
window W[151, 300] are marked at t = 300 in Figure 6(c),
then the sliding window is moved one step forward to test for
anomalies in W[152, 301]. This process is repeated for every
new time window generated by sliding the window one step
forward. Over time, the grid in Figure 6(c) is filled gradually
from left to right with the output produced by each sliding
window.

Since the anomalous event in this dataset is placed at
t = 400, ideally we would expect Algorithm 1 and 2 to detect it
when the sliding window reaches W[250, 400]. In Figure 6(c),
the anomalies detected are marked in black. As expected,
Algorithms 1 and 2 were able to detect the anomalous event
right from the beginning; that is, as soon as the moving window
reaches W[250, 400]. However, even though the anomalous
event actually ends at t = 1000, as seen in Figure 6(a), the
resulting output in Figure 6(c) shows that it generates an alarm
until t = 1150. This is due to the use of a moving window
of length 150, which means that the sliding window covers at
least part of the anomalous event until it reaches W[1000, 1149].
Thus, the proposed algorithm generates an alarm until it reaches
a window, that is, completely free of the anomalous event; in this
case, it stops generating an alarm once it reaches W[1001, 1151].
This behavior of the proposed algorithm increases the FP rate
immediately after the end of any anomalous event. However,
in applications such as intrusion attacks to secured premises,
gas/oil pipeline leakages, etc., there is no harm in generating an
alarm immediately after an anomalous event ends, as this helps
to capture the attention of the people who are responsible for
taking the necessary action.

A sensor cable attached to a security fence for detecting
intruders is one plausible application that could give rise to this
type of dataset. For example, if one half of the fence is exposed to
sea wind and the other half is protected by trees and buildings,
this will give rise to two typical behaviors for the two halves
of the same cable, as the environmental behavior can have an
impact on the internal structure of the sensor cable. Similar
behavior can be expected from a fiber optic cable laid along
a stream for detecting water contamination. The movement
of the water can have an impact on the internal structure of
the sensor cable, thereby giving rise to a collection of series
with multimodal typical classes at different locations along the
sensor cable. For all the examples discussed under Section 4, the
average accuracy is calculated by taking the ratio of the number
of correctly classified series to the total number of series of each
moving window generated by the current time point. As can be
seen from Figure 6(d), our algorithm shows a 0.992 accuracy
level on average for this dataset (Optimized precision is 0.9904),
while maintaining low FP (0.0076 on average) and FN (0.000 on
average) rates.
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Figure 6. Multimodal typical classes but no nonstationarity. Sliding window length = 150 time points. To initiate the algorithm, W[1, 150] is considered as a representative
sample of the typical behavior. (a) Multivariate time series plot of the collection of time series (m = 300). The upper half of the figure (dark yellow) corresponds to one
typical class, while the lower half of the figure (bright yellow) corresponds to the other typical class. (b) Multivariate time series plot (side view of panel (a)). (c) The output
produced by the sliding window approach. The anomalous threshold was set at Fe

2 = 0.999. (d) Performance of the proposed framework (without any adjustments to
nonstationary environments). Overall optimized precision is 0.9904. Minimum accuracy is 0.956 (at t = 887). Maximum FP rate is 0.044 (at t = 887). Maximum FN rate is
0.014 (at t = 520).

One-class support vector machine (OCSVM) is a commonly
used method in anomaly detection research (Ma and Perkins
2003; Mahadevan and Shah 2009; Rajasegarar et al. 2010).
Raskutti and Kowalczyk (2004) and Zhuang and Dai (2006)
have proposed improved versions of OCSVM for imbalanced
data where the minority class (abnormal class) is specifically
targeted in the classification. However, if minorities are difficult
or expensive to obtained and defined OCSVM for imbalanced
data is not among the best candidates for anomaly detection due
to unavailability of enough instances from the abnormal class
to properly train an OCSVM. Further, Luca, Karsmakers, and
Vanrumste (2014) highlight some limitations with OCSVM
when more than one data point is observed that involves
multiple hypothesis testing. Since our method does not have
a direct competitor, we compared our results with HDoutliers
algorithm. In each test phase HDoutliers algorithm was applied
to the high-dimensional space generated by the 14 features
introduced in step 1 of Algorithm 1. For this dataset in
Figure 6(a) it gives a 0.988 accuracy level on average. The
reported OP of 0.5356 is much lower than that of our method
(Figure 6).

4.2. Anomaly Detection With Nonstationary
Environments

We now investigate the performances of Algorithm 3 together
with Algorithms 1 and 2 using four synthetic datasets. Following
Gama et al. (2014), these synthetic datasets are generated such
that they exhibit the four different types of nonstationarity: sud-
den (a sudden switch from one distribution to another), gradual
(trying to move to the new distribution gradually while going
back and forth between the previous distribution and the new

distribution for some time), reoccurring (a previously seen dis-
tribution reoccurs after some time), and incremental (there are
many, slowly changing intermediate distributions in between
the previous distribution and the new distribution). The corre-
sponding graphical representations of these four cases are given
in Figures 7–10, respectively. In Figure 7(a), the anomalous
event is placed in the 150th to 170th series over the time period
from t = 450 to t = 475. In Figure 8(a), the anomalous event
is placed in the 150th to 170th series over the time period from
t = 850 to t = 875. In the remaining cases (Figures 9 and 10),
the anomalous event is placed in the 150th to 170th series over
the time period from t = 825 to t = 875. In all of these cases,
nonstationary behavior starts to occur from t = 300.

In the first three cases, namely sudden (Figure 7), gradual
(Figure 8), and reoccurring (Figure 9), when the sliding window
reaches the t = 300 time point (i.e., W[201, 300]), the decision
model declares almost all points in that window as anomalies.
As a result, p, the proportion of outliers detected in W[201, 300],
exceeds the user-defined threshold p∗ (set here to 0.5, based on
the simple “majority rule”). Following Step 5(b) of Algorithm 3,
the decision model is now updated using all of the series in that
window, rather than just the detected “typical” series which now
represent the minority. This step allows the decision model to
adjust to the new typical behavior if it continues to exist for
a given period of time. As can be seen in plots (c) and (d) of
Figures 7–9, the decision model initially declares almost all of
the series as anomalies when the non-stationarity starts to occur,
but ceases to claim them as anomalies once the new pattern is
established and continues to exist. After the decision model has
adapted fully to the new distribution, it again starts to produce
results with a high level of accuracy, while maintaining low levels
of FP and FN rates.
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Figure 7. “Sudden”nonstationarity. (a) Multivariate time series plot of the collection of time series (m = 300). “Sudden”nonstationarity starting from t =300. (b) Multivariate
time series plot (side view of panel (a)). (c) The output produced by the sliding window approach. In the test phase the anomalous threshold is updated for nonstationary
behavior according to Algorithm 3. (d) Performance of the proposed framework. Overall optimized precision is 0.9234. Minimum accuracy is 0.0167 (at t = 301). Maximum
FP rate is 0.983 (at t = 301). Maximum FN rate is 0.0033 (at t = 450).

Figure 8. “Gradual” nonstationarity. (a) Multivariate time series plot of the collection of time series (m = 300). “Gradual” nonstationarity starting from t =300. (b)
Multivariate time series plot (side view of panel (a)). (c) The output produced by the sliding window approach. In the test phase the anomalous threshold is updated
for nonstationary behavior according to Algorithm 3. (d) Performance of the proposed framework. Overall optimized precision is 0.9601. Minimum accuracy is 0.0167 (at
t = 301). Maximum FP rate is 0.983 (at t = 301). Maximum FN rate is 0.04 (at t = 850).

In contrast, none of the sliding windows in our analysis of
the dataset given in Figure 10(a) declare more than half of the
series to be outliers. Thus, the model updating process is done
based on step 5(a) of Algorithm 3 using only the typical series
detected for each window. As can be seen in Figure 10(d), our
proposed framework (Algorithms 1–3), shows an average level
of accuracy of 0.969 (overall optimized precision 0.953) for
the entire period, while maintaining low FP (0.031 on average)

and FN (0.000 on average) rates during the time period under
consideration.

Figure 11 illustrates the change in distribution over time via
the p-value of the hypothesis test H0 : ft0 = ftt explained in
Step 6 of Algorithm 3 (top panel) and the anomalous threshold
(bottom panel). In all these cases, Algorithm 3 is able to detect
the occurrence of the non-stationarity right from the beginning
at time point t = 300, while maintaining a very low FP rate
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Figure 9. “Reoccurring” type nonstationarity. (a) Multivariate time series plot of the collection of time series (m = 300). “Reoccurring” type nonstationarity starting from
t = 300. (b) Multivariate time series plot (side view of panel (a)). (c) The output produced by the sliding window approach. In the test phase the anomalous threshold is
updated for nonstationary behavior according to Algorithm 3. (d) Performance of the proposed framework. Overall optimized precision is 0.9426. Minimum accuracy is
0.0067 (at t = 300). Maximum FP rate is 0.993 (at t = 300). Maximum FN rate is 0.0633 (at t = 825).

Figure 10. “Incremental” nonstationarity. (a) Multivariate time series plot of the collection of time series (m = 300). “Incremental” nonstationarity starting from t = 300.
(b) Multivariate time series plot (side view of panel (a)). (c) The output produced by the sliding window approach. In the test phase the anomalous threshold is updated for
nonstationary behavior according to Algorithm 3. (d) Performance of the proposed framework. Overall optimized precision is 0.953. Minimum accuracy is 0.83 (at t = 576).
Maximum FP rate is 0.17 (at t = 576). Maximum FN rate is 0 (at t = 201).

(i.e., claiming the occurrence of nonstationarity when there
is no actual change in the distribution) once the model has
adjusted to the new distribution. As explained in Section 4.2,
the anomalous threshold requires updating only if the null
hypothesis H0 : ft0 = ftt is rejected; that is, if a significant
change in the typical behavior is detected. Thus, our proposed
“informed” approach for the detection of nonstationarity allows
quicker decisions than the “blind” approach, as it removes the
requirement that the decision model be updated at each time
interval.

In all of these examples, the length of the sliding window is
set to 100. In each example, we obtain the initial value for the
anomalous threshold by considering the first window generated
by W[1, 100] as a representative sample of the typical behavior
of the corresponding dataset.

5. Application

We apply our proposed Algorithms 1–3 to datasets obtained
using fiber optic sensor cables attached to a system. (Since the
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Figure 11. Detection of nonstationarity. Top panel: p-value for the hypothesis test H0 : ft0 = ftt . In these examples the significance level is set to 0.1 and is marked by the
horizontal line in each plot. Bottom panel: Anomalous threshold.

data contain commercially sensitive information, this article
does not reveal the actual application). Figure 12(a)–(c) shows
the multiple parallel time series plots of three datasets. Our goal
is to detect these anomalous events (such gas/oil pipeline leak-
ages, intrusion attacks to secured premises, water contaminated
areas, etc.) as soon as they start.

As explained in Section 3, our proposed algorithm requires
a representative sample of the typical behavior of each of these
datasets to obtain a starting value for the anomalous threshold.
However, no representative samples of the corresponding sys-
tems’ typical behaviors are available for these examples. Thus,
we select W[1, 100] for the first two examples (Figure 12(a) and
(b)) and W[1, 50] for the third example (Figure 12(c)) as the
representative sample of the typical behavior to get an initial
value for the anomalous threshold.

Even though no proper representative sample of the typical
behavior was available for any of these cases, our proposed
Algorithm 3 for the detection of nonstationary data distribu-
tions allows the model to adjust to the system’s typical behavior
over time. Figure 13 gives the corresponding p-values for the
hypothesis test H0 : ft0 = ftt explained in Step 6 of Algorithm 3
(top panel) and the anomalous threshold (bottom panel). The
right panel of Figure 12 gives the output from applying Algo-
rithms 1–3. Since there is no “truth” for comparison, graphical
representations are used to evaluate the performances of the
proposed algorithms on these datasets. It can be seen from
Figure 12(d)–(f) that all of the anomalous events have been
captured by the proposed algorithm right from the start. The
resulting outputs also follow the shapes of the actual anomalous
events.

As explained in Section 4.1, here also we observe a hori-
zontal elongation of anomalous events of the resulted outputs
(Figure 12(d)–(f)) as the algorithm produces an alarm until

it reaches a window, that is, completely free of the anomalous
events. Due to this lag effect the anomalous events in the resulted
outputs (Figure 12(d)–(f)) also look wider in comparison to
the corresponding actual anomalous events (Figure 12(a)–(c)).
However, this broadening happens only in the direction of time
and not in the direction of the sensor ID. This lag effect in the
direction of time could be a merit for certain applications such
as detection of intruders into secured premises, as the system
continues to generate an alarm for certain period even after
the actual event that allows to drag the attention of responsible
people for necessary actions.

Although the anomalous events are correctly detected by
our proposed framework, in comparison to Applications 2 and
3 (Figure 12(c) and (d)), Application 1 (Figure 12(a)) shows
some false positives (the isolated extra black stripes). This can
be explained by Theorem 1 and Figure 3. As can be seen in
Figure 12(a), Application 1 contains a small number of time
series (m ≈ 600 time series) in comparison to Applications
2 and 3. According to step 5 of Algorithm 3, in the presence
of non-stationarity, the detected anomalous points are removed
and only the typical points are used to update the anomalous
threshold. If the detected proportion of anomalous series is high
with respect to the total number of series in the collection of
time series, then the new anomalous threshold could be based
on a significantly different EVD (Figure 3) and thereby could
lead to a higher number of false positives. But as m (the number
of series in the collection) increases (as in Applications 2 and
3) the proportion of anomalous series in each window becomes
very small and therefore the change in the EVD is negligible
which reduces the rate of false positives as in Application 2 and
3 (Figure 12(e) and (f)). Therefore, our proposed framework
is particularly well suited for the applications described in Sec-
tion 1, which generate large collections of time series.
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Figure 12. Application (Application 1: m = 640, Application 2: m = 1000, Application 3: m = 2500). Left panel: black: high values; yellow: low values; black shapes are
corresponding to anomalous events. Right panel: black: outliers; gray: typical behavior.

Figure 13. Detection of nonstationarity. Top panel: p-value for the hypothesis test fto = ftt . In these examples the significance level is set to 0.1 and is marked by the
horizontal line in each plot. Bottom panel: Anomalous threshold.

6. Conclusions and Further Work
This article proposes a methodology for the detection of anoma-
lous series within a large collection of streaming time series
using EVT. We define an anomaly here as an observation, that
is, very unlikely given the distribution of the typical behavior
of a given system. We cope with nonstationary data distribu-
tions using sliding window comparisons of feature densities,
thereby allowing the decision model to adjust to the changing
environment automatically as changes are detected. Our pre-
liminary analysis using both synthetic data and data obtained

using fiber optic cables reveals that the proposed framework
(Algorithms 1–3) can work well in the presence of nonstationary
environments and noisy time series from multi-modal typical
classes.

The density estimation in the proposed framework was done
using a bivariate kernel density estimation method. Alternative
methods of density estimation may lead to improved tail estima-
tion, leading to better values for the anomalous threshold. The
test of non-stationarity also depends on the kernel density esti-
mates, and we may not reject stationarity when m is small. Log-
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spline bivariate density estimation (Kooperberg and Stone 1991)
and local likelihood density estimation (Loader 1996) would
be worth considering in attempting to improve tail estimation,
and thereby improve the performance of the algorithm in the
presence of moderate to low values of m. In the current work,
Kolmogorov–Smirnov test for the Gumbel is used to confirm the
goodness of fit (Marshall and Olkin 2007). Alternative methods
as proposed in (Clifton et al. 2014) may guide to better values for
the anomalous threshold in the presence of other sub-classes of
EVT.

The current framework is developed under the assump-
tion that the measurements produced by sensors are one-
dimensional. The rapid advances in hardware technology
has made it possible for many sensors to capture multiple
measurements simultaneously, leading ultimately to a collec-
tion of multidimensional multivariate streaming time-series
data. An important open research problem is to extend our
framework to handle such data. One possibility is to consider
the features extracted from multiple measurements as a point
pattern (Luca, Karsmakers, and Vanrumste 2014; Luca, Clifton,
and Vanrumste 2016; Luca et al. 2018) and then focus on the
problem of identifying the anomalous point patterns generated
by multiple measurements from individual sensors. Another
possibility is to adopt a functional approach where time series of
multiple measurements from individual sensors are represented
by functions and anomalous thresholds are defined over the
function space as in Clifton et al. (2013).

In the current framework, the length of the sliding window
is introduced as a user defined parameter that can be selected
according to the application. Since the proposed framework is
based on the features extracted from individual time series of
a given window, a window size set too small will not be able
to correctly capture the dynamic properties of the time series
and thereby could reduce the performance of the framework. If,
on the other hand, the window is too large, then it will take a
long time to adjust to the new typical behavior in the presence
of non-stationarity. Accordingly, selecting the appropriate input
window size is a trade-off between classification performance
and the time taken to adjust to the new typical behavior. A
possible extension of the proposed framework could involve
ways of optimally selecting the window size to balance this
trade-off.

Supplementary Materials

Data and scripts: Datasets and R code to reproduce all figures in this
article (main.R).

R package oddstream: The oddstream package (Talagala, Hyndman, and
Smith-Miles 2018) consists of the implementation of Algorithms 1–3
as described in this article. Version 0.5.0 of the package was used for
the results presented in the article and is available from Github https://
github.com/pridiltal/oddstream.

R-packages: Each of the R packages used in this article (ggplot2, Wickham
2009; dplyr, Wickham et al. 2017; tibble, Müller and Wickham 2017;
tidyr, Wickham and Henry 2017; reshape, Wickham 2007) are available
online (URLs are provided in the bibliography).
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