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ABSTRACT

We previously generated diverse mathematical functions that are dif-
ficult for optimization algorithms. Represented as 2D contour plots,
each image depicts a ‘blue river’ running through an intricate land-
scape. This paper describes the challenge of constructing an aes-
thetic montage of these images. A survey revealed a spectrum of
tastes, divergent in preference from order to disorder, considering
the structure created by connecting these ‘blue rivers'. A new art-
work, Negentropy Triptych, was created to depict this spectrum by
manually swapping images from a random arrangement, guided by
human eye to enhance or destroy the structure. An optimization
algorithm automates the process, with the results of its efforts to
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emulate the artistic vision presented and discussed. The challenges
faced by the algorithm, despite exploring several objective func-
tions, highlight the difficulties of capturing the goals that a human
decision-maker can easily achieve. Therefore, machine learning of
these goals is a promising future direction.

1. Introduction

This paper describes the creation of an artwork based on mathematical functions, and
the challenge to create a computer algorithm to automate the construction process to
strengthen its aesthetic appeal. The key requirement to achieve this goal is to mathemat-
ically define the aesthetic qualities that guided the human artistic vision, and embed the
same objective into the algorithm. Since aesthetic judgement of art tends to be subjective,
the constructed artwork reflects a spectrum of aesthetic tastes based on considerations
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such as individual preferences for order and complexity. Before discussing the construc-
tion process of our mathematical artwork, we first review the key factors from the relevant
literature influencing aesthetic preferences in both mathematics and the visual arts.

In mathematics, the concept of aesthetics has been studied by surveying mathemati-
cians about the properties of their favourite mathematical proof (Inglis & Aberdein, 2014),
revealing that mathematics can include a significant amount of complexity without detract-
ing from its perceived beauty. The perceived role of complexity in aesthetic appreci-
ation of visual art however is not without controversy. The Fechner-Berlyne tradition
(Cupchik, 1986) posits that beauty requires a balance between order and complexity,
with ‘unity in variety’ being a mechanism for achieving such a balance. If such balance
is not achieved, the aesthetic value is compromised, resulting in emotional responses
such as confusion or boredom that impact perception of beauty (Berlyne, 1970). The
belief that complexity and order must be balanced to achieve the required emotional
response for aesthetic appreciation is well explained by Arnheim (1966): ‘Complexity with-
out order produces confusion. Order without complexity causes boredom’. In contrast, the
Birkhoff (1933) tradition posits that aesthetic value is a monotonic function of order and
complexity, and that individual preferences reflect their knowledge and cognitive state, so
that aesthetic appreciation can be learned with training and is not merely an emotional
response. We refer the interested reader to a recent review by Geert and Wagemans (2020)
for a discussion of the divergent theories about the role of complexity and its interplay with
order in aesthetic appreciation.

Many studies have supported the view that people’s perception of aesthetic value of
visual art is also influenced by a range of factors beyond complexity and order, to include
other considerations such as symmetry, colour combinations, balance points, spatial prop-
erties of objects and shapes, and arrangements of shapes (Palmer et al., 2013). Indeed, when
these other considerations are considered, it appears possible to unite divergent theories if
different types of complexity are defined (Nadal et al., 2010): one related with the amount
and variety of elements, another related with the way those elements are organized, and a
third type of perceived complexity due to asymmetry.

Recent efforts in the field of computational aesthetics have seen machine learning meth-
ods used to predict human aesthetic responses (Carballal, Fernandez-Lozano, Rodriguez-
Fernandez et al., 2019), and to explain aesthetic taste (Wang et al., 2019) based on large
collections of annotated images. Other studies have explored predictive modelling that
considers the knowledge and emotional state of the human subject - combining the
hedonic analysis (Fechner-Berlyne) and cognitive analysis (Birkoft) perspectives — along
with different types of complexity and order, showing that aesthetic appreciation can be
understood as a combination of both aesthetic emotion and aesthetic judgement (Leder
etal., 2004).

Recent directions (Geert & Wagemans, 2020) have started to explore whether an indi-
vidual’s personality has influence on their perceptions of complexity and the amount
of order they require for aesthetic appreciation to be attained. While some researchers
have argued that personality effects cannot adequately be modelled as an aesthetic science
(Markovic, 2010), others report that much can and has been done through empirical stud-
ies of aesthetics using behavioural methods (Palmer et al., 2013; Swami & Furnham, 2020),
to advance understanding of human aesthetic response to and preferences for visual stimu-
lation. Research into the interplay between an individual’s personality traits, emotional or
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cognitive driven perceptions of complexity and order, and their requisite balance point
to achieve aesthetic satisfaction is still in its infancy (Chamorro-Premuzic et al., 2010;
Rawlings & Furnham, 2000).

With these background concepts reviewed, this paper considers the role of order and
complexity in creating aesthetically pleasing montages of computer-generated mathemat-
ical functions. In this context, it is important to understand how the complexity of the
mathematical functions are likely to be perceived by a general (non-mathematical) audi-
ence, and how a montage structure can be used to create the required ‘unity in variety’ for
high aesthetic value. In recent work (Mufioz & Smith-Miles, 2020a), we have used Genetic
Programming to evolve a novel set of mathematical functions. The scientific motivation
for creating these functions was to stress test optimization algorithms that seek to find the
global minima of functions. Challenges are created for optimization algorithms when the
landscape is very rugged with numerous local minima, or contains flat plateaus, creating
convergence traps in the search for the lowest point in the landscape. Our new collec-
tion of 2D and 10D test functions, has contributed greater diversity to the benchmark test
suites used in the literature, exhibiting unique structures and complexities that have not
previously been tested on optimization algorithms.

It is the 2D test functions that form the basis of the artwork described in this paper, since
these functions of two variables (x; and x;,) can be viewed as contour plots in the 2D plane
(x1,x2), with a colour scale used to indicate the function value y = F(x},x,). Figure 1(a)
displays two examples of simple black box optimization (BBO) test functions from existing
benchmarks for illustration of such contour plots. The minimal points of the function value
are represented with the colour blue, and more interesting functions have resulting land-
scapes that tend to present ‘blue rivers’ or pockets of blue surrounded by steep and rugged
slopes that disguise the location of the minimal points. In addition to presenting challenges
for optimization algorithms, our newly evolved functions create images that individually
possess the constituent ingredients of visual beauty, at least for mathematicians: intricacy,
symmetry, and an elegance when appreciating the surprising complexity generated by a
simple process of combining two variables in a novel functional form. The artistic motiva-
tion for combining these 306 images into an 18 x 17 element montage was to highlight
the ‘unity in variety’ that can be generated when the full diversity of the collection is
displayed.

The key question tackled in this paper, both artistic and scientific, is how to arrange the
individual images in a montage that is aesthetically pleasing? The objectives of this study are
therefore to:

(1) understand how the interplay between order and complexity of the elements of any
proposed montage arrangement influence the aesthetic value, as perceived by different
human subjects;

(2) construct, by human eye, montages that are aesthetically appealing based on
order-disorder preferences;

(3) construct, by an optimization algorithm, montages using various objective functions
that seek to capture the same sense of aesthetic value.

This paper reports on the process of creating the resulting artwork that explores this key
question, and its solution in the form of a triptych of images, acknowledging that aesthetic
taste is subjective and spans a spectrum of order-disorder preferences.
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Figure 1. 2D contour plots of example functions: (a) a sphere function which is easy for most BBO algo-
rithms due to its convexity, and (b) a truncated ellipse function, which is more challenging due to many
flat plateaus that cause BBO algorithms to become trapped in local minima. Dark blue represents the
global minimum of the functions given by the Equations (1) and (2).

An informal survey of around 50 friends and colleagues of the authors (majority non-
mathematicians) quickly revealed that aesthetic judgement about the montage arrange-
ment reflected a strong preference for order or disorder that was noticeably aligned to
personality traits. In particular, those who expressed strong preference for order and struc-
ture much preferred montages which created ‘unity in variety” through the continuity of
‘blue rivers’ that run through and between images, creating a meandering global back-
ground structure to unify the montage. Others expressed a strong dislike of the imposition
of such order. Our aim was not to test the hypothesis of strong correlations between these
divergent aesthetic taste and personality traits via psychological or behavioural methods
- although that is certainly an interesting future use of our mathematical images. Instead,
our aim in this paper is to acknowledge the alignment of this untested hypothesis with
the aesthetics literature (Geert & Wagemans, 2020), and proceed to tackle the artistic
and scientific challenge of creating an artwork that acknowledges this spectrum of aes-
thetic taste, from disorder to order, supported by the literature. Manual swaps of a random
arrangement guided by the authors’ visual judgements produced montages that enhanced
or destroyed ‘blue river’ connectivity; but automating this process posed some computa-
tional challenges to maximize aesthetic appreciation at both ends of the spectrum. While it
is relatively straightforward to destroy ‘blue river’ structure by maximizing entropy in the
arrangement of images in the montage, it is more challenging to automate the creation of
a satisfying connectivity of blue rivers, reportedly valued as aesthetic by those preferring
order.

In general, we can think of our algorithmic challenge as an image mosaicing task,
where multiple images, often overlapping, are aligned into a large composition rep-
resenting a larger field-of-view, without compromising the spatial resolution (Ghosh
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& Kaabouch, 2016; Pandey & Pati, 2019). Interest in mosaicing has increased in recent years
due to the growing number of applications, such as satellite and medical imaging, virtual
reality, image editing, visual effects, and surveillance (Pandey & Pati, 2019). Mosaicing is
considered a special case of image reconstruction, where the images are related by planar
holography, and involves four processing steps:

(1) registration, or identifying geometric correspondence between a part of images;

(2) reprojection, or the alignment of the images into a common coordinate system using
the computed geometric transformations;

(3) stitching, or the overlay of the aligned images on a larger canvas by merging pixel
values of the overlapping portions and retaining pixels where no overlap occurs; and

(4) blending, or minimizing the discontinuities in the global appearance of the mosaic.

Because of the lack of exploitable overlap in our images and the fact that we do not
attempt to minimize discontinuities, registration is the only step from mosaicing of interest.
Moreover, techniques that are used for image compositing of non-overlapping images, e.g.
blending the objects from one image into the background of another (Pandey & Pati, 2019),
are not relevant. Image registration can be classified into ‘area’ and ‘feature’ based tech-
niques (Ghosh & Kaabouch, 2016). The former class relies on comparing the pixel values
between two images, as to identify how much they match. Techniques in this class are
those based on minimizing the intensity difference, or maximizing the correlation or the
mutual information. The latter class relies on extracting salient features, such as isolated
points, continuous curves or connected regions, common to the images. State-of-the-art
feature extractors are the Harris corner detector, Features from Accelerated Segmented Test
(FAST) corner detector, Scale Invariant Feature Transform (SIFT), and Speeded Up Robust
Features (SURF). Generally, ‘feature’ based algorithms are more accurate than ‘area’ based
ones, as long as the features are extracted correctly (Ghosh & Kaabouch, 2016; Pandey
& Pati, 2019). For our work, we propose two ‘area’ based approaches and one ‘feature’ based
approach.

The remainder of this paper is organized as follows: In Section 2, we briefly describe the
evolutionary programming approach used to evolve the novel set of diverse mathematical
functions, and present a selection of the 306 two-dimensional contour plots to illustrate
their complexity, order, symmetry, and other properties that influence aesthetic value. In
Section 3, we discuss the aesthetic considerations arising in the construction of a montage
of the 306 individual functions into an image array, and the feedback from human sub-
jects about aesthetic value of various arrangement choices, which revealed two divergent
opinions about the value placed on order. The section concludes with the presentation of
the resulting artwork, Negentropy Triptych, which acknowledges the spectrum of aesthetic
taste reported in the literature (Geert & Wagemans, 2020) and observed in our informal
survey, by depicting the emergence of order from disorder. Section 4 proposes an opti-
mization algorithm to evolve the optimal arrangements of the montage for each end of the
spectrum of order preferences, using a variety of objective functions to guide the search for
optimally aesthetic montages. A discussion about the human versus algorithm efforts and
the considerations to improve further the algorithm’s understanding of human aesthetic
judgement concludes the paper in Section 5.
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2. Evolving images of diverse mathematical functions

In this section, we briefly review the scientific motivation for evolving novel mathematical
functions in our previous work (Mufioz & Smith-Miles, 2020a), stemming from the need
to test the performance of optimization algorithms on test functions with diverse charac-
teristics. The methodology used to establish the lack of diversity of existing test functions,
and then to evolve new test functions to add greater diversity and challenge for optimiza-
tion algorithms, is briefly summarized. From this scientific motivation, a set of diverse and
novel 2D contour plots have been generated that form the basis of the artwork discussed in
subsequent sections. A small selection of such images is presented in this section and the
properties of these images are discussed.

2.1. The need for diverse test functions for black-box optimization

Black box optimization (BBO) is the mathematical challenge of finding the minimum or
maximum of an unknown function based only on a limited sample of function evalua-
tions. Unlike other kinds of optimization problems, the defining characteristic in BBO is
the absence of an algebraic or analytical function that indicates how the decision variables
influence the objective function to be optimized. Consequently, no gradient information
is available, and the decision space must be searched only by guiding the sampling process
based on an efficient use of function evaluations (Audet & Hare, 2017). Such BBO problems
arise in practical applications where the function evaluation may involve conducting phys-
ical experiments, or in computation settings such as machine learning, where the function
evaluation involves running a prediction or simulation model. Due to its practical impor-
tance, many optimization algorithms have been proposed for solving BBO problems, and
their performance is assessed based on how close their best objective function is compared
to the globally optimal objective value after a budgeted number of function evaluations
(Muifioz & Smith-Miles, 2017). Most noteworthy in this experimental evaluation of algo-
rithms is that the function is known analytically for the purposes of evaluating the solution
quality, but the algorithm is only given a sample of points on which to evaluate the func-
tion, and does not know the functional form, which may be continuous or discontinuous
in nature.

Two simple examples are provided in Figure 1 above where the well-known sphere
function and a truncated ellipse function, defined by Equations (1) and (2) respectively,
establish the truth of a functional form; but an optimization algorithm is only given a
small sample of # triplets (x;,x2, y) to decide where the global minimum of the function
lies. These examples also illustrates the concept of a known mathematical function being
represented as an image in the form of a contour plot: with horizontal and vertical axes
representing the x; and x; variables respectively, and the colour scale used to represent the
function value y, in this case with minimal values in blue and maximal values in yellow. The
two examples illustrate different landscapes that are created by functions: the sphere func-
tion depicts a ‘blue puddle’ at the location of the global minimum (—2, 2) with symmetrical
increases in the values of this convex function; while the truncated ellipse function (where
[.]p indicates the rounding of a value to p decimal places) depicts a ‘blue river” structure of
global minima that run horizontally across the contour plot, with long and narrow plateaus
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or ridges that step up in the vertical direction.

y=(1+2)2+ (2 +2)? (1)
= [x]5 +10°[x3 ] 2)

Depending on the shape and complexity of the landscape of a function, e.g. ruggedness,
large plateaus, sharp funnels etc., different optimization algorithms may show strengths or
weaknesses. Critically, if we do not test algorithms on a suite of test functions with diverse
characteristics, there is a danger that the weaknesses of algorithms may never be exposed.
Our scientific motivation commenced therefore from the quest to understand the sufhi-
ciency of existing test functions for BBO, and to generate new test functions with more
diverse characteristics.

2.2. Assessing diversity of existing test functions

Exploratory Landscape Analysis (ELA) metrics (Mersmann et al., 2011) have been pro-
posed to characterize critical properties of test functions that create challenges for opti-
mization, such as ruggedness seen in multimodal functions with many local minima, large
flat plateaus that can cause algorithms to converge prematurely, and deceptive landscapes
with steep funnels that are out of place with the surrounding landscape.

In our previous work (Mufioz & Smith-Miles, 2020a), we constructed a 2D visualization
of all existing test functions within the well-studied COCO (Comparing Continuous Opti-
mizers) benchmark test suites for BBO, using a recently developed methodology known as
Instance Space Analysis (Mufioz et al., 2018; Smith-Miles et al., 2014). The instance space
visualization relies on various ELA metrics (summarized in the Appendix) to quantify the
similarities and differences between characteristics of different test functions, representing
each test function as a unique feature vector in a high dimensional feature space, before
projecting all test functions to a 2D instance space using an optimized projection equation
(see Appendix for a summary and (Mufioz & Smith-Miles, 2020a) for full details).

The resulting instance space visualization of the existing COCO benchmark test func-
tions is shown as grey points in the background of Figure 2. It is clear that the existing
COCO benchmark test functions occupy a small region within the instance space, indi-
cating their lack of diversity despite originating from 24 different basis functions intended
to represent an array of challenges for BBO algorithms. In order to expand the diversity
of the benchmark test functions, the blue ‘cross’ marks (x) and the red ‘plus’ marks (+)
respectively indicate the location of target points and new functions evolved to lie as close
to the target points as possible, as described in the following section.

2.3. Evolving new test functions to increase diversity

Previously, we proposed a Genetic Programming (GP) approach to generate new test func-
tions whose feature vector, when projected to the 2D instance space via Equation (A1), lies
as closely as possible to a user-defined target as shown in Figure 2. We briefly summa-
rize the approach here, and refer the reader to Mufioz and Smith-Miles (2020a) for full
implementation details.
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Figure 2. Instance Space showing location of existing COCO benchmark test functions as grey dots, with
their locations given as coordinates (zq,z,) of axes determined given by the projection Equation (A1).
The x marks indicate the target location of new functions evolved to add diversity, and the red+ marks
indicate the location of such generated functions as reported in Mufioz and Smith-Miles (2020a).

We represent a BBO test function by a binary tree whose leaves are variables or con-
stants, and nodes represent a mathematical operator applied to the variables, chosen from
a permitted vocabulary: {x, +, —, x2, sin, cos, tanh, e 7%, &*, | x}, where x represents a vari-
able at an adjoining leaf. For example, the bivariate function y = 2 sin(x1) + [x2] cos(x1x2)
is represented by the binary tree shown in Figure 3. We then used GPTIPS (Genetic Pro-
gramming Toolbox for the Identification of Physical Systems) v2.0 (Searson et al., 2010),
and defined the fitness function as ||z; — z¢ |2 + 2/P:=Dsl where z; and D; are the location
vector and the dimensionality of the target function, and z, and Dy are the location vector
and the dimensionality of a candidate generated function. The first term in the fitness func-
tion penalizes functions with a projected feature vector too far from the target point, while
the second term penalizes functions utilizing more or less variables than the dimensionality
of the functions we seek to generate. While we generated 2D and 10D functions, it is the 2D
functions that we focus on here, since their contour plots create the artwork discussed in the
remainder of this paper. Finally, we proceeded to generate hundreds of new test functions
at target locations, a sample of which are shown in Figure 2, highlighting those beyond the
convex hull defined by the existing COCO benchmarks. Several hundred new 2D and 10D
test functions have been generated, and have added significant diversity to the available
test suites. These functions are available to download as MATLAB functions, and the 2D
functions can also be downloaded as contour plot images (Muiioz & Smith-Miles, 2020b).

Figure 4 presents a selection of the new 2D test functions, highlighting their intricacy
and surprising complexity given the limited vocabulary they were permitted to utilize as
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Figure 3. Example of a binary tree representation of the function y = 2sin(xq) + [X2] cos(x1x2).

operators on two variables. Most notably, this selection of images reveals properties such
as asymptotic behaviours, periodicity, and nonlinearities created by the trigonometric and
exponential functional forms permitted in the genetic programming structures. In addi-
tion to adding diversity to the benchmark test suites, these new test functions are also more
challenging for the BBO algorithms tested (Muioz & Smith-Miles, 2020a), since they come
from a part of the instance space where several algorithms have weaknesses. It is clear from
inspecting these images why BBO algorithms would find many of these test functions chal-
lenging, since their task is to locate the global minima, represented by the darkest blue,
which are often hidden from the search path by premature convergence to the many local
minima, plateaus, or deceptive tricks that complicate the landscape. Compared to the rel-
atively simple examples shown in Figure 1(a,b), it is clear that the ‘blue river’ structures of
these new test functions are much more complex for BBO algorithms, and more interesting
as visual artworks.

Scanning through hundreds of such images in the quest to identify the most aesthetically
appealing one for printing as a poster, we realized the difficulty of selecting just one image;
the opportunity to highlight the collection’s diversity by creating a montage became more
appealing. To this end, we shortlisted 306 of the more mathematically interesting images to
commence work on a new artistic outcome of the research, as described in the remaining
sections of this paper.

3. Aesthetic consideration in montage arrangement

Random placement of the 306 images into an 18 x 17 array immediately highlighted the
tendency for the human eye to be drawn to any regions where dark blue connects the
individual images together. The random arrangement shown in Figure 5 illustrates this
phenomenon, where the imbalance created by too much contiguous dark blue essentially
distracts the viewer from noticing the wider perspective of the array, and draws attention
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Figure 4. A sample of 9 contour plots from hundreds of new 2D test functions generated by genetic
programming to lie at target points across the instance space. Each contour plot shows the value of
the bivariate function in the (x1, x2) plane, with colour indicating the magnitude of the function value.
These unique functions present considerable challenges for BBO algorithms due to their complexity and
difficulty locating global minima, shown as dark blue.

to small regions that start to dominate the montage, such as the blue cross located around
rows 5-6 and columns 9-10.

In order to arrive at a more balanced randomization, we generated 10 different random
montages, and conducted an initial informal survey of approximately 50 friends and col-
leagues (the majority of whom were not mathematically trained beyond high school level)
to ask which they found most aesthetically pleasing. While there was little consensus about
which they liked best, there was consensus that none of the randomly generated mosaics
were particularly aesthetic. Further insights were gained when survey participants were
asked to explain what they didn’t find appealing, so that we could try to improve the aes-
thetic appeal of the montage construction. Two sources of disappointment emerged. Some
people reported disappointment that small fragments of ‘blue river’ connectivity acciden-
tally created by some random configurations had terminated abruptly, and did not continue
into larger rivers that meandered continuously around the montage. Other people reported
that any regions of dominant blue were a visual distraction that created imbalance from
admiring the diversity as a whole.

Based on this initial feedback, we decided to improve the aesthetic appeal of the montage
by swapping some individual image locations to either increase or decrease the ‘blue river’
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Figure 5. A random arrangement of 306 contour plot images into an 18 x 17 array.

connectivity. Guided by the human eye, we moved images with significant blue features to
either join previously disconnected blue rivers, or to break up contiguous blocks of blue.
After around 30 swaps for each objective our eyes felt that convergence had been reached,
in the sense that while there were probably more swaps that could increase or decrease
blue river connectivity, the gains in continuing were not likely to be perceptible, and our
eyes deemed that the two exercises had resulted in two modifications to the montage that
should better reflect the divergent aesthetic preferences of those surveyed.

The result is Negentropy Triptych, shown in Figure 6, which has the initial random mon-
tage in the centre, and the modified montages with less blue river connectivity (left) and
more blue river connectivity (right). Surveying the same group of friends and colleagues
again to now ask whether they found the left or right montage more aesthetically appealing
revealed that they were almost 50:50 split between the left and right extremes. Those who
preferred the right image found the enhanced blue river connectivity to be much more sat-
isfying than the partial structures seen in the random image, and enjoyed their eye tracing
the blue rivers through the montage as a background global structure. Those who preferred
the left image reported that it was much more balanced, without the distraction of the blue
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Figure 6. A triptych of montages depicting the emergence of order from disorder, known as Negen-
tropy Triptych. The middle montage is a random arrangement of 306 images into an 18 x 17 array. The
right montage has swapped some images to enhance the connectivity of ‘blue rivers’ as a background
global structure. The left montage has swapped some images to destroy the accidental connectivity of
the random arrangement, creating a more balanced composition.

Table 1. Demographic data for 48 human subjects informally surveyed for aesthetic preference for left
(disordered) or right (ordered) images in Negentropy Triptych.

Disordered image Ordered image
Age Male Female Male Female Total
< 25 years 2 4 2 3 12
25-50 years 2 8 5 6 21
> 50 years 2 7 1 5 15
Total 6 19 9 14 48

rivers, which were described by some as ‘hideous’ and ‘childish’. One subject explained that
she found the right image to be quite insulting, with the imposition of an ordering to help
the viewer make sense of the complexity of the montage, whereas she preferred to admire
the complexity with the sense of order provided only by the grid structure itself. Since these
human subjects were close friends and colleagues, we had the opportunity to also observe
some correlations between their aesthetic preferences and personality traits. Table 1 pro-
vides some demographic data for the informal human survey, and their preferences for the
left or right image. There appears to be no evidence of significant bias in either age or gen-
der, given the limited sample size, to explain aesthetic preference and a natural hypothesis
emerges, supported by the literature, that personality may well be playing a role in their
aesthetic preferences.

Negentropy Triptych depicts the emergence of order (right) from disorder (left) - the
negative of entropy, also known as negentropy - from the ‘unity in variety’ perspective,
with unity provided by blue river connectivity. Of course, the order an individual seeks to
provide balance with complexity can occur on different scales. From a blue river connec-
tivity perspective, order is provided by imposing a background global structure to unify
the images. From this perspective, the left image appears to be disordered. If we consider
that the array itself provides an order from which to appreciate the diversity of the indi-
vidual images, any attempt to distract our attention from the whole array, by drawing our
eye to particular regions of the montage with a blue dominance, could be considered to
create disorder. While the aesthetics literature explores the relationship between order and
complexity, and there is acknowledgement that appreciation of complexity may depend on
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cognitive state, our investigation also supports the notion that preference for order or disor-
der may not be an absolute concept, and the scale at which order is created and appreciated,
micro or macro, may be a relevant factor.

4. Optimizing aesthetic appeal of montage arrangements

In this section, we present the methodology and results of several algorithmic efforts to
swap images from a randomly arranged montage in order to either increase or decrease
the order created by the background ‘blue river’ connectivity. If we can suitably quan-
tify the presence or absence of such connectivity, it will be possible to use the power of
optimization algorithms to efficiently explore the huge combinatorial search space of pos-
sible image swaps in order to achieve the required aesthetic objectives. We first introduce
the computational representation of an individual montage, followed by a greedy heuris-
tic for optimizing the arrangements. Next, we discuss the three tested objective functions
based on mutual information, connected area, and pattern matching. Finally, the resulting
montages are presented.

4.1. Computational representations of a montage

We represent a montage as a 18 x 17 matrix x, whose element xj; corresponds to a unique
image from the set {X, ..., X306}. Each image is a 520 x 590 matrix, with two different
types of images created for each function - a full colour version and a binary (black and
white) version, whose elements x;; are defined respectively as either:

(1) colour: x;; values are integers in the range [0, 216 1], representing a level within a
16-bit indexed colour spectrum based on MATLAB’s ‘parula’ colour map; or

(2) binary: x;; values are a binary value with ‘1" representing a ‘dark enough’ blue hue,
which corresponds to a colour level in the range [0, 10%], and ‘0’ otherwise.

The complete montage has 9360 x 10030 pixels, and it is denoted by X. Figure 7 illustrates
these representations, with the top left corresponding to the true colour image, the top right
to the indexed spectrum, and the bottom left to the binary version. A visual inspection of
the latter one reveals that the complex patterns each image contains could be simplified to
‘primitive’ shapes, i.e. binary matrices that represent the most salient feature of an image,
as shown on the bottom right of Figure 7. We specified a vocabulary of 26 primitives, IT.),
two of them being black or white squares, i.e. fully ‘0’ or fully ‘1’, and the remaining 24
being illustrated in Figure 8. We define the probability that an image looks like a specific
primitive I, as:

520 590

1
¢ (M) = 530 % 590 Z D L (xij = mij) (3)

i=1 j=1

where T denotes the indicator function and 7;; denotes a pixel of the primitive IT.). The
selected primitive is the one that maximizes this probability, as illustrated on the bottom
right of Figure 7. The montage can then be represented as a 18 x 17 matrix X, whose
element X ; corresponds to a primitive from the set {I1(1), ..., 1)}
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Figure 7. Representations employed to computationally describe the dark blue regions of a 3 x 3 por-
tion of a montage. Top left corresponds to the true colour image, top right to the 16-bit indexed colour
spectrum, bottom left to binary with "1” representing a ‘dark enough’ blue hue, and bottom right as
‘primitive’ shapes of ‘dark enough’ blue.

4.2. A greedy heuristic for optimal image placement

Algorithm 1 presents the pseudocode of AUTOART, a greedy search strategy that seeks
to rearrange the montage by swapping or flipping images, such that one of the objective
functions in Section 4.3 is maximized or minimized. This strategy is unwilling to tem-
porarily accept a worse value of the objective function in order to achieve a better solution
in the longer term, such as is achieved by hill-climbing strategies in, for example, simulated
annealing. Therefore, we instead initialize from different starting points, or use different
random seeds, to explore multiple local optima in order to find a reasonably good solution.
While a greedy strategy may be suboptimal in terms of the number of function evaluations
required to achieve a satisfactory result, it is the simplest to implement and test. Moreover,
it provides information on the ‘hardness’ of the problem, i.e. if a simple strategy provides
good results, a more complex one may just provide marginal performance increases.

The algorithm starts by creating a random permutation of the vector [1 ... 306], which
is returned as the 18 x 17 matrix x. Then, it calculates the objective function (to be defined
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Figure 8. Vocabulary of ‘primitive’ shapes that represent the most salient ‘dark enough’ blue feature
from an individual image. Besides the 24 illustrated above, primitives (1) and (2) correspond to black or
white squares, i.e. fully ‘0" or fully ‘1, respectively.

in the next section), measuring the extent of its order or disorder of blue river connectiv-
ity. The algorithm runs for T iterations. In each iteration, it randomly selects a ‘mutation’
operator from the seven available, i.e.

(1) aglobal swap of any two randomly selected images located at xx; and xx r;

(2) amirror operation in the horizontal axis of a randomly selected image at xy j;

(3) amirror operation in the vertical axis of a randomly selected image at xy ;;

(4) alocal swap of a randomly selected image at xj; with its left neighboor yj;—1;

(5) alocal swap of a randomly selected image at xj; with its right neighboor xj 141;
(6) alocal swap of a randomly selected image at xj; with its top neighboor x;_1; and
(7) alocal swap of a randomly selected image at i ; with its bottom neighboor xj1.

While each of these types of mutation is equally likely, there is a bias towards local neigh-
bourhood swaps (types (4)-(7)) which are four times more likely compared to the global
swap type (1). It is also worth noting that the algorithm is given additional opportunities
to find an optimal solution through mutation types (2) and (3) that the human did not
consider, so it should have every opportunity to achieve the goal. After the mutation, the
objective function is re-evaluated. If the objective has improved when considering whether
the goal is to maximize or minimize the objective function, the montage is updated; if it
has not improved, the proposed mutation is discarded. If a mutation is not possible, i.e. a
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Input: The number of interations, T, the random seed, p, a function handle to the objective function,
ObjectiveFcn, a vector of function handles to the mutation operators, MutationOperator,
and a variable determining whether to minimize or maximize the cost, @min.

Output: An optimized montage, Xopt-

1 Function GreedySearch(T, x,0ObjectiveFcn,MutationOperator,OptimizationFcn) is
2 Xopt <= X5
3 Jopt <= ObjectiveFcn(x);
4 fort =1to T do
5 i = RandomInteger(1,7); // Select the ‘mutation’ operator
6 Xtmp < MutationOperator(i](Xopt);
7 Jimp < ObjectiveFcn(Ximp)s
8 if OptimizationFcn(opt; Jmp) = Jopt then
9 Xopt <= Xtmp>
10 Jopt < Jtmps
11 end
12 end
13 return Xopt;
14 end
15 Function AUTOART(T, p,ObjectiveFcn,MutationOperator, Pmin) is
16 SetRandomSeed(p);
// Use a random permutation to initialize the positions of the 306
images.
17 X < RandomPermutation([l ... 306]);
18 if ¢min then OptimizationFcn < @Min else OptimizationFcn < @Max;
19 return GreedySearch(T, x,0bjectiveFcn,MutationOperator,OptimizationFcn);
2o end

Algorithm 1: Pseudocode for optimal montage arrangement by a greedy algorithm
utilizing the seven neighbourhood swap operators defined in Section 4.2, and the
three types of objective functions defined in Section 4.3.

left neighbour swap when the selected image is on the left margin, then the mutation is
also discarded.

4.3. Objective functions

As discussed above, our objective of constructing a montage can be thought of as an image
mosaicing task where multiple, albeit overlapping, images are aligned into a large compo-
sition representing a part of a scene (Ghosh & Kaabouch, 2016). Mosaicing involves four
steps, i.e. registration, reprojection, stitching and blending. For our purpose, registration is
the only step of interest because there is no exploitable overlap in our images, and our aim
requires us to only connect (or destroy) blue regions on the joining edges rather than to
seamlessly join images with similarity across the entire length of each edge. According to
Ghosh and Kaabouch (2016), spatial registration techniques can be classified into ‘area’ and
‘feature’ based. In the next sections we will describe two ‘area’ based approaches, i.e. mutual
information and connected pixels, and one ‘feature’ based approach, i.e. identification of
primitive patterns. Experimentation with other state-of-the-art feature’ based approaches,
such as Harris, FAST or SURF detectors, yielded poor results due to the lack of overlap.

4.3.1. Mutual information

Our first approach is to use mutual information to extract the relationship between the pixel
location and its change in intensity. Our assumption is that neighbouring pixels with small
changes in intensity will have similar colour. Therefore, by maximizing the relationship
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Figure 9. Neighborhood definitions used for the Mutual Information and Connected Pixels functions:
(@) a 4-connected and (b) an 8-connected neighbourhood. Pixels marked as black are considered
neighbours and used in the calculation.

between the position and the intensity change, as captured by the mutual information, we
force the creation of large blocks of similar colours, with the expectation that blue areas
emerge. On the other hand, by minimizing this relationship, we force the destruction of
such blocks. Mutual information is defined in terms of entropy:

Jur X) =H®R,C) +H(A) —HR,C,A)

where R and C correspond to the row and column indices of the pixel, and A corresponds
to the second difference in intensity level, with the difference defined over a 4-connected
neighbourhood as illustrated in Figure 9(a) and intensity defined as the 16-bit indexed
colour spectrum described in Section 4.1. More formally:

Aij =~ (Xicyj + Xiprj + Xijo1 + Xijp1) — X

-

To estimate A, we made use of MATLAB’s discrete Laplacian function DEL2, whereas
the entropy was calculated using the estimator based on k-d trees by Stowell and Plumb-
ley (2009), which partitions the space €2 defined by the variables R, C or A into a set of
non-overlapping cells w, each one containing P(w) pixels within its hyper-volume V(w).
The entropy is then defined as:

m

~ &P P(Q)
H“‘EP@“%N@”“)

where P(€2) = 9360 x 10030 or the total number of pixels. Because this objective function
operates over the indexed spectrum and the complete montage X, it is expected to be the
most computationally expensive.
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4.3.2. Connected pixels

Our second approach seeks to maximize the area of the largest set of ‘connected’ pixels in
the complete montage X, using the binary representation of each image to locate only the
dark blue regions as described in Section 4.1. This representation focuses the algorithm
on the dark blue regions while ignoring all other colours, and when we ask it to maximize
(or minimize) the total area of connected dark blue regions we expect it to find swaps that
will result in the creation (or destruction) of large contiguous regions of dark blue. For this
purpose, we adopt the 8-connected definition, that is, two pixels are connected if both of
them are equal to ‘1’ and their edges or corners touch, as illustrated in Figure 9(b). That is,
for a given region o, a pixel X;; belongs to the region if any of its 8-connected neighbours
also belongs to . More formally:

Xijea U Xitmj+n € @
m,n={—1,0,1},m#n#£0

With the area of o being its cardinality, i.e. A() = |a|. That is, Jcp(X) = max; A(«;). To
calculate this objective function, we utilize the MATLAB functions BWAREAFILT, which
finds the largest connected area in the binary image, and REGIONPROPS which returns the
area. Because this objective function is over the binary representation and the complete
montage X, it is expected to be the second most computationally expensive.

4.3.3. Pattern identification

Our third approach makes use of the ‘primitive representation described in Section 4.1. For
this purpose, we define 24 pattern windows, each one being a2 x 2 matrix of selected prim-
itives forming a desirable configuration. Figure 10 illustrate these patterns. For example, the
patterns {B, C, L, U} were formed by primitives:

1 4 1 4 34 25 1
32[5 1] C=[7 1] L:L 3} U=|:26 24] )

where the number indicates the index in the shape vocabulary defined in Figure 8. We then
calculate the probability that a section of the montage is similar to one of our patterns, as
follows:

Op; = Z Z Grriil (Xkifai = Pit141)
i={0,1} j={0,1)
where ¢y ; corresponds to the probability that the given image looks like the selected prim-
itive, calculated through Equation (3) using the binary representation of each image, and
where Xy is an element of the 18 x 17 matrix X, and p;; is an element of one of the 2 x 2
pattern matrices, with the selected pattern being the one that maximizes ®;. Then the
objective function is defined as:

17

16
T ()= (5)

k=1 I=1

In other words, the objective function is the sum of the probabilities that overlapping
windows in the montage are similar to user-defined patterns of ‘blue river’ connectiv-
ity. Therefore, by maximizing the probability, we are constructing larger connected areas,
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Figure 10. Vocabulary of ‘primitive’ pattern windows. Four of them, i.e. {B, C, L, U}, correspond to the
matrices in Equation (4).

whereas by minimizing the probability we destroy those sections that could appear as con-
nected. This approach provides information about the desired macrostructure sought by
the human eye, which is not available through the other two methods. Moreover, because
this objective function operates over the 18 x 17 matrix ¥, it is expected to be the least
computationally expensive.

4.4. Results

We carried out 20 runs of AUTOART for each of the objective functions described in
Section 4.3, ten of them to maximize and the other ten to minimize. In both cases, the
algorithm had a budget of T = 10* iterations. All iterations had as starting point the cen-
tre montage shown in Figure 5, although with different random seeds. As a baseline, we
also generated 10° random permutations of the 306 images. Table 2 shows the average time
in seconds taken by one run of AUTOART depending on the objective function, which con-
firms our expectations on the computational expense of each function. For example, Jcp
is roughly between 30 and 50 times less expensive than Jpy, and Jpy is roughly between 15
to 25 times less expensive than Jcp, and between 860 to 870 times less expensive than Jy;.
The higher consistency between Jj;; and Jpr can be explained by the fact that both act over
a structure of the same size, i.e. either X or x.

Figure 11 illustrates our results, with the top panel showing the results for mutual infor-
mation (MI) as the chosen objective function, the middle panel for connected pixels (CP),
and the bottom panel for pattern identification (PI). The histogram represents the random
permutations, the lines represent each one of the panels comprising Negentropy Triptych,
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Table 2. Average time in seconds taken by one run of autoart depending on the
objective function and whether it is maximization or minimization.

Minimize Maximize
I Jep Jpi I Jep Jpi
Mean 330378.7 6891.1 380.1 324186.8 9399.0 376.8
Standard Deviation 17233.9 286.4 84 22113.0 698.5 12.0
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Figure 11. Results from 10 maximization runs from autoart (x), 10 minimization runs (x) compared
with 108 randomly generated montages (histogram) and the left (red——), centre (black——) and right
(green——) panels comprising Negentropy Triptych. The cost function values on the x-axis have been
scaled between [0, 1] for visualization purposes. Each panel represents a different objective function to
measure ‘blue river’ connectivity.

while the x marks represent the 20 iterations of AuTOART. The x-axis represent the cost
value, scaled between the [0, 1] range. The results from each objective function have been
scaled between the absolute maximum and minimum obtained during our runs.

Our results confirm that the MI and PI objective functions certainly describe a spectrum
of order to disorder, as defined by those objective functions. That is, the objective functions
increase when we compare the order of the left panel to the right in Negentropy Triptych.
Although the CP function does not fulfil completely the requirement, as the centre panel
has a lower value than the left panel, the difference is small. Moreover, our results confirm
that AUTOART pushes the boundaries of what is obtainable through simple random search,
with the differences being significant for the PI function.
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Figure 12. Three automated versions to improve the intent of Negentropy Triptych, preserving the centre
frame, but replacing the left and right frames with the minimum and maximum obtained through autoart
for (a) MI, (b) and (c) Pl objective functions.

Figure 12 shows three versions of Negentropy Triptych montages obtained by preserving
the centre frame, but replacing the left and right panels with the minimum and maximum
obtained through AUTOART for each one of our objective functions. Each one has a varied
level of success of enforcing order, with the PI function in Figure 12(c) showing the desired
tendency to form long diagonal lines of connected images much like the human artistic
choices, whereas the MI and CP functions tend to cluster images without forming a clear
pattern. The ability of PI to form such diagonal structures is supported by the fact that
many diagonal patterns were included, as illustrated in Figure 10. We expect that if some
of these patterns were excluded, PI would not have been as successful.

The results in enforcing disorder are harder to quantify, as the algorithm’s tendency is to
push the blue blocks towards a corner. For the PI function, there is less visible microstruc-
ture remaining, as it has been effectively destroyed by minimizing the probability of
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patterns emerging. Although these computational efforts can be considered successful, the
‘aesthetic’ of each version is harder to evaluate.

5. Discussion and conclusions

The results presented in the previous section clearly indicate that it is easier to ask an
algorithm to destroy relationships between adjacent images than it is to ask it to create
background structure, particularly when it is so difficult to mathematically define the kind
of blue river connectivity that the human eye can identify so easily. While the algorithm is
capable of more rapidly exploring the massive search space of potential swaps that could
improve the objective function, it cannot compete with human pattern searching ability,
which can quickly identify which images would be prime candidates to swap. The superior
processing speed of the algorithm does not lead to improved results for two main reasons:
(a) the greedy nature of the algorithm means that when it eventually converges it will only
have found a locally optimal solution, and will need multiple restarts in order to increase
the chance of finding a globally optimal solution; (b) the algorithm has been given objec-
tive functions that cannot completely capture the concept of blue river connectivity, despite
our best efforts to focus its attention on blue regions of the montage, and various concepts
of how connectivity can be measured.

There is no doubt that more sophisticated optimization algorithms could be deployed
in order to escape from local minima, such as simulated annealing, or global search meth-
ods like genetic algorithms. Without a more compelling objective function, however, this
is likely to be quite futile, requiring a considerable computational effort given the observed
low probability of effective random swaps. Improving the computational complexity of the
cost functions, by updating only the changed regions, could open the door to more sophis-
ticated optimization algorithms with a small memory trade-off. There are numerous other
ideas that could be explored, borrowing from image processing methods for image stitch-
ing and image registration (Razlighi et al., 2013), but these methods are more focussed
on identifying similar images, which is a different goal compared to our efforts to create
a very specific background structure. Another interesting direction would be to approach
the challenge from a different perspective: instead of asking how we can enhance or destroy
‘blue river’ connectivity from a random arrangement, we could construct a random walk
of ‘blue rivers’ as the right image, and then use the minimization of mutual information
to destroy the global structure. This latter idea is akin to the concept of image scrambling
used in image encryption (Arumugam & Annadurai, 2021; Zhang et al., 2007) and digi-
tal watermarking (Soliman et al., 2016), and could open avenues for new applications of
our work in cryptography. We have made available the collection of 306 images at Mufoz
and Smith-Miles (2020b) and hope that other researchers may take on the challenge of
devising more human-like objective functions, and pursuing other such opportunities.

There are many interesting questions raised by this research, including how the choice of
colour scale affects aesthetic taste, and whether the desire for global background structure
depends on the chosen colour palette? Our images are available for download and may
add value to aesthetics literature and psychology studies. In particular, neuro-aesthetics
research may benefit from studying visual cortex stimulation and eye tracking of sub-
jects when presented with some of our individual complex images, as well as the various
montages, to explore the relationship between attention, aesthetic taste, complexity and
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preference for order or disorder. We also propose in this paper that the scale of the order
at which people seek unity in variety to make sense of complexity, whether it be at a micro
or macro scale, may also be a factor worthy of consideration. A natural extension of this
work, as a companion study, would be to conduct a rigorous psychometric evaluation of
a larger group of human subjects to confirm the untested hypothesis that motivated our
artistic goal described in this paper. Indeed, a formal psychometric study of human subjects
combining their aesthetic preference with the five-factor model personality scores (Gold-
berg, 1992) and additional demographic data would be a rich source of data to confirm
the hypothesis, and add value to the literature on computational aesthetics and the role
of personality. Perhaps the most interesting question highlighted by this paper though is
one with more significant societal consequences: given the challenges of programming an
algorithm to make decisions like a human, can we devise an algorithm to learn to repli-
cate an artist’s decision-making process? Machine learning methods could certainly be
deployed, as they have for other aesthetic prediction studies (Carballal, Fernandez-Lozano,
Heras et al., 2019), to train a model to recognize good ‘blue river’ connectivity, either across
the whole montage or in small regions, and then this model could form the basis of an
objective function to evaluate the effectiveness of any proposed swaps. This is an extension
of the template pattern matching approach explored in this paper. However, we leave the
pursuit of an artificial ‘artistic’ intelligence to future work.
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Appendix. Summary of technical specifications of evolved functions from
Munoz and Smith-Miles (2020a)

A.1. Mathematical definition of BBO

In the formal description that follows we will focus on the task of minimizing a function, without
loss of generality for maximization, since the latter can be achieved by minimizing the negative of
the function. Specifically, BBO involves a set of decision variables X C RP defining the input space,
an unknown function F : X +— ), that generates a value ) C R defining the output space, and
D € N7 is the dimensionality of the problem. We seek a solution as a decision vector in X that gives
the minimal value of ). A candidate solution x € X is a D-dimensional vector, and y € ) is the
candidate’s objective or cost value. BBO algorithms explore a sequence of (x, y) input-output pairs
in order to find a solution, and differ in their search strategies for determining the (x, y) pairs they
evaluate. The most successful algorithms find the minimal cost solution with a minimal number of
function evaluations.
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Table A1. Features selected in Mufioz and Smith-Miles (2020a) for characterizing BBO test func-
tions based on ELA metrics based on Surrogate models (Mersmann et al., 2011), Cost distributions
(Marin, 2011; Mersmann et al., 2011), Entropic significance (Seo & Moon, 2007).

Feature Type Description

fi Surrogate model Adjusted coefficient of determination of a purely quadratic model

f Surrogate model Ratio between the minimum and the maximum absolute values of the
quadratic term coefficients in the purely quadratic model

f3 Surrogate model Mean cross-validation accuracy of a Classification and Regression Tree
(CART)

fa Surrogate model Ratio of Mean cross-validation accuracies of a CART and quadratic
discriminant analysis model

fs Cost distribution Entropy of the cost distribution

fe Cost distribution Skewness of the cost distribution

f7 Cost distribution Number of peaks of the cost distribution

f3 Entropic significance Significance of first order

A.2. BBO benchmark test functions

In order to test BBO algorithms, benchmark test functions are created, whose function F : X - Y
is defined analytically and enables y to be rapidly calculated for any x, but allow the algorithm
only knowledge of the (x,y) pairs rather than the analytical form of F. One of the most well-
studied test suites is the Comparing Continuous Optimizers (COCO) noiseless benchmark test
functions (Hansen et al., 2014). The COCO functions are composed of 24 basis functions defined
within X = [—=5, 5]P, and are divided into five categories with various qualitative characteristics
(Mersmann et al., 2015): separable functions; low or moderately conditioned functions; unimodal
functions with high conditioning; multimodal functions with adequate global structure; and multi-
modal functions with weak global structure. The benchmark test functions are generated by scaling
and transforming these 24 basis functions via linear translations, rotations and symmetry breaking
that cause perturbations and translational shifts in the input and output spaces to create some limited
variations.

A.3. Characterising BBO landscapes using features from exploratory landscape
analysis

ELA metrics require a sample of (x, y) pairs of sufficient size in order to estimate the characteris-
tics of the landscape based only on the sample observations. Typically, a Latin-hypercube sample
(Stein, 1987) is generated, and the number of samples is often related to the dimensionality D of the
problem. Popular ELA metrics include those based on autocorrelation, estimates of the size of the
basins of attraction for low-cost solutions, metrics based on goodness of fit of surrogate models of
various functional forms such as linear or quadratic models, statistical properties of the cost func-
tion distribution, and information theoretic measures such as entropy and mutual information. We
refer the interested reader to Kerschke and Preuf$ (2019) for a recent review of ELA methods.

For each of the 24 basis functions in the COCO test suite, we generated 30 instances with varia-
tions in rotations, translations, etc. for a fixed dimensionality, with D chosen successively from the
set of 9 values [2, 3,5, 8, 10, 20, 40, 60, 100]. This process created 6480 test functions from which to
generate an instance space. Each test function F; fori = 1. .. 6480 is summarized by a feature vector
of ELA metrics, f(i) calculated using a Latin-hypercube sample of size D x 10°. The chosen 8 ELA
features, defined in Mufioz and Smith-Miles (2020a) and summarized in Table A1, span a range of
information theoretical and statistical distribution measures.

A.4. Instance space analysis of BBO test functions

An instance space is created by finding an optimal projection of the instances from their initial rep-
resentation as a feature vector, in this case in 8-dimensions, to a point in a 2D plane. This dimension
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reduction is achieved via the linear transformation z = Af provided by Equation (A1), with full
details of the 8D feature vector f, and the method used to find the linear transformation matrix A,
provided in Muiioz et al. (2018). For the purposes of this paper, it suffices to note that each instance
is a test function that is now represented as a point in the 2D plane (21, z2) defined by the axes in
Equation (A1), which are linear combinations of the 8 ELA features summarizing an instance, as
defined in Table Al. The location of the 6480 test functions within the instance space can be seen
as the grey dots in the background of Figure 2, with each test function F; given by a (21, z2) coordi-
nate in the instance space, once its 8D feature vector f(i) is calculated and projected to (z;, z2) using
Equation (Al).

T—0.28454  0.61038 ' [fi
020991 016267 | |f
0.02979 053365 | |f3
z] | 053101 001772 | |fa
2| T | —031959 —0.02927 | |f
—0.30095 —0.43889 | | f;
—0.42920 —0.22560 | | f;

| 046389 026739 | |fs

(A1)

A.5. Evolving new test functions using genetic programming

The GP routine described in Mufioz and Smith-Miles (2020a) was run 10 times from different ini-
tial random populations of binary trees. We used a population size of 400 trees, with a maximum
tree depth of 10, and ran for 100 generations. Lexicographic tournament selection was employed
with ten individuals per tournament, while the best 10% of the population was kept as an elite set.
The probability of a mutation, crossover and direct transfer were set to 30%, 60% and 10% respec-
tively. We set as stopping criteria a fitness value of 1073, Constants were generated from a uniform
distribution in the [—100, 100] range.
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