
Computers and Operations Research 128 (2021) 105184
Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier .com/locate /caor
Revisiting where are the hard knapsack problems? via Instance Space
Analysis
https://doi.org/10.1016/j.cor.2020.105184
0305-0548/� 2020 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: smith-miles@unimelb.edu.au (K. Smith-Miles), munoz.m@un-

imelb.edu.au (M.A. Muñoz).
Kate Smith-Miles ⇑, Jeffrey Christiansen, Mario Andrés Muñoz
School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia

a r t i c l e i n f o a b s t r a c t
Article history:
Received 17 June 2020
Revised 7 December 2020
Accepted 10 December 2020
Available online 18 December 2020

Keywords:
0–1 Knapsack problem
Instance Space Analysis
Instance generation
Instance difficulty
Performance evaluation
Algorithm portfolios
Algorithm selection
In 2005, David Pisinger asked the question ‘‘where are the hard knapsack problems?”. Noting that the clas-
sical benchmark test instances were limited in difficulty due to their selected structure, he proposed a set
of new test instances for the 0–1 knapsack problem with characteristics that made them more challeng-
ing for dynamic programming and branch-and-bound algorithms. This important work highlighted the
influence of diversity in test instances to draw reliable conclusions about algorithm performance. In this
paper, we revisit the question in light of recent methodological advances – in the form of Instance Space
Analysis – enabling the strengths and weaknesses of algorithms to be visualised and assessed across the
broadest possible space of test instances. We show where the hard instances lie, and objectively assess
algorithm performance across the instance space to articulate the strengths and weaknesses of algo-
rithms. Furthermore, we propose a method to fill the instance space with diverse and challenging new
test instances with controllable properties to support greater insights into algorithm selection, and drive
future algorithmic innovations.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

It has long been recognised that rigorous evaluation of algo-
rithm performance is a topic deserving greater attention than it
typically receives (Hooker, 1995). The standard practice of report-
ing ‘‘on average” performance of algorithms across a given test
suite, without adequately justifying that the chosen test instances
are fit for purpose, risks misleading conclusions based on biased
experimental results (McGeoch, 2002). This approach also offers
little insight into the unique strengths and weaknesses of algo-
rithms for particular types of test instances with different charac-
teristics that are potentially hidden within a test suite average.

Of course, to enable fair comparisons between studies, it is
important to continue the standard practice of adopting common
benchmarks, inherited and shared between researchers. However,
it is essential that we establish whether these benchmark test
instances have the kind of properties that can support valid conclu-
sions; namely that they are demonstrably diverse, unbiased, repre-
sentative of intended applications, discriminating and challenging
for a wide variety of algorithms. If we establish that the inherited
benchmarks are lacking in any of these properties, we need meth-
ods to generate new test instances with the required characteris-
tics to support rigorous performance evaluation (Hall and Posner,
2010), and drive new algorithm development. It is clear that new
methodologies to evaluate both the suitability of test instance
benchmarks, and the comparative performance of algorithms –
more insightful and nuanced than simple ‘‘on average” reporting
– are still needed, despite calls for the development of a more
empirical science of algorithms over 25 years ago (Hooker, 1994).

In recent years, a new approach – known as Instance Space
Analysis (Muñoz et al., 2018; Muñoz and Smith-Miles, 2020;
Smith-Miles et al., 2014; Smith-Miles and Bowly, 2015) – has been
proposed to answer this call. Test instances from a variety of
sources, whether they are randomly generated, real-world, or clas-
sical benchmarks, can be visualised in a 2D projection of the entire
space of possible test instances. The instance space is constructed
by summarising each test instance as a high-dimensional feature
vector of metrics that capture the intrinsic hardness of a test
instance using a combination of problem dependent and indepen-
dent difficulty measures (Smith-Miles and Lopes, 2012). Utilising
the upper and lower bounds of each feature, the boundary of the
possible test instance space can be projected to a 2D plane using
dimension reduction methods, and the location of existing test
instances can be scrutinised in the instance space to establish their
diversity, unbiasedness and real-world-likeness. Super-imposing
algorithm performance metrics across the instance space, offers

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2020.105184&domain=pdf
https://doi.org/10.1016/j.cor.2020.105184
mailto:smith-miles@unimelb.edu.au
mailto:munoz.m@unimelb.edu.au
mailto:munoz.m@unimelb.edu.au
https://doi.org/10.1016/j.cor.2020.105184
http://www.sciencedirect.com/science/journal/03050548
http://www.elsevier.com/locate/caor

K. Smith-Miles, J. Christiansen and Mario Andrés Muñoz Computers and Operations Research 128 (2021) 105184
the opportunity to infer, using machine learning methods applied
to the experimental data, the broader region where good perfor-
mance can be statistically expected from each algorithm. This
region is known as the algorithm footprint, and its area is an objec-
tive measure of comparative algorithmic power across the broad-
est possible test instance space. Unique regions of strength and
weakness can be identified for each algorithm, and the features
defining these regions can be explored to gain valuable insights
into the conditions under which each algorithm is expected to per-
form well or poorly. Furthermore, this view of the available test
instances offers the opportunity to recognise where the current
benchmarks provide inadequate coverage of the instance space,
and where the generation of new test instances would significantly
augment our ability to understand algorithm performance across a
wide range of test scenarios. Locating target points in the instance
space where no test instances currently exist, evolutionary algo-
rithms can be adopted to fill the instance space with evolved test
instances with controllable properties, in a manner that is often
not possible to achieve by manipulating instance generator param-
eters (Muñoz and Smith-Miles, 2020; Smith-Miles and Bowly,
2015).

Instance Space Analysis has now been successfully applied to a
wide variety of combinatorial optimisation problems (Smith-Miles
et al., 2014; Smith-Miles and Lopes, 2012), as well as continuous
optimisation (Muñoz and Smith-Miles, 2017, 2020), supervised
classification (Muñoz et al., 2018), time series forecasting (Kang
et al., 2017), and anomaly detection (Kandanaarachchi et al.,
2019). It is applicable to any field where there are algorithms
developed and evaluated on suites of test instances, and the char-
acteristics of those test instances can be adequately described with
features that suggest their intrinsic hardness. The tools to support
such analysis and insights are publicly available as a MATLAB tool-
box (Muñoz et al., 2020), and with a web-based user interface
known as MATILDA (Smith-Miles et al., 2019).

In this paper we apply Instance Space Analysis for the first time
to provide new insights into the 0–1 Knapsack Problem (0–1KP).
This binary optimisation problem involves deciding which of a
finite set of items should be included in a knapsack, given the
weight and profit of each item, with the goal to maximize the profit
of the filled knapsack while meeting a fixed capacity constraint on
its total weight. It has long been acknowledged that the classical
instance classes used to test and compare algorithms for 0–1KP
cover only a limited portion of the potential problem space, and
many of these instance classes contain instances that are not con-
sidered difficult to solve for most algorithms (Pisinger and Toth,
1998; Pisinger, 2005; Hill and Reilly, 2000). As the algorithms
designed to solve 0–1KP have grown in sophistication, and compu-
tational resources have become more powerful, the need for more
difficult instance classes to augment the classical test sets and
illustrate the strength of new algorithms has become more press-
ing (Martello et al., 1999). More difficult instances can be produced
from classical instance classes by increasing the number of items
and the magnitudes of the coefficients (Pisinger, 2005). However,
this approach to generating harder test instances classes does not
adequately test an algorithm’s ability to deal with instances that
are relatively small but are difficult to solve on account of their
structural properties.

In response to this inadequacy of the classical instance classes,
several new ones have been proposed in the last two decades
which seek to explore the problem space more thoroughly.
Martello et al. (1999) brought together and refined instance classes
and ideas from earlier studies by Amado and Barcia (1993),
Martello and Toth (1997), Pisinger and Toth (1998), Chvátal
(1980) and Pferschy et al. (1997), to more comprehensively test
the capabilities of the powerful COMBO algorithm (Martello
et al., 1999). Hill and Reilly (2000) studied the complex interplay
2

between the profit and weight correlations, and the resulting cor-
relation structure between the objective function and the con-
straint slackness, demonstrating the impact on algorithm
performance when this is varied beyond random correlations. Fol-
lowing this, in 2005 Pisinger (Pisinger, 2005) designed several new
instance classes which frequently produce relatively difficult
instances for all known algorithms.

A primary goal of the Instance Space Analysis presented in this
paper is to improve our understanding of the underlying similari-
ties between the instance classes proposed by Pisinger and the
harder classical instance classes; in essence, why these instances
are particularly hard. We also investigate the differences between
hard instance classes which make them difficult in different ways,
or to varying degrees for different algorithms. The diversity of all
published 0–1KP test instance suites is explored via an instance
space construction, and a new set of test instances are generated
to fill the instance space. In this manner, we provide a visual
answer to Pisinger’s 2005 question: ‘‘Where are the hard knapsack
problems?”.

In order to construct an instance space for 0–1KP, this paper
builds upon previous efforts to identify features summarising
instance difficulty, much of which has already been exploited by
previous research on automated algorithm selection methods for
0–1KP (Hall and Posner, 2007). In addition to drawing upon the
established literature, we also propose and test some new features
of 0–1KP that help to explain algorithm performance. Earlier
efforts to characterise the difficulty of 0–1KP can be traced back
to 1980 when Balas and Zemel (Balas and Zemel, 1980) defined a
measure of knapsack difficulty based on a combination of the
gap between the optimal and linear relaxation solutions and the
range of item efficiencies. Chung et al. (1988) found that for a
specific formulation of the strongly-correlated instance class the
difficulty is strongly affected by several key features of instances:
the weight of the least heavy item, the quantity added to each
item’s weight to define its profit, and the capacity of the knapsack.
Hall and Posner (2007) also identified several significant features
and applied them in an algorithm selection framework to decide
between a branch-and-bound algorithm and a dynamic program-
ming algorithm, the resulting meta-algorithm being termed
KPCHOICE. Our selected features, based on the existing literature
and some novel metrics, will be described later in this paper.

The remainder of this paper is structured as follows. In Section 2
we present the Instance Space Analysis framework as applied to
the 0–1KP. Specifically, we discuss the 0–1KP problem in its gen-
eral form, before describing the various classes of test instance
benchmarks considered in this paper. We present three state-of-
the-art algorithms to illustrate the comparative study, and the
measures used to evaluate their performance. Finally, the experi-
mental dataset – known as the ‘‘meta-data” – is completed with
the calculation of a comprehensive set of features to describe the
test instances. Once the rationale for these features is presented
at the end of Section 2, the entire set of meta-data for the 0–1KP
study is completely described. In Section 3 we construct an initial
instance space using this meta-data, enabling the existing bench-
mark test instances to be projected and visualised in a 2D plane.
We demonstrate where the hard test instances are located for var-
ious instance classes found in the literature, and assess the diver-
sity of the suite of test instances within the theoretical boundary
of the instance space. Considering algorithm performance, we then
describe and predict the algorithm footprints for our three chosen
algorithms. Combining these machine learning efforts, we are also
able to perform automated algorithm selection to identify which
algorithm is recommended for different regions of the instance
space. The opportunity to generate additional test instances to fill
the instance space is the focus of Section 4, where several methods
are introduced to achieve a more comprehensive set of test

K. Smith-Miles, J. Christiansen and Mario Andrés Muñoz Computers and Operations Research 128 (2021) 105184
instances that reach to the boundaries of the instance space and fill
interior gaps. The augmented meta-data, with the original bench-
marks and our newly generated test instances, is then used to con-
struct a more comprehensive instance space in Section 5 from
which conclusions are drawn in Section 6.
Fig. 1. Summary of the Instance Space methodology proposed by Smith-Miles et al.
(2014), underpinned by the Algorithm Selection Problem framework (in the dotted
box) of Rice (Rice, 1976).
2. Instance Space Analysis

The foundations for Instance Space Analysis (ISA) are firmly
grounded in the Algorithm Selection Framework developed by
Rice (1976) and inspired by the No-Free Lunch theorems of
Wolpert and Macready (1997). Central to the methodology is the
construction of an instance space whereby test instances are repre-
sented as points in a 2D plane, with the region of predicted good
performance of an algorithm being its footprint. Moreover, through
ISA we can identify regions where additional test instances may be
required. New instances with controllable properties can be gener-
ated by targeting these regions, effectively ‘‘stress-testing” an algo-
rithm under all possible conditions (Smith-Miles and Bowly, 2015).

The framework underpinning ISA is illustrated in Fig. 1. At its
core there are six component spaces, the first of which is the ill-
defined problem space, P, containing all possible 0–1KPs. We
assume the existence of a subset of instances, I, for which we have
computational results known as meta-data. Each instance x 2 I is
represented as a vector fx in a feature space, F, where each dimen-
sion corresponds to a measure of a mathematical or statistical
property that correlates in some way to the performance of various
algorithms. Next is the algorithm space,A, comprising a portfolio of
available algorithms to solve the instances in I. The performance
space, Y, consists of a performance metric ya;x of an algorithm
a 2A when solving a problem instance x, which could be based
on the computational cost incurred while obtaining a satisfactory
solution, or the quality of a solution obtained for a fixed computa-
tional budget. By projecting the feature data into 2D using dimen-
sion reduction methods (perhaps principal component analysis, or
customised linear algebra and optimisation methods as proposed
in Muñoz et al. (2018) to assist visualisation), we obtain the in-
stance space, which allows the visual inspection of trends in algo-
rithm performance and instance features. Through inspection of
the instance space, we are able to gain insights into the kinds of
instances that are well suited to each algorithm’s strengths, and
those that create challenges and expose weaknesses. Moreover,
the mapping g fx; ya;x

� �
is learned from the meta-data to predict

the performance of a on new instances, supporting automated
algorithm selection.

It should be noted that the ISA methodology is iterative. That is,
an initial instance space is created and explored based on currently
available meta-data. From this fist iteration we may identify gaps
in the instance space where new test instances need to be gener-
ated (Smith-Miles and Bowly, 2015). Once these new instances
are added to I, a different set of features may best describe the
algorithms’ performance and the 2D axes defining the instance
space are likely to change. This entire process can be repeated until
convergence, in other words, when the generated instances fully
occupy the interior of the instance space boundary, and the fea-
tures explaining variations in algorithm performance in a insight-
ful manner have stabilised. In the following sections, we describe
the details of the meta-data collected for construction of the initial
instance space.

2.1. Problem space

The 0–1 Knapsack Problem (0–1KP) is defined as follows: Con-
sider a set of n items with integer profits p1; . . . ; pnf g and integer
weights w1; . . . ;wnf g. We assume without loss of generality that
3

all profits and weights are positive. The goal is to select a subset
of items such that the sum of its profits is maximised while the
total weight does not exceed the capacity of the knapsack, c.
Expressed as an integer programming problem, the 0–1KP formu-
lation is:

maximize
Xn

j¼1
pjxj

subject to
Xn
j¼1

wjxj 6 c

xj 2 0;1f g; j ¼ 1; . . . ;n

where xj is a binary variable that determines whether item j is
included in the knapsack, i.e., if xj ¼ 1 then item j is included, other-
wise the item is not included. Other variations of the Knapsack
Problem (KP) permit multiple copies of items, however the 0–1KP
is a binary decision problem to determine if a single copy of an item
is selected for inclusion in the constrained knapsack.

The efficiency of an item is defined as its profit divided by its
weight. If the items in a given KP instance are sorted in order of
decreasing efficiency, we can easily obtain upper and lower bounds
on the value of the optimal solution by the following procedures. A
lower bound on the optimal value of a given KP instance is easily
obtained by finding any feasible solution. We can do this by apply-
ing the greedy algorithm: add items to the knapsack in order of
decreasing efficiency, skipping any items which do not fit in the
remaining capacity. An upper bound on the optimal value of a
given KP instance can be obtained by finding the optimal value
of a relaxation of the problem; specifically, the linear relaxation
(in which each xj is in 0;1½ � rather than 0;1f g. We can find the opti-
mal solution of this relaxation by adding items to the knapsack in
order of decreasing efficiency, then when we find an item which
does not fit in the remaining capacity, add a fraction of that item
such that the knapsack is completely filled. This last item is called
the split item. Since all feasible solutions to an integer KP instance
have integer value, an improved upper bound may be obtained by

K. Smith-Miles, J. Christiansen and Mario Andrés Muñoz Computers and Operations Research 128 (2021) 105184
rounding down the upper bound obtained from the linear relax-
ation, if it is not already an integer.

An instance of 0–1KP may be altered by requiring that a partic-
ular item i must or must not be included in the knapsack packing.
The resulting problem may also be expressed as a knapsack prob-
lem by removing item i from the item set and decreasing the knap-
sack capacity by wi if the item must be included. If the item must
not be included there is no change in the knapsack capacity. This
property of KP is very useful as it allows us to obtain insights into
the optimal solution for a particular instance by solving smaller,
related instances. For instance, if the lower bound of the original
knapsack problem is greater than or equal to the upper bound
obtained after ‘‘fixing” an item as in or out of the packing, there
are no solutions with this fixing which improve on the known
lower bound solution, and so we can safely fix this item in the op-
posite way, reducing the number of variables which need to be
actively considered.

An important concept for the algorithms which we compare in
this paper is the core problem, which considers only a core subset of
items normally having similar efficiency to the split item. If the
number of items included in the core problem is adequate, an opti-
mal solution to the original instance can be obtained by fixing all
variables outside the core subset based solely on their respective
items’ efficiencies, then solving the core problem. The algorithms
under consideration apply various methods to finding and solving
this core problem. Unfortunately, it is difficult to predict the min-
imal size for the core problem which will be adequate to ensure
(certainly or with high probability) that an optimal solution for
the overall problem will be found (Pisinger, 1995). Furthermore,
when the distribution of item weights in the core problem is not
uniform, the core problem may need to be larger to obtain good
solutions and need not be particularly easy to solve (Pisinger,
1999a). Since the latter phenomenon is driven by instance struc-
ture, when assessing the performance of algorithms based on solv-
ing the core problem it is important to understand the character of
the instances being used to test those algorithms.
2.2. Instance subset

KP instance classes are typically defined with respect to a data
range parameter (denoted herein by R) which limits the magnitude
of the weight and profit coefficients, to ensure a fair comparison
between different instance classes. In this paper we will consider
instances with n ¼ 1000 items and data range R ¼ 1000 (note how-
ever that the construction method for some instance classes results
in individual item profits greater than R). We generate 200
instances from each instance classes summarised in Table 1. Many
of these instance classes are derived from those used in Martello
et al. (1999) and Pisinger (2005), in which detailed descriptions
can be found. Our specific generation procedures for the instance
set1 are as follows.

Of the 200 instances generated for each instance class, the
capacity of instance number k is set to d k

201

Pn
j¼1wje (based on the

item weights generated for that instance). This is intended to
ensure that a wide range of reasonable capacities is explored by
the instance space. In several classes which would normally use
constant parameters (frequently R=10) to generate each item’s
profit from its weight or vice versa, we instead generate a random
offset from an interval including the typical value. For example, the
ordinary procedure for generating an Almost Strongly Correlated
class randomly generates the unit weights with a discrete uniform
distribution in ½1;R�, then generates each item i’s profit in the range
1 Available for download fromhttps://matilda.unimelb.edu.au/matilda/problems/
opt/knapsack.

4

½wi þ D� �;wi þ D� �� using the constants D ¼ R=10 and
� ¼ R=500. We instead randomly choose D and � independently
for each instance in the ranges ½R=20;3R=20� and ½R=500;3R=500�
respectively. Similar alterations have been made to all of the
instance classes whose definitions in Table 1 include a parameter
D. In general, choosing different parameters of similar magnitude
in this way does not substantially alter the character of these
instance classes.

A more substantial alteration has been made to the Similar
Uncorrelated Weights instance class. As in the normal generation
procedure the item profits are randomly generated with a uniform
random distribution in ½1;R�; however, instead of randomly gener-
ating item weights in the range [100000;100100], we generate the
item weights in the range ½R� D;R� instead, with D randomly cho-
sen for each instance in the range ½R=20;3R=20� as before. This is
intended to facilitate a fairer comparison between instance classes,
although it does significantly change the character of these
instances; in particular it no longer satisfies the definition of ‘‘very
similar coefficients” specified by Amado and Barcia (1993) in the
original proposition of this class. The Spanner-type classes are gen-
erated as in Pisinger (2005) by generating a pair of ‘‘spanner set”
items, normalising them, and adding items by taking integer mul-
tiples of the spanner set items. However for each instance we ran-
domly generate a multiplier limit m between 5 and 15 rather than
using a fixed multiplier limit. Furthermore, we divide the spanner
item coefficients bym rather thanm=2 to ensure that the final item
weights do not exceed R.

We also include in our instance subset several classes not found
in previous papers. These classes were motivated by filling holes
and pushing boundaries in early instance space experiments not
presented in this paper. The Quadratic Fit and Cubic Fit instances
are generated by the following procedure. First, we create n=10
temporary ‘‘dummy” items by choosing their weights and profits
with a uniform random distribution in ½1;R� (as per the Uncorre-
lated instances). Second, we find the quadratic or cubic curve (with
item weights as the independent variable) which best fits these
points in a least-squares sense. Finally, we create the actual items
for the final knapsack problem by choosing their weights and prof-
its with a uniform random distribution in ½1;R�, then substituting
into the quadratic/cubic equation obtained in the previous step
to obtain the profit for each item (with a minimum profit of 1
and rounding up to the nearest integer). The Random Ceiling
instances are generated by choosing a profit increment qj randomly
from 0;1;2f g for all j 2 1; . . . ;Rf g. We set each item’s weightwi to a
random integer between 1 and R and each item’s profit
pi ¼ wi þ qwi

. This ensures that items with the same weight also
have the same profit value, similar to the Profit Ceiling class. The
Profit Ceiling Large Only instance class generation procedure sets
each item’s weight wi to a random integer between R=2þ 1 and
R, and assigns profits in the same way as the Profit Ceiling class
(pi ¼ 3dwi=3e).
2.3. Algorithm space

The portfolio of algorithms considered in the meta-data com-
prises EXPKNAP, MINKNAP and COMBO to define the algorithm
space, A, of which the latter two are considered state-of-the-art
(Pisinger and Saidi, 2017).

EXPKNAP (Pisinger, 1995) is a branch-and-bound algorithm
which builds a growing core about the split item. Items are tested
to see if they are a good choice for the core or rejected, and the core
size expands, testing new items until an optimal solution is found.

MINKNAP (Pisinger, 1997) is a dynamic programming-based
algorithmwhich also builds a core around the split item, but places
more emphasis on ensuring that the size of the core is minimal.

https://matilda.unimelb.edu.au/matilda/problems/opt/knapsack
https://matilda.unimelb.edu.au/matilda/problems/opt/knapsack

Table 1
Instance classes used in the meta-data, showing their source (* denotes new instance classes) and generation parameters. ½a; b� signifies a random integer between a and b with
uniform distribution. For each applicable instance the following quantities are chosen at random: D 2 ½ R20 ; 3R20�, � 2 ½ R500 ; 3R

500�, f 2 ½3;10�.

Instance family wj pj Balas and
Zemel
(1980)

Martello
and Toth
(1988)

Martello
and Toth
(1997)

Pisinger
(1999b)

Pisinger
(1995)

Pisinger
(1997)

Martello
et al.
(1999)

Pisinger
(2005)

[*]

Uncorrelated 1;R½ � 1;R½ � U U U U U U U U

Weakly
Correlated

1;R½ � wj � D;wj þ D
� �

U U U U U U U U

Strongly
Correlated

1;R½ � wj þ D U U U U U U U U

Subset Sum 1;R½ � wj U U U U U U U U

Inverse
Strongly
Correlated

pj þ D 1;R½ � U U U U

Almost Strongly
Correlated

1;R½ � wj þ D� �;wj þ Dþ �� �
U U U U

Similar
Uncorrelated
Weights

R� D;R½ � 1;R½ � U U U

Even–Odd
Strongly
Correlated

1;R=2½ � � 2 wj þ R=10 U

Even–Odd
Subset Sum

1;R=2½ � � 2 wj U

No Small
Weights

R=2þ 1;R½ � wj � D;wj þ D
� �

U

Spanner
Uncorrelated

span. size
¼ 2

mult. limit 2 ½5;15�, see
text

U

Spanner
Weakly
Correlated

span. size
¼ 2,

mult. limit 2 ½5;15�, see
text

U

Spanner
Strongly
Correlated

span. size
¼ 2,

mult. limit 2 ½5;15�, see
text

U

Multiple
Correlated

1;R½ � wj þ 3R=10 if
mod wj; f

� � ¼ 0,
wj þ 2R=10 otherwise

U

Profit Ceiling 1;R½ � 3 wj=3
� �

U

Circle 1;R½ � 2=3
ffi
4R2 � w� 2Rð Þ2

q
U

Quadratic Fit 1;R½ � aw2
j þ bwj þ c, see text U

Cubic Fit 1;R½ � aw3
j þ bw2

j þ cwj þ d, see

text

U

Random Ceiling 1;R½ � See text U

Profit Ceiling
Large Only

R=2þ 1;R½ � 3dwj=3e U

K. Smith-Miles, J. Christiansen and Mario Andrés Muñoz Computers and Operations Research 128 (2021) 105184
The algorithm expands out through the items in the instance in a
cyclic pattern of growth and culling, periodically rechecking the
core against boundaries and rejecting unpromising items.

COMBO (Martello et al., 1999) is also a dynamic programming-
based algorithm which combines elements from MINKNAP and
Martello and Toth (1997), as well as several new ideas. As com-
pared with MINKNAP, the COMBO algorithm generates the starting
core problem in a more sophisticated manner, employs surrogate
relaxation of cardinality constraints to obtain upper bounds, may
briefly examine items outside the core to improve known feasible
solutions, and checks for situations where the item weights share a
common multiplicative factor which may be removed.

2.4. Performance space

Since all of the algorithms in the preceding section solve 0–1KP
to optimality, our performance metric is the wall-clock time
required for each algorithm to obtain and verify the optimal solu-
tion for the instance when run on the Spartan HPC system (Meade
et al., 2017), using one virtual machine 2.1 GHz core with 8 GB
RAM for each test. Appendix A presents statistical performance of
5

the CPU times for the three algorithms. If for a given algorithm
and instance this time is less than 0.1 s, we run the algorithm mul-
tiple times and take the average runtime to obtain a reliable esti-
mate. In cases where EXPKNAP fails to solve a given instance in
less than 15 s, its performance metric for that instance has been
arbitrarily set to 15 s. Since this is nearly two orders of magnitude
more time than COMBO requires to solve any instance in our
instance subset, this serves as a reasonable placeholder for failure.

For any given instance the ISA toolkit defines an algorithm as
having ‘‘good” (or ‘‘bad”) performance if its performance metric
falls with (or outside) a user-defined tolerance percentage com-
pared to the best-performing algorithm. For the purposes of this
paper we defined an algorithm’s performance as ‘‘good” if it
requires at most 20% more time to obtain the optimal solution
compared to the best performing algorithm in the portfolio, and
‘‘bad” if this condition is not satisfied.

2.5. Feature space

The features which compose our feature space are presented in
Table 2. Although the instances we study in this paper all have a

Table 2
Description of 13 out of 23 feature concepts used in our 0–1KP meta-data

Feature Name Bound Description

1. Dominant Pairs ½0;1� Proportion of item pairs i; j for which pi P pj andwi 6 wj OR pj P pi and wj 6 wi , excluding identical items. Similar to Hall and
Posner (2007).

2. Smaller Better Pairs ½0;1� Proportion of item pairs i; j for which pi=wi > pj=wj and wi 6 wj OR pj=wj > pi=wi and wj 6 wi .
3. Capacity Fraction ½0;1� Capacity of the knapsack divided by the sum of the weights of all items.
4. Capacity Fraction Distance

From 1=2
½0;1� jCapacity Fraction� 0:5j � 2

5.Correlation Coefficient ½�1;1� Correlation coefficient of item weights and profits, viewed as points ðwi;piÞ in R2

6. Approximation Gap ½0;1� Difference between the linear relaxation upper bound and greedy algorithm lower bound (similar to Hall and Posner (2007))
divided by the profit assigned to the most profitable item.

7.Coefficient of Variation of
Weights

½0;1� Standard deviation of item weights divided by average item weight, as in Hall and Posner (2007). Normalised as per (1) with
D ¼ 1.

8. Coefficient of Variation of
Profits

½0;1� Standard deviation of item profits divided by average item profit, as in Hall and Posner (2007). Normalised as per (1) with
D ¼ 1.

9. Coefficient of Variation of
Efficiencies

½0;1� Standard deviation of item efficiencies divided by average item efficiency. Normalised as per (1) with D ¼ 5.

10. Possible Item Fix
Proportion

½0;1� Proportion of items which can be determined to be included or excluded in the optimal packing of the knapsack by fixing them
as in or out of the knapsack and comparing the value of the linear relaxation solution of the resulting problem with the value
of the greedy solution of the original problem.

11. Subset Sum Likeness ½0;1� Proportion of items with efficiency within 0:05% as the split item. Intended to measure the similarity of the instance to a
Subset Sum instance.

12. Even–Odd Likeness ½0;10� Equal to Subset Sum Likeness, but multiply by 10 if the weights of the items that have the split item’s efficiency have a greatest
common divisor greater than 1. Intended to measure the similarity of the instance to an Even–Odd Subset Sum instance, or a
Profit Ceiling instance with sufficiently large capacity.

13. Modified Balas-Zemel
Measure

½0;1� Modified version of the measure defined in Balas and Zemel (1980) using the value of the greedy solution in the place of the

value of the integer optimum solution: Linear Relaxation value�Greedy Solution value
ð1=2Þmaxi2 1;...;Nf g jpi�ðwi�Efficiency of Split ItemÞjNormalised as per (1) with D ¼ 500.

14. Maximum Cardinality ½0;1� Upper bound, defined in Martello and Toth (1997) Eq. (11), on the number of items which may potentially be included in the
optimal solution, divided by n.

15. Minimum Cardinality ½0;1� Lower bound, defined in Martello and Toth (1997), on the number of items which may potentially be included in the optimal
solution found by trying to add items in descending order of weight, divided by n.

16. Cardinality Gap ½0;1� Difference between Maximum Cardinality and Minimum Cardinality.
17. First Weight ½0;1� Weight of the least heavy item divided by the weight of the heaviest item. Similar feature used in Chung et al. (1988).
18. First Profit ½0;1� Profit of the least profitable item divided by the weight of the most profitable item.
19. Polyfit Linear ½0;1� Consider the items as defining points ðwi;piÞ in R2, and find the linear equation PðwÞ ¼ awþ bwhich best fits these points in a

least-squares sense. Define �p ¼ 1
n

Pn
i¼1pi . Then the value of the feature is max 1�

Pn

i¼1ðpi�Pðwi ÞÞ2Pn

i¼1ðpi��pÞ
2 ;0

	

20. Polyfit Quadratic ½0;1� As Polyfit Linear, but considering a quadratic equation PðwÞ ¼ aw2 þ bwþ c.
21. Polyfit Cubic ½0;1� As Polyfit Linear, but considering a cubic equation PðwÞ ¼ aw3 þ bw2 þ cwþ d.
22. Before/After Split Ratio ½0;1� Let the number of items with efficiency strictly better than that of the split item be a, and the number of items with efficiency

equal to or worse than that of the split item be b. If a > b then the feature is defined as arctanðab�1Þ
p þ 1

2. Otherwise it is defined as
arctanð1�b

aÞ
p þ 1

2

23. Greedy Unused Capacity ½0;1� If the instance has no item pairs i; j such that wi – wj then this feature defaults to 0. Otherwise it is defined as the capacity
unused by the greedy solution, divided by the smallest non-zero difference between any two items’ weights, then normalised
as per (1) with D ¼ 100.

K. Smith-Miles, J. Christiansen and Mario Andrés Muñoz Computers and Operations Research 128 (2021) 105184
similar number of items and range of coefficients, where appropri-
ate we have scaled the features so that they can be applied to
instances where these assumptions do not apply. In cases where
the natural interpretation of a feature is unbounded, or the typical
range of variation in the feature with respect to our instance subset
is considerably smaller than the theoretical range, we apply the
following normalisation process:

normalised feature tan�1ðraw feature value=DÞ
p=2

ð1Þ

The value of D is specified independently for each feature where
this normalisation is applied. In each case we have chosen D so that
the mapping in (1) is reasonably close to linear across the range of
feature values which are typical with respect to our instance sub-
set. Almost all of these features are also applied to the reduced
knapsack. The Possible Item Fix Proportion for the reduced knap-
sack is almost always zero and the Even–Odd Likeness may be mis-
leadingly high if the reduced knapsack is small, so these features
are excluded. This means that in total 44 features are measured
for each knapsack instance based on the 23 feature concepts
described in Table 2.

The choice of features must be computationally tractable, but
since our focus is insights rather than automated real-time algo-
6

rithm selection, we permit features with greater computational
complexity than real-time automated algorithm selection can
afford. In particular, we require sorted lists of the items, based
on efficiency, profit and weight, in order to calculate many of the
features, which the 0–1KP algorithms under consideration go to
some effort to avoid. Once this sorting is performed once for a
given instance, the only features with time complexity greater than
OðnÞ are the Dominant Pairs and Smaller Better Pairs features. The
worst-case time complexity of calculating these features is Oðn2Þ,
but by dividing the (weight, profit) space into a grid of smaller rect-
angles and identifying how many items are in each rectangle, we
can avoid many trivial item-pair comparisons and for reasonable
0–1KP instances obtain far better practical performance than the
naive approach of comparing each pair. We do avoid the use of fea-
tures which rely upon knowledge of the optimal solution of an
instance.
3. Constructing an initial instance space

The Instance Space Analysis Toolkit is a MATLAB based set of
tools that facilitate the construction of an instance space (Muñoz
et al., 2020). The toolkit contains both an automated data process-
ing pipeline, and functions that perform specific stages of the anal-

K. Smith-Miles, J. Christiansen and Mario Andrés Muñoz Computers and Operations Research 128 (2021) 105184
ysis. The implementation details for constructing an initial 0–1KP
instance space are described in this section with full reproducibil-
ity enabled with the meta-data and code available from
https://matilda.unimelb.edu.au/matilda/problems/opt/knapsack.

As an initial feature preprocessing step in the pipeline, each fea-
ture is bounded using the procedure described in Section 2.5, and
then the variance is stabilised and distribution normalised using
a one parameter Box-Cox transformation. Finally, each feature is
standardised to N 0; 1ð Þ using a z-transformation.

The toolkit also provides routines for automatically selecting
the most informative features, based on their correlation with
algorithm performance. The top N most correlated features are
considered for each algorithm, with some common to several algo-
rithms. We select N ¼ 8, creating a subset of no more than 8 fea-
tures for each of our 3 algorithms. These features are then
clustered, with a Pearson correlation used as a dissimilarity metric,
to identify clusters of similar features. Taking one feature from
each cluster, various candidate subsets of features are tested for
how well they can discriminate between easy and hard instances.
This is evaluated by projecting the instances to 2D using principal
component analysis, and then using Random Forests, a machine
learning classifier, to separate the instances labelled with ‘‘good”
or ‘‘not good” performance based on the performance metric
described in Section 2.4. The candidate subset of features that
enables the Random Forest to achieve the best accuracy in predict-
ing algorithm performance is chosen as the ‘‘optimal” subset of fea-
tures. Using this feature selection process for our 0–1KP meta-data,
eight features are selected by MATILDA: those numbered 1, 10, 12,
18 and 21 for the original 0–1KP instance, and those numbered 7, 9
and 23 for the reduced instance.

Finally, we use the Projecting Instances with Linearly Observ-
able Trends (PILOT) method2 Muñoz et al. (2018), to find a projec-
tion from 8D to 2D, such that algorithm performance and feature
values increase linearly from one edge of the instance space to the
opposite, thereby assisting the visualisation of directions of hardness
and feature correlation to support insights. To find the projection, we
make use of BFGS (Broyden, 1970) as an optimisation algorithm.
However, the underlying optimisation problem that PILOT solves is
convex but highly ill-conditioned, resulting on infinite solutions
spanning a line on the space. As such, the solution is dependent on
the starting point for a non-stochastic algorithm such as BFGS.
Therefore, we calculate 30 different projections and select the one
with the highest topological preservation, defined as the correlation
between high- and low-dimensional distances. Details of the method
are provided in Muñoz et al. (2018).

Each instance x can now be projected from a point in an 8D fea-
ture space f ðxÞ, to a point in a 2D instance space ðZ1; Z2Þ, via the
optimised linear transformation found by the PILOT method, as
summarized by Eq. (2).

Z1

Z2

� �
¼

0:1894 0:2337
0:0849 0:2904
0:3421 �0:0741
0:0150 �0:2787
�0:2867 �0:3419
�0:2937 0:0156
0:2840 �0:3769
0:2964 �0:2181

2
66666666666664

3
77777777777775

T Dominant Pairs
Possible Fix Prop:

First Profit
Polyfit Cubic

Even� Odd Likeness
Red: Coeff: Var: Weights
Red: Coeff: Var: Effic

Red: Greedy Unused Capac:

2
66666666666664

3
77777777777775

ð2Þ
2 In previous work we referred to this method as Prediction Based Linear
Dimensionality Reduction (PBLDR).

7

The two axes defining the instance space in the ðZ1; Z2Þ plane
are linear combinations of the 8 selected features. Projecting all
instances in our meta-data set, Fig. 2 shows each instance as a
point with its ðZ1; Z2Þ coordinate location determined by Eq. (2).
Different colors identify the various classes: instances proposed
by Pisinger (2005) in brown; instances proposed in earlier papers
in black; as well as the additional instance classes we have
designed to add diversity to our initial meta-data (designated as
‘Designed’ instance classes to differentiate them from the evolved
instances we will consider later) in orange. Further breakdown of
the various sub-classes within these instance sets is shown in
Fig. 3.
3.1. Where are the hard knapsack instances?

In order to answer the key question of where the hard knapsack
instances lie in the instance space, we must inspect algorithm per-
formance to identify the location of easy and hard regions, and
determine which instances are providing challenge for algorithms.
Fig. 4 shows the performance metric (run-time) for each of the
three algorithms, with a color scale ranging from scaled minimum
(black) to scaled maximum (orange) values. The scaling is based on
a single algorithm’s range of run-times for the left-side plots (i.e.
relative to its own range), and the range of run-times across all
algorithms for the right-side plots (i.e. relative to the portfolio
range).

Superimposing the distribution of the 8 features across the
instance space in Fig. 5 permits visual comparison of the properties
of various instances based on their location. Combined with an
inspection of algorithm performance in Fig. 4, we have all the nec-
essary perspectives to draw insights from the Instance Space Anal-
ysis and answer the question of ‘‘where are the hard knapsack
instances”, and explain what makes them hard.

The EXPKNAP algorithm’s performance on any given instance
generally falls into one of two categories; either the instance is
solved very quickly or not at all within the 15 s time limit. Most
of the instances which are solved quickly lie in the upper part of
the space (in the positive Z2 direction). There are also a few clusters
of instances in the lower-left part of the space which EXPKNAP
solves successfully; most of these instances are in the Subset
Sum or Random Ceiling instance classes. While EXPKNAP does
solve some of these instances faster than either MINKNAP or
COMBO, its superiority in these areas is far less important than
its inability to solve many other instances in a reasonable times-
pan. As such its overall performance is not competitive with
COMBO and MINKNAP.

For COMBO andMINKNAP the most difficult instances are found
in the lower part of the instance space i.e. for negative values of Z2,
and on the left side or middle of the space. These ‘difficult’ areas
are characterised by lower values of the Possible Item Fix Propor-
tion and Dominant Pairs features. We would intuitively expect that
instances in which few items are obviously ‘better’ than other
items, and few items can be trivially fixed as in or out of the opti-
mal packing, would be harder to solve. The Polyfit Cubic feature
has large values across the ‘difficult’ area but also in areas of the
instance space which are less difficult. Furthermore, within most
of the instance classes the more difficult instances for COMBO
and MINKNAP tend to be lower in the instance space, no matter
whether the instance class as a whole is easy or hard.

A closer inspection of the instance space reveals that the ‘diffi-
cult’ area of the instance space has two distinct clusters with gaps
in between that are occupied by only a few instances. In the fol-
lowing sections we will discuss the underlying properties of these
clusters with a view to understanding the properties which distin-
guish instances in each cluster.

https://matilda.unimelb.edu.au/matilda/problems/opt/knapsack

Fig. 2. Instance classes in the initial 0–1KP instance space, with axes given by Eq.
(2).

K. Smith-Miles, J. Christiansen and Mario Andrés Muñoz Computers and Operations Research 128 (2021) 105184
3.1.1. Instances with strong correlation
The cluster of hard instances around Z1 ¼ 1 and Z2 ¼ �1 is char-

acterised by a large coefficient of variation of efficiencies in the
reduced knapsack. This implies that while these instances contain
some items with significantly varying efficiencies, it is not trivial to
determine whether or not many of these items belong in the opti-
mal knapsack packing. These instances also typically have a high
value of the Greedy Unused Capacity feature in the reduced knap-
sack, although they share this distinction with some Quadratic and
Cubic Fit instances on the right-hand side of the space which are
not as difficult.

The instances on the lower side of this cluster have the interest-
ing property that while they are particularly difficult for MINKNAP,
the COMBO algorithm finds many of them comparatively easy; this
is most clearly illustrated in Fig. 6. These instances are primarily
drawn from the Strongly Correlated, Almost Strongly Correlated
and Even–Odd Strong instance classes. Since the COMBO algorithm
was motivated by a desire to improve on the performance of earlier
algorithms (including MINKNAP) when applied to Strongly Corre-
lated instances, the relatively good performance of COMBO on
these instances is not unexpected.

Some instances from the Circle and Multiple Strongly Corre-
lated instance classes proposed by Pisinger (2005) form dense
groups on the upper side of the strong-correlation cluster. Com-
pared to the instances on the lower side they are similarly difficult
for MINKNAP but harder for COMBO. This suggests that the under-
lying reasons why all of these classes are relatively difficult are
similar, but that the less direct approach used by the Circle and
Multiple Strongly Correlated instance classes to achieve this diffi-
culty are not handled as well by the tools which distinguish
COMBO from MINKNAP.

This cluster also contains a few instances from the Profit Ceiling
Large Only instance class in a line which extends into the gap sep-
arating the two high-difficulty clusters. We defer further analysis
8

of this group of instances until after an examination of the second
cluster.

3.1.2. Instances with many similar items
The cluster of instances around Z1 ¼ �1:5 and Z2 ¼ �0:5 is pri-

marily composed of instances from the Random Ceiling, Profit Ceil-
ing, Subset Sum-type and Spanner-type instances. These instance
classes share the property that each instance contains a large num-
ber of items with identical efficiencies, and are particularly charac-
terised by high values of the Even Odd Likeness feature. However,
there are significant differences between the instance classes in
terms of their difficulty.

The Random Ceiling and Subset Sum instances are typically
easy for all three algorithms. The Even–Odd Subset Sum instances
are typically not solved within the 15 s time limit by EXPKNAP and
are quite difficult for MINKNAP to solve, but are relatively easy for
COMBO to solve. Many of the Spanner-type instances are fairly dif-
ficult for all three algorithms to solve; those which are easier (often
from the Spanner Uncorrelated class) are found higher in the
instance space, in the direction of the easier instances from other
classes.

The Profit Ceiling instances are separated into two main groups;
a larger cluster above a smaller line. The upper cluster contains
instances which have lower capacity fractions, and are relatively
easy for MINKNAP and COMBO. The lower line contains instances
which have high capacity fractions, some of which are very difficult
for both MINKNAP and COMBO. Notably the COMBO algorithm has
a relatively small advantage over MINKNAP with respect to these
instances.

The separation of these instance classes from the strong-
correlation cluster reflects a clear difference in character between
the two types of problems. The difficulty of the Even–Odd Subset
Sum instances for MINKNAP and some of the Spanner-type and
Profit Ceiling-type instances for both MINKNAP and COMBO are
based not only on the large number of similar-efficiency items,
but also upon special properties of the item weight and profit dis-
tributions which make optimality difficult to prove.

The Profit Ceiling Large Only instance class has a similar separa-
tion between a higher, easier cluster of low capacity fraction
instances and a lower, often harder line of high capacity fraction
instances. The hardest instances from this class are harder for
COMBO than those in the Profit Ceiling class, or indeed any other
instance class among those studied here. However, in the instance
space the instances from this class are far to the right of the Profit
Ceiling instances, and are in fact closer to the high-correlation clus-
ter. This phenomenon is primarily caused by the Profit Ceiling
Large Only instances having a large value of the First Profit feature,
a distinction they share with the Quadratic and Cubic Fit instances
on the far right-hand side of the space.

Since the Profit Ceiling Large Only instances are difficult not
only by virtue of their structure (characteristic of the left-hand
cluster) but also through simply having larger problem data coeffi-
cients (a more brute-force approach to difficulty) it does not seem
entirely unreasonable that the Profit Ceiling Large Only instances
should be somewhat separate in the instance space from the Profit
Ceiling, Spanner and Even–Odd Subset Sum instances. However,
we would not expect them to be so close to the high-correlation
cluster, given that their problem structure and algorithm perfor-
mance characteristics are quite different.

It is worthwhile to note that the increased difficulty of the Profit
Ceiling Large Only instance class over the Profit Ceiling class may
not be entirely ‘fair’. As a side effect of altering the general distri-
bution of the item weights and profits to remove small items, the
Profit Large Only class increases the average item weight and hence
the capacity of the knapsack (since this is defined as a fraction of
the sum of item weights). Since we restricted our instances to have

Fig. 3. Breakdown of various instance classes described in Table 1 within the initial 0–1KP instance space.

K. Smith-Miles, J. Christiansen and Mario Andrés Muñoz Computers and Operations Research 128 (2021) 105184
a maximum weight per item, as was done in Martello et al. (1999)
and elsewhere, we observe that the Profit Ceiling Large Only
instances are more difficult. If we instead restricted the maximum
knapsack capacity, the Profit Ceiling Large Only type of structure
might not result in harder instances than the Profit Ceiling class.
Future investigation into the relative difficulty of knapsack
instance classes should bear this potential source of bias in mind.
3.2. Learning algorithm footprints and automated algorithm selection

An advantage of visualising the instances within a 2D instance
space is that we can observe ‘‘regions” of strength for each algo-
rithm. Also, the space can be used for automated algorithm selec-
9

tion for untested instances. That is, given the coordinates of an
untested instance, we can identify the algorithmmost likely to per-
form best. For this task, we employ a machine learning model
known as a support vector machine (SVM) with a polynomial ker-
nel. For each algorithm, a SVM is trained with the instance space
coordinates as the input, and the binary ‘‘goodness” performance
metric described in Section 2.4 as output. The SVM is finely tuned
using Bayesian Optimisation and validated using 5-fold cross-
validation.

The results of the three trained SVMs are shown in Fig. 7, along
with an automated algorithm selection recommendation. Each
algorithm’s SVM makes a binary prediction of whether the algo-
rithm performance metric will be good or bad for each instance.

Fig. 4. Scaled algorithm performance metric (run-time) for each algorithm (per row): relative to its own performance range (left column), and relative to the algorithm
portfolio’s range (right column).

Fig. 5. Distribution of features across initial 0–1KP instance space.

K. Smith-Miles, J. Christiansen and Mario Andrés Muñoz Computers and Operations Research 128 (2021) 105184
The automated algorithm selection recommendation is then based
on examining, for each instance, the predictions of each the three
SVMs. In the case of multiple algorithms predicted to achieve good
performance, the SVM with the highest precision is trusted to give
the recommendation.
10
The combined SVM selects COMBO as the algorithm most likely
to perform the best across most of the instance space, with the
exception of a small area at the top on which MINKNAP is selected.
Comparing the individual algorithm predictions we see that MIN-
KNAP is predicted to perform well across about the upper half of
the space, but the COMBO prediction has higher precision and

Fig. 6. Comparison between MINKNAP and COMBO performance using the quantity
loge

tMINKNAP
tCOMBO

 �
. Very dark points indicate instances where MINKNAP is significantly

faster than COMBO. Grey points indicate similar performance, with paler points
indicating faster COMBO times. The color range is truncated above 5; for the few
instances beyond this point COMBO is clearly the superior algorithm..

K. Smith-Miles, J. Christiansen and Mario Andrés Muñoz Computers and Operations Research 128 (2021) 105184
hence overrules it. This outcome matches with our overall under-
standing of these algorithms; the MINKNAP algorithm can only
be expected to outperform COMBO when applied to easier
instances where the more sophisticated and complicated elements
of COMBO are unnecessary. The SVM does not select EXPKNAP
anywhere in the instance space.

Fig. 8 shows which algorithms actually have good performance
for each instance, and the best algorithm for each instance. The
predictions made by the SVM appear reasonable when compared
to this figure. Furthermore, even though the SVM only considers
whether an individual algorithm’s performance is good or bad (ac-
cording to our definition) without any further detail, the SVM pre-
diction also seems reasonable with respect to the more nuanced
view of the performance data provided by Figs. 4 and 6.
4. Generating new instances

The existing classes of knapsack instances available in the liter-
ature cover a wide range of problem instance characteristics, but
do not necessarily provide a representative sample of all possible
knapsack instances. Attempting to create a fully representative
set of test instances is likely to be both infeasible in terms of the
number of instances required, and arguably unnecessary given
the set of possible knapsack instances may include many which
are unlikely to be encountered in practical applications.

It is nevertheless useful to consider how the set of existing
instance classes can be extended to obtain new instances which
have novel properties and are potentially difficult to solve. In par-
ticular, we expect that the instance space will give us a more reli-
able and illuminating perspective with respect to the Knapsack
Problem as a whole if we repeat the Instance Space Analysis with
a more diverse and broadly representative set of test instances.

Given the initial set of existing knapsack instances and their
resulting instance space presented in the previous sections, we
now seek to produce new instances which are dissimilar to any
existing instances. In general this means we are interested in filling
‘holes’ in the instance space or pushing beyond the outer boundary
11
of the existing instances in directions which appear to correspond
to more difficult instances. As such we set two categories of target
points. The points in the interior of the instance space are manually
placed in areas where our existing instance subset is sparse. The
points on the exterior of the instance space are placed on the
boundary of the instance space calculated by the toolkit, as fol-
lows: Consider a hyper-cube in 8D where each vertex corresponds
to a combination of the maximum or minimum known values for
each feature. This hyper-cube will loosely enclose all the instances
in I. However, some of these vertexes represent combinations of
features that are unlikely to occur simultaneously due to observed
correlations between features. To prune these unlikely vertices, the
correlation between any two features f i and f j; ri;j, is compared.
Given a user-defined threshold q, a vertex is considered unlikely
to contain simultaneously the upper and lower bounds of f i and
f j if ri;j > q, or the upper (or lower) bounds of f i and f j if ri;j < �q.
The edges connecting all remaining vertices are then projected into
the 2D space, whose convex hull now represents the empirical lim-
its of the instance space. We select a subset of these vertices (and
points on the lines between these vertices) with particular empha-
sis on areas of the space which our current data set suggests are
more likely to contain hard instances. In all, we select 26 target
points across the existing instance space (see Fig. 9 (left)).

Given these target points, we propose several methods for gen-
erating new instances which lie near these points in the instance
space. While there are many possible methods for creating new
knapsack instances with particular characteristics, a trade-off
exists between the application of human intuition and brute-
force computational effort. We consider several of these methods
in the following sections.
4.1. Generating weakly structured instances

One method for generating novel knapsack instances is to apply
a genetic algorithm (GA) which directly chooses the problem data
for each instance (i.e. some or all of the item profits, item weights
and capacity). The large variety of instances which can potentially
be produced by this approach is both a strength and a weakness.
Any given target point represents a particular combination of
instance feature values and, in theory, any somewhat random (un-
structured) approach that seeks to alter the data to minimise dis-
tance of the projected instance to the target point should be able
to produce an instance with the desired features. However, finding
such an instance from the huge space of possible instances with no
structural constraints is considerably more difficult than when
using a more structured method. This approach places greater
emphasis on computational effort as opposed to human intuition;
however some human input is still required to choose the genetic
algorithm representation and parameters so as to obtain the best
results.

In principle one could represent a knapsack instance as a vector
simply containing its item profits, item weights and capacity in one
order or another. However, we found that such a totally unstruc-
tured representation is not particularly effective at the task of gen-
erating instances near a particular point in the 2D instance space.
Instead, we opt for the following minimally structured approach.

Each individual in the GA encoding represents a set of 10 poten-
tial knapsack instances, each of which has the same items but dif-
fering capacity fractions in 0:05;0:15; . . . ;0:95. Each instance has
1000 items, each of which has weight equal to its index i.e. the first
item has weight 1, the second item has weight 2, and so on. Each
individual is defined by a vector of item profits; the first profit cor-
responds to the itemwith weight 1, etc. The fitness of an individual
is evaluated by projecting all of its 10 potential instances into the
instance space and finding the minimum distance between any of

Fig. 7. Individual and combined SVM predictions for algorithm performance.

K. Smith-Miles, J. Christiansen and Mario Andrés Muñoz Computers and Operations Research 128 (2021) 105184
these instances and the target point; we are attempting to min-
imise this quantity.

For each target point we create an initial population of 100 indi-
viduals by finding the 100 instances from our original instance
subset which are closest to the target point, then converting them
to a vector of profits by the following procedure. First, for each
weight possessed by at least one item in the original instance,
we calculate the average profit of the items which have that
weight. Second, we perform linear interpolation to assign profits
to the remaining weights. Any weights which are lighter or heavier
than all items in the original instance are assigned a profit of 1.
Finally, we round all profits to the nearest integer.

For each of the 26 target points, at the end of the genetic algo-
rithm procedure we collect the 10 fittest individuals, and from
each individual create one new instance using whichever capacity
fraction from the set 0:05; 0:15; . . . ; 0:95f g yields the closest
instance to the target point. This results in a total of 260 new
instances.

4.2. Generating strongly structured instances

A second approach for generating knapsack instances in the
vicinity of a target point in the 2D instance space is to design a gen-
eration procedure which can produce a variety of instances based
12
on its input parameters, then apply a genetic algorithm to these
parameters to find the best setting for each target point. This
method leverages both human intuition and computational effort
to extend the instance space.

An obvious drawback of this approach is that each individual
generation procedure is limited in terms of the types of instance
it can produce, and so some regions of the instance space may sim-
ply be unreachable by the generation procedure, no matter what
parameters are used. By using several different generation proce-
dures, each of which has its own potential range, we can explore
a larger proportion of the instance space. In this paper we consider
four instance generation procedures, which are summarised in
Table 3.

In each case the initial population of 50 individuals is created by
applying a random uniform distribution to each parameter inde-
pendently. Crossover and mutation functions use the default
MATLAB genetic algorithm settings. The fitness of an individual is
evaluated by creating 50 knapsack instances using the parameters
specified by the individual and taking a weighted average of their
distances from the target point, weighting the closer instances
more strongly than the further instances.

For each of the four generation procedures and 26 target points,
at the end of the genetic algorithm procedure we collect the fittest

Fig. 8. Actual good/bad performance data for each algorithm (within 20% of fastest algorithm’s runtime or not); best algorithm for each instance in lower-right plot.

Fig. 9. Target points in the initial instance space for genetic algorithm instance generators (left) and new instances produced by various genetic algorithms (right).

K. Smith-Miles, J. Christiansen and Mario Andrés Muñoz Computers and Operations Research 128 (2021) 105184

13

Table 3
Instance generation procedures for use with genetic algorithm parameter tuning to
reach target points

Generation
Procedure

Parameters and Generation Procedure

Profit Ceiling-like � knapsack capacity fraction in ½0;1�
� m, minimum allowed weight/ R in ½0;1�
� parameter to round to multiplies of in f2;3;4;5g (d
in Pisinger (2005))
� binary variable defining whether to create a Profit
Ceiling or Random Ceiling-type instance
� f , fraction of items to have weights such that their
weight is equal to their profit, in ½0;1�
Generate item profits as per Profit Ceiling and Ran-
dom Ceiling classes, but generate weights with the
following procedure. For each item, with probability f
assign it a weight greater than m such that its profit
will be equal to its weight; choose from any of the
acceptable weights with equal probability. With
probability 1� f , assign it a weight greater than m
such that its profit will not be equal to its weight in
the same way.

Cubic Fit � knapsack capacity fraction in ½0;1�
� four values a1; . . . ; a4 in ½0;1�
For j ¼ 1; . . . ;4 set bj ¼ ð2:88a3j � a:32b2j þ 2:44ajÞR to

shift the curve in favour of profits closer to R=2. Find
the unique cubic function f ðxÞ which passes through
the points ð0; b1Þ, ðR=3; b2Þ, ð2R=3; b3Þ and ðR; b4Þ.
Then generate item weights with a uniform random
distribution between 1 and R and assign each item’s
profit as pi ¼max 1;min R; df ðwiÞef gf g.

Spanner � knapsack capacity fraction in ½0;1�
� maximum multiplier to be applied to the spanner
items m in 5;6; . . . ;15f g
� two pairs of parameters ða1; d1Þ and ða2;d2Þ, all in
½0;1�, which determine the weight and profit of the
spanner items
For j ¼ 1;2 generate the weight and profit of the two
spanner items as follows:

wj ¼ dj
m R cosðp2 ajÞ

l m

pj ¼ dj
m R sinðp2 ajÞ

l m
Then generate the spanner instance as in the
Spanner-type instance classes.

Multiple Strongly
Correlated-like

� knapsack capacity fraction in ½0;1�
� Three parameters k1 in ½0;1�, k2 in ½0;1� and d in
3;4; . . . ;10f g
� f , fraction of items which will have weight divisible
by d
For each item, with probability f assign it a weight
divisible by d (with an equal chance for any
acceptable weight) and with probability 1� f assign
it a weight not divisible by d in the same way. Then
assign the profit of each item as in Pisinger (2005): if
mod ðwi;dÞ ¼ 0 then pi ¼ R

2 k1
� �þwi , and

pi ¼ R
2 k2
� �þwi otherwise.

K. Smith-Miles, J. Christiansen and Mario Andrés Muñoz Computers and Operations Research 128 (2021) 105184
individual, and create 10 new instances using the parameters it
specifies. This results in a total of 1040 new instances.
4.3. Projecting the generated instances into the initial instance space

Fig. 9 (right) shows the projection of the instances produced by
all five genetic algorithm approaches into the original 2D instance
space. Each of the structured approaches has expanded on the cov-
erage area of the original instance class or classes on which they
are based. However, as expected, each of the structured approaches
is typically not very good at producing instances which are very
different to the underlying instance class.

The Unstructured approach produces new instances in most
parts of the instance space which were previously explored, but
14
does not expand the instance space very much besides a few
instances on the right side and top-left corner. The Profit Ceiling-
based approach also does not expand the space significantly and
only produces instances in the lower-left part of the space. The
Spanner-based approach produces new instances only on the
left-hand side of the space, but notably expands the space around
the bottom-left corner. The Cubic-based approach produces
instances in the middle and on the right-hand side of the space,
expanding the space a little on the right; the Multiple Strongly
Correlated-like approach does much the same on the left-hand side
of the space.

Having generated new instances which expand the boundaries
and fill holes in our original instance space, we may now calculate
a new and improved feature subset and instance space projection
based on a wider and more representative instance subset.
5. Updating the instance space

As mentioned in Section 2, the ISA methodology is iterative, i.e.,
an initial instance space is created and explored based on currently
available meta-data, as shown in Section 3. Gaps in the instance
space can then be examined to assess regions where new instances
can increase the diversity and coverage of the instance space, as
was indicated in Section 4. Now, with these new instances added
to I, a different set of features may best describe the algorithms’
performance and the 2D axes best defining the instance space
are likely to change. Therefore, we perform a second Instance Space
Analysis with the updated meta-data. The projection equation
which produces the new 2D instance space is as follows:

Z1

Z2

� �
¼

0:4253 0:5372
�0:0800 �0:5138
�0:5251 0:2202
0:3891 0:2391
�0:1634 0:0404
�0:1539 0:2850
�0:3959 �0:4090
�0:3117 �0:2180
�0:2269 0:2652
�0:3708 0:2672

2
6666666666666666664

3
7777777777777777775

T Dominant Pairs
Correlation Coeff:
Approximation Gap
Possible Fix Prop:
First Weight
First Profit
Polyfit Quadratic
Even� Odd Likeness
Greedy Unused Capacity
Red: Coeff: Var: Effic

2
6666666666666666664

3
7777777777777777775

ð3Þ
Of the features included in this projection matrix, the Dominant

Pairs, Possible Item Fix Proportion, Even–Odd Likeness, reduced-
knapsack Coefficient of Variation of Efficiencies, and First Profit
were also included in the first projection. This lends further weight
to our observations in the previous section that the first four of
these features were strongly associated with instance difficulty.
The Greedy Unused Capacity feature is also used in both projec-
tions, although in the first projection it was applied to the reduced
knapsack. The Polyfit Quadratic feature in this projection acts sim-
ilarly to the Polyfit Cubic feature in the first projection. This leaves
the Correlation Coefficient, Approximation Gap and First Weight
features as additions to the new projection.

5.1. Where are the hard knapsack instances?

The distribution of each algorithm’s performance metric and
distribution of instance classes across the updated instance space
are shown in Figs. 10 and 11 respectively. The harder instances
are found in the lower left-hand side of the space, in the negative
direction with respect to both Z1 and Z2. As in the previous projec-
tion, the difficult high-correlation instances occupy a dense cluster
(in this case around Z1 ¼ �2 and Z2 ¼ 0). The Subset Sum and

Fig. 10. Algorithm performance across the updated instance space for COMBO (left), MINKNAP (middle), and EXPKNAP (right). The color scale is CPU time, normalized with
the fastest time in black and slowest time in orange. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Instance classes within the updated instance space.

K. Smith-Miles, J. Christiansen and Mario Andrés Muñoz Computers and Operations Research 128 (2021) 105184
Profit Ceiling instances occupy several lines along the lower-left
side of the space (around Z1 ¼ �1 and Z2 ¼ �2). The Spanner
instances are spread more widely across the instance space,
although the more difficult highly-correlated instances are in close
proximity to the Subset Sum and Profit Ceiling lines.
15
Compared to the previous instance space, the low-density holes
in the updated instance space are much smaller, and the Profit Ceil-
ing Large Only instances are considerably closer to the other Profit
Ceiling and Subset Sum instances than they are to the high-density
cluster. However, the distinction between the low-capacity and

Fig. 12. Algorithm portfolio recommendations using SVM predictions in the
updated instance space.

K. Smith-Miles, J. Christiansen and Mario Andrés Muñoz Computers and Operations Research 128 (2021) 105184
high-capacity Profit Ceiling instances is not as clear cut, and the
Multiple and Circle instance classes are more mingled with the
other high-correlation instances. While an ideal instance space is
difficult to quantify, it is clear that both the original and the
updated instance space offer us their own useful insights into 0–
1KP.

The general properties of the footprints learned by the support
vector machines in the updated 2D instance space are similar to
those obtained for the initial space. The combined SVM predictions
are shown in the form of an automated algorithm selection in
Fig. 12 and follow the same pattern as those obtained for the initial
instance space; COMBO is predicted to perform best in all areas of
the space except a small subset of easy instances on which MIN-
KNAP is predicted to perform best.
6. Conclusions

This paper has provided a visual approach to answer the long-
standing question ‘‘where are the hard knapsack instances?”. Using
the recently developed methodology of Instance Space Analysis,
we have shown how the strengths and weaknesses of three algo-
rithms for the 0–1KP variant of knapsack problems can be com-
pared objectively across the space of possible test instances,
rather than losing valuable information by summarising ‘‘on-
average” performance. We have demonstrated the areas of
strength and weakness for each algorithm, and shown how com-
bining algorithm performance with feature distributions across
the instance space can add insights into the conditions under
which a given algorithm is expected to perform well or poorly.

An initial instance space revealed opportunities to generate
additional test instances to fill gaps and extend the boundaries of
the instance space. Updating the instance space with the aug-
mented meta-data created a denser and more comprehensive
instance space. The similarities in the selected feature set and over-
all properties of the two instance spaces suggest that the instance
space representation has converged; this gives us greater confi-
dence to say that the insights we have obtained through analysis
of these instance spaces are not based on a quirk of our chosen
16
instance subset, but rather give us a greater understanding of 0–
1KP as a whole.

Of course, there are always limitations, and opportunities to
extend the ideas for future research. One limitation of this study
is that the feature set we have proposed includes some features
that cannot be evaluated without sorting the items by efficiency,
which in many cases takes longer than actually solving the knap-
sack instance using MINKNAP or COMBO. Therefore, while the 2D
instance space and SVM results have given us insights into the
underlying properties of 0–1KP, they are not very useful for rapidly
predicting algorithm performance with respect to a specific unseen
instance in real time. It may be possible to find a set of similar fea-
tures and/or heuristics which are simpler to compute but retain
predictive utility. Another potential direction for future research
is to adapt and extend the ideas behind these features to more
complicated variants of the Knapsack problem.

In this study we have enforced a relatively low bound on the
number of items and maximum profit and weight coefficients in
each KP instance. This is particularly advantageous for the pur-
poses of generating new instances with genetic algorithms in a rea-
sonable time frame. The downside is that the conclusions drawn in
this paper should be treated with some caution if they are applied
to a set of instances with substantially larger weights, profits and/
or quantity of items. In particular, our instance space contains no
representatives from instance classes whose definitions inherently
require large weights (such as the Avis knapsack class used in
Martello et al. (1999) or the original Similar Uncorrelated Weights
class), and so it is likely unsafe to generalise our results to
instances derived from these classes.

It would be especially interesting to revisit this analysis in the
event that a new algorithm for 0–1KP is devised which is compet-
itive with COMBO in terms of performance when applied to some
subset of the more difficult instances, but which has substantially
different computational characteristics. We have tested the exact
MIP solver CPLEX (version 12.8) as well as another algorithm
known as ‘‘balknap” (Kellerer et al., 2004), and projected their per-
formance metric into the instance space using MATILDA (see
Fig. B.13 in Appendix B). These algorithms only perform well com-
pared with COMBO on a small proportion of our instance subset,
and including these algorithms does not substantially change the
recommendations of the SVM given in Fig. 12. We hope that by
making all of the meta-data publicly available as a library problem
on MATILDA (Smith-Miles et al., 2019), other researchers can add
new algorithms to the instance space to understand strengths
and weaknesses, and support objective comparison with existing
algorithms.
CRediT authorship contribution statement

Kate Smith-Miles: Conceptualization, Methodology, Formal
analysis, Investigation, Writing - original draft, Supervision, Project
administration, Funding acquisition. Jeffrey Christiansen: Formal
analysis, Software, Investigation, Data curation, Writing - original
draft, Visualization. Mario Andrés Muñoz: Formal analysis,
Methodology, Investigation, Validation, Writing - original draft,
Visualization.
Acknowledgements

We are grateful to the two reviewers and editors for their valu-
able suggestions. Funding was provided by the Australian Research
Council through grant FL140100012. The authors are grateful to
Samuel Fairchild for his assistance with feature calculations, and
Dr. Neelofar for her work on the development of the MATILDA

K. Smith-Miles, J. Christiansen and Mario Andrés Muñoz Computers and Operations Research 128 (2021) 105184
online tool for Instance Space Analysis available at https://matilda.
unimelb.edu.au
Appendix A. Computational results for main algorithms

The computational results for the three main algorithms in this
study - COMBO, MINKNAP and EXPKNAP - are presented in
Table A.4, for the various classes of instances.
Table A.4
Runtime data for 0–1KP algorithms with respect to each instance class, generated with n ¼
where an algorithm failed to terminate are treated as a runtime of 15 s.

COMBO

MEAN(STD) RANGE MEAN(STD)

Uncorrelated 0.03(0.02) [7.93 � 10�3,0.19] 0.03(0.02)
Weakly Correlated 0.06(0.05) [9.74 � 10�3,0.39] 0.05(0.04)
Strongly Correlated 0.33(0.35) [8.70 � 10�3,2.34] 8.20(8.90)
Subset Sum 0.04(0.01) [0.03,0.11] 0.06(0.04)
Inverse Strongly Correlated 0.43(0.45) [0.01,3.25] 7.52(8.52)
Almost Strongly Correlated 0.26(0.34) [8.27 � 10�3,2.19] 0.69(1.57)
Similar Uncorrelated Weights 0.92(1.63) [7.30 � 10�3,11.83] 1.38(1.90)
Even–Odd Strongly Correlated 0.44(0.49) [0.01,2.53] 4.23(4.89)
Even–Odd Subset Sum 0.07(0.03) [0.06,0.22] 651.19(443.
No Small Weights 0.06(0.04) [0.01,0.22] 0.07(0.07)
Spanner Uncorrelated 2.82(3.26) [0.01,24.70] 3.45(2.87)
Spanner Weakly Correlated 5.28(7.00) [0.01,52.29] 6.32(12.73)
Spanner Strongly Correlated 7.94(9.75) [0.02,95.94] 6.65(5.93)
Multiple Correlated 2.42(3.51) [7.51 � 10�3,24.56] 4.48(5.19)
Profit Ceiling 9.33(17.03) [8.84 � 10�3,68.30] 10.86(20.38
Circle 2.77(2.99) [0.01,12.54] 4.38(4.46)
Quadratic Fit 0.57(1.06) [7.01 � 10�3,5.78] 0.92(1.79)
Cubic Fit 0.48(0.78) [9.13 � 10�3,4.78] 0.75(1.35)
Random Ceiling 0.06(0.09) [8.49 � 10�3,0.61] 0.23(0.33)
Profit Ceiling Large Only 21.16(39.04) [9.08 � 10�3,187.18] 24.68(44.19

Evolved Cubic Fit 0.56(1.27) [0.01,9.01] 0.86(2.31)
Evolved Multiple-like 1.31(2.70) [8.93 � 10�3,19.68] 4.24(6.98)
Evolved Profit Ceiling-like 6.57(29.54) [0.01,357.61] 12.12(45.13
Evolved Spanner 2.15(2.82) [9.29 � 10�3,17.04] 1.90(2.15)
Evolved Unstructured 0.99(2.25) [8.52 � 10�3,18.29] 1.90(4.81)

Fig. B.13. Comparison between the runtime performance of Balknap versus COMBO (to
loge

tBALKNAP
tCOMBO

 �
and loge

tCPLEX
tCOMBO

 �
respectively. Very dark points indicate instances where the o

5; for the instances beyond this point COMBO is clearly the superior algorithm. COMBO su

17
Appendix B. Computational results for additional algorithms

The computational tests used to compare CPLEX and BALKNAP
with COMBO were performed on the Spartan HPC system using
one physical core (Intel(R) Xeon(R) Gold 6254 CPU @ 3.10 GHz)
with 21 GB RAM for each test. Since this is a different CPU type
to those used for the tests comparing EXPKNAP, MINKNAP and
COMBO in the main body of the paper (as summarised in
Table A.4), the runtime results of COMBO summarised in
1000 items and data range parameter R ¼ 1000. All times are in milliseconds. Cases

MINKNAP EXPKNAP

RANGE MEAN(STD) RANGE

[8.30 � 10�3,0.21] 0.11(0.15) [5.26 � 10�3,0.79]
[0.01,0.29] 0.41(0.59) [4.71 � 10�3,4.00]
[0.01,65.22] 1.33e + 04(4.56e + 03) [5.83 � 10�3,1.50e + 04]
[0.01,0.19] 0.04(0.06) [4.83 � 10�3,0.51]
[0.01,33.47] 1.27e + 04(5.38e + 03) [0.01,1.50e + 04]
[0.01,11.65] 3.33e + 03(6.08e + 03) [5.79 � 10�3,1.50e + 04]
[9.22 � 10�3,8.12] 1.06e + 04(6.72e + 03) [5.27 � 10�3,1.50e + 04]
[0.01,34.96] 1.30e + 04(4.93e + 03) [7.89 � 10�3,1.50e + 04]

78) [15.72,3.39e + 03] 1.50e + 04(0.00) [1.50e + 04,1.50e + 04]
[0.01,0.61] 4.86(15.86) [4.62 � 10�3,206.32]
[9.53 � 10�3,22.40] 1.38e + 04(4.08e + 03) [4.94 � 10�3,1.50e + 04]
[8.94 � 10�3,156.32] 1.45e + 04(2.76e + 03) [5.21 � 10�3,1.50e + 04]
[0.01,55.70] 1.44e + 04(2.95e + 03) [5.39 � 10�3,1.50e + 04]
[9.76 � 10�3,23.13] 1.16e + 04(6.14e + 03) [5.76 � 10�3,1.50e + 04]

) [0.01,81.85] 9.72e + 03(7.15e + 03) [3.63 � 10�3,1.50e + 04]
[0.01,17.36] 1.28e + 04(5.10e + 03) [7.93 � 10�3,1.50e + 04]
[0.01,12.87] 1.29e + 04(5.11e + 03) [6.10 � 10�3,1.50e + 04]
[9.38 � 10�3,11.01] 1.24e + 04(5.55e + 03) [5.34 � 10�3,1.50e + 04]
[0.01,2.33] 0.09(0.15) [4.46 � 10�3,1.02]

) [0.02,177.74] 1.10e + 04(6.60e + 03) [5.67 � 10�3,1.50e + 04]

[0.01,17.22] 8.77e + 03(7.21e + 03) [7.48 � 10�3,1.50e + 04]
[0.01,51.49] 8.11e + 03(7.41e + 03) [5.05 � 10�3,1.50e + 04]

) [0.01,357.35] 6.76e + 03(7.36e + 03) [4.39 � 10�3,1.50e + 04]
[9.17 � 10�3,12.14] 9.12e + 03(7.33e + 03) [5.17 � 10�3,1.50e + 04]
[0.01,35.91] 5.16e + 03(6.83e + 03) [5.40 � 10�3,1.50e + 04]

p), and CPLEX versus COMBO (bottom) in the instance space, using the quantities
ther algorithm significantly outperforms COMBO. The color range is truncated above
bstantially outperforms BALKNAP and CPLEX across almost all of the instance space.

https://matilda.unimelb.edu.au
https://matilda.unimelb.edu.au

Table B.5
Runtime data for 0–1KP algorithms with respect to each instance class. All times are in milliseconds. Cases where an algorithm failed to terminate are treated as a runtime of 15 s.

COMBO BALKNAP CPLEX

MEAN(STD) RANGE MEAN(STD) RANGE MEAN(STD) RANGE

Uncorrelated 0.02(0.01) [6.64 � 10�3,0.08] 1.58(0.80) [0.46,5.45] 20.10(12.61) [3.46,65.98]
Weakly Correlated 0.04(0.03) [7.09 � 10�3,0.13] 3.21(2.83) [0.64,19.91] 32.09(16.07) [2.72,80.21]
Strongly Correlated 0.22(0.25) [6.01 � 10�3,1.69] 76.42(71.38) [0.71,268.96] 17.63(25.04) [4.50,196.20]
Subset Sum 0.03(7.86e-04) [0.02,0.03] 1.28(1.03) [0.30,6.20] 8.99(5.70) [3.78,59.38]
Inverse Strongly Correlated 0.29(0.30) [9.15 � 10�3,1.33] 73.31(80.23) [1.00,277.70] 17.67(24.26) [4.25,177.48]
Almost Strongly Correlated 0.17(0.18) [6.15 � 10�3,1.41] 912.55(2.17e + 03) [0.85,1.35e + 04] 197.40(1.10e + 03) [5.38,1.50e + 04]
Similar Uncorrelated Weights 0.62(0.81) [6.03 � 10�3,4.24] 5.31e + 03(6.14e + 03) [0.82,1.50e + 04] 700.67(2.95e + 03) [3.29,1.50e + 04]
Even–Odd Strongly Correlated 0.32(0.38) [8.07 � 10�3,1.93] 37.82(35.83) [0.83,133.74] 3.93e + 03(6.51e + 03) [4.07,1.50e + 04]
Even–Odd Subset Sum 0.06(6.50 � 10�3) [0.05,0.12] 248.40(7.64) [195.96,259.31] 8.50(3.33) [3.62,19.27]
No Small Weights 0.05(0.04) [6.67 � 10�3,0.17] 29.80(51.15) [0.81,425.55] 127.56(1.06e + 03) [4.28,1.50e + 04]
Spanner Uncorrelated 1.71(1.51) [0.01,8.08] 3.30(2.48) [0.50,23.73] 4.28e + 03(6.71e + 03) [2.77,1.50e + 04]
Spanner Weakly Correlated 3.62(5.00) [9.71 � 10�3,43.39] 4.87(5.41) [0.37,61.62] 7.18e + 03(7.45e + 03) [2.53,1.50e + 04]
Spanner Strongly Correlated 3.58(4.75) [9.85 � 10�3,51.45] 6.15(11.03) [0.34,106.16] 9.07e + 03(7.29e + 03) [2.23,1.50e + 04]
Multiple Correlated 1.69(2.18) [5.90 � 10�3,11.10] 55.15(59.00) [0.73,222.01] 5.21e + 03(7.08e + 03) [2.52,1.50e + 04]
Profit Ceiling 6.71(12.69) [6.03 � 10�3,48.79] 44.01(53.30) [0.38,222.81] 11.56(7.24) [4.11,83.23]
Circle 2.16(2.28) [7.58 � 10�3,9.23] 476.35(518.56) [0.83,2.01e + 03] 12.09(14.95) [4.56,109.00]
Quadratic Fit 0.42(0.76) [5.55 � 10�3,4.69] 1.19e + 03(1.98e + 03) [0.82,1.39e + 04] 270.11(1.85e + 03) [3.60,1.50e + 04]
Cubic Fit 0.38(0.60) [6.67 � 10�3,3.72] 1.47e + 03(2.51e + 03) [0.93,1.33e + 04] 567.46(2.67e + 03) [3.78,1.50e + 04]
Random Ceiling 0.04(0.07) [6.36 � 10�3,0.51] 1.92(2.44) [0.38,26.62] 23.57(16.79) [4.40,127.30]
Profit Ceiling Large Only 11.55(21.32) [6.21 � 10�3,110.42] 65.09(67.08) [0.40,238.58] 26.67(27.10) [4.10,185.97]

Evolved Cubic Fit 0.26(0.57) [5.84 � 10�3,3.48] 505.53(1.31e + 03) [0.90,9.12e + 03] 1.42e + 03(4.11e + 03) [3.41,1.50e + 04]
Evolved Multiple-like 0.65(1.37) [4.80 � 10�3,12.10] 4.82e + 03(6.99e + 03) [0.36,1.50e + 04] 2.33e + 03(5.35e + 03) [2.79,1.50e + 04]
Evolved Profit Ceiling-like 2.91(11.97) [4.51 � 10�3,123.61] 2.23e + 03(5.09e + 03) [0.29,1.50e + 04] 194.92(1.49e + 03) [2.55,1.50e + 04]
Evolved Spanner 0.98(1.22) [7.33 � 10�3,6.14] 2.30(1.58) [0.32,7.92] 2.29e + 03(5.35e + 03) [2.45,1.50e + 04]
Evolved Unstructured 0.56(1.22) [6.40 � 10�3,9.84] 1.60e + 03(3.23e + 03) [0.45,1.50e + 04] 219.02(1.60e + 03) [2.97,1.50e + 04]

K. Smith-Miles, J. Christiansen and Mario Andrés Muñoz Computers and Operations Research 128 (2021) 105184
Table B.5 are different in magnitude, though similar in terms of
instance class difficulty.
References

Amado, L., Barcia, P., 1993. Matroidal relaxations for 0–1 knapsack problems. Oper.
Res. Lett. 14 (3), 147–152. https://doi.org/10.1016/0167-6377(93)90026-D.
https://doi-org.ezproxy.lib.rmit.edu.au/10.1016/0167-6377(93)90026-D.

Balas, E., Zemel, E., 1980. An algorithm for large zero-one knapsack problems. Oper.
Res. 28 (5), 1130–1154. https://doi.org/10.1287/opre.28.5.1130.

Broyden, C.G., 1970. The convergence of a class of double-rank minimization
Algorithms 1. general considerations. IMA J. Appl. Math. 6 (1), 76–90. https://
doi.org/10.1093/imamat/6.1.76.

Chung, C.-S., Hung, M.S., Rom, W.O., 1988. A hard knapsack problem. Naval Res.
Logist. (NRL) 35 (1), 85–98. https://doi.org/10.1002/1520-6750(198802)
35:1<85::AID-NAV3220350108>3.0.CO;2-D.

Chvátal, V., 1980. Hard knapsack problems. Oper. Res. 28 (6), 1402–1411. https://
doi.org/10.1287/opre.28.6.1402.

Hall, N.G., Posner, M.E., 2007. Performance prediction and preselection for
optimization and heuristic solution procedures. Oper. Res. 55 (4), 703–716.
https://doi.org/10.1287/opre.1070.0398.

Hall, N.G., Posner, M.E., 2010. The generation of experimental data for
computational testing in optimization. In: Experimental Methods for the
Analysis of Optimization Algorithms. Springer, pp. 73–101.

Hill, R.R., Reilly, C.H., 2000. The effects of coefficient correlation structure in two-
dimensional knapsack problems on solution procedure performance. Manage.
Sci. 46 (2), 302–317. https://doi.org/10.1287/mnsc.46.2.302.11930.

Hooker, J., 1994. Needed: An empirical science of algorithms. Oper. Res. 42 (2), 201–
212.

Hooker, J., 1995. Testing heuristics: We have it all wrong. J. Heuristics 1 (1), 33–42.
https://doi.org/10.1007/BF02430364.

Kandanaarachchi, S., Muñoz, M., Hyndman, R., Smith-Miles, K., 2019. On
normalization and algorithm selection for unsupervised outlier detection.
Data Mining Knowl. Discov. 34, 309–354. https://doi.org/10.1007/s10618-019-
00661-z.

Kang, Y., Hyndman, R., Smith-Miles, K., 2017. Visualising forecasting algorithm
performance using time series instance spaces. Int. J. Forecast 33 (2), 345–358.
https://doi.org/10.1016/j.ijforecast.2016.09.004.

Kellerer, H., Pferschy, U., Pisinger, D., 2004. Exact solution of the knapsack problem.
In: Knapsack Problems. Springer, pp. 117–160.

Martello, S., Toth, P., 1988. A new algorithm for the 0–1 knapsack problem. Manage.
Sci. 34 (5), 633–644. https://doi.org/10.1287/mnsc.34.5.633.

Martello, S., Toth, P., 1997. Upper bounds and algorithms for hard 0–1 knapsack
problems. Oper. Res. 45 (5), 768–778. https://doi.org/10.1287/opre.45.5.768.

Martello, S., Pisinger, D., Toth, P., 1999. Dynamic programming and strong bounds
for the 0–1 knapsack problem. Manage. Sci. 45 (3), 414–424. https://doi.org/
10.1287/mnsc.45.3.414.
18
McGeoch, C.C., 2002. Experimental analysis of algorithms. In: Handbook of Global
Optimization, Springer, pp. 489–513..

B. Meade, L. Lafayette, G. Sauter, D. Tosello, Spartan HPC-Cloud Hybrid: Delivering
Performance and Flexibility (4 2017). doi:10.4225/49/58ead90dceaaa..

Muñoz, M., Smith-Miles, K., 2017. Performance analysis of continuous black-box
optimization algorithms via footprints in instance space. Evol. Comput. 25 (4),
529–554. https://doi.org/10.1162/EVCO_a_00194.

Muñoz, M., Smith-Miles, K., 2020. Generating new space-filling test instances for
continuous black-box optimization. Evol. Comput. 28 (3), 379–404. https://doi.
org/10.1162/evco_a_00262.

Muñoz, M., Villanova, L., Baatar, D., Smith-Miles, K., 2018. Instance spaces for
machine learning classification. Mach. Learn. 107 (1), 109–147. https://doi.org/
10.1007/s10994-017-5629-5.

Muñoz, M., Smith-Miles, K., 2020. Instance space analysis: A toolkit for the
assessment of algorithmic power, Source code is available at https://
github.com/andremun/InstanceSpace..

Pferschy, U., Pisinger, D., Woeginger, G.J., 1997. Simple but efficient approaches for
the collapsing knapsack problem. Discrete Appl. Math. 77 (3), 271–280. https://
doi.org/10.1016/S0166-218X(96)00134-5.

Pisinger, D., 1995. An expanding-core algorithm for the exact 0–1 knapsack
problem. Eur. J. Oper. Res. 87 (1), 175–187. https://doi.org/10.1016/0377-2217
(94)00013-3.

Pisinger, D., 1997. A minimal algorithm for the 0–1 knapsack problem. Oper. Res. 45
(5), 758–767. https://doi.org/10.1287/opre.45.5.758.

Pisinger, D., 1999a. Core problems in knapsack algorithms. Oper. Res. 47 (4), 570–
575. https://doi.org/10.1287/opre.47.4.570.

Pisinger, D., 1999b. Core problems in knapsack algorithms. Oper. Res. 47 (4), 570–
575. https://doi.org/10.1287/opre.47.4.570.

Pisinger, D., 2005. Where are the hard knapsack problems?. Comput. Oper. Res. 32
(9), 2271–2284. https://doi.org/10.1016/j.cor.2004.03.002.

Pisinger, D., Toth, P. 1998. Knapsack problems. In: Handbook of Combinatorial
Optimization, vol. 1, Kluwer Acad. Publ., Boston, MA, pp. 299–428..

Pisinger, D., Saidi, A., 2017. Tolerance analysis for 0–1 knapsack problems. Eur. J.
Oper. Res. 258(3) 866–876. www.scopus.com..

Rice, J., 1976. The algorithm selection problem. In: Advances in Computers, vol. 15,
Elsevier, pp. 65–118. doi:10.1016/S0065-2458(08)60520-3..

Smith-Miles, K., Bowly, S., 2015. Generating new test instances by evolving in
instance space. Comput. Oper. Res. 63, 102–113. https://doi.org/10.1016/
j.cor.2015.04.022.

Smith-Miles, K., Lopes, L., 2012. Measuring instance difficulty for combinatorial
optimization problems. Comput. Oper. Res. 39 (5), 875–889. https://doi.org/
10.1016/j.cor.2011.07.006.

Smith-Miles, K., Baatar, D., Wreford, B., Lewis, R., 2014. Towards objective measures
of algorithm performance across instance space. Comput. Oper. Res. 45, 12–24.
https://doi.org/10.1016/j.cor.2013.11.015.

Smith-Miles, K., Muñoz, M., Neelofar, 2019. MATILDA: Melbourne algorithm test
instance library with data analytics, Available at https://matilda.unimelb.edu.au..

Wolpert, D., Macready, W., 1997. No free lunch theorems for optimization. IEEE
Trans. Evol. Comput. 1 (1), 67–82. https://doi.org/10.1109/4235.585893.

https://doi.org/10.1016/0167-6377(93)90026-D.https://doi-org.ezproxy.lib.rmit.edu.au/10.1016/0167-6377(93)90026-D
https://doi.org/10.1016/0167-6377(93)90026-D.https://doi-org.ezproxy.lib.rmit.edu.au/10.1016/0167-6377(93)90026-D
https://doi.org/10.1287/opre.28.5.1130
https://doi.org/10.1093/imamat/6.1.76
https://doi.org/10.1093/imamat/6.1.76
https://doi.org/10.1002/1520-6750(198802)35:1<85::AID-NAV3220350108>3.0.CO;2-D
https://doi.org/10.1002/1520-6750(198802)35:1<85::AID-NAV3220350108>3.0.CO;2-D
https://doi.org/10.1287/opre.28.6.1402
https://doi.org/10.1287/opre.28.6.1402
https://doi.org/10.1287/opre.1070.0398
http://refhub.elsevier.com/S0305-0548(20)30301-4/h0035
http://refhub.elsevier.com/S0305-0548(20)30301-4/h0035
http://refhub.elsevier.com/S0305-0548(20)30301-4/h0035
https://doi.org/10.1287/mnsc.46.2.302.11930
http://refhub.elsevier.com/S0305-0548(20)30301-4/h0045
http://refhub.elsevier.com/S0305-0548(20)30301-4/h0045
https://doi.org/10.1007/BF02430364
https://doi.org/10.1007/s10618-019-00661-z
https://doi.org/10.1007/s10618-019-00661-z
https://doi.org/10.1016/j.ijforecast.2016.09.004
http://refhub.elsevier.com/S0305-0548(20)30301-4/h0065
http://refhub.elsevier.com/S0305-0548(20)30301-4/h0065
https://doi.org/10.1287/mnsc.34.5.633
https://doi.org/10.1287/opre.45.5.768
https://doi.org/10.1287/mnsc.45.3.414
https://doi.org/10.1287/mnsc.45.3.414
https://doi.org/10.1162/EVCO_a_00194
https://doi.org/10.1162/evco_a_00262
https://doi.org/10.1162/evco_a_00262
https://doi.org/10.1007/s10994-017-5629-5
https://doi.org/10.1007/s10994-017-5629-5
https://doi.org/10.1016/S0166-218X(96)00134-5
https://doi.org/10.1016/S0166-218X(96)00134-5
https://doi.org/10.1016/0377-2217(94)00013-3
https://doi.org/10.1016/0377-2217(94)00013-3
https://doi.org/10.1287/opre.45.5.758
https://doi.org/10.1287/opre.47.4.570
https://doi.org/10.1287/opre.47.4.570
https://doi.org/10.1016/j.cor.2004.03.002
https://doi.org/10.1016/j.cor.2015.04.022
https://doi.org/10.1016/j.cor.2015.04.022
https://doi.org/10.1016/j.cor.2011.07.006
https://doi.org/10.1016/j.cor.2011.07.006
https://doi.org/10.1016/j.cor.2013.11.015
https://doi.org/10.1109/4235.585893

	Revisiting where are the hard knapsack problems? via Instance Space Analysis
	1 Introduction
	2 Instance Space Analysis
	2.1 Problem space
	2.2 Instance subset
	2.3 Algorithm space
	2.4 Performance space
	2.5 Feature space

	3 Constructing an initial instance space
	3.1 Where are the hard knapsack instances?
	3.1.1 Instances with strong correlation
	3.1.2 Instances with many similar items

	3.2 Learning algorithm footprints and automated algorithm selection

	4 Generating new instances
	4.1 Generating weakly structured instances
	4.2 Generating strongly structured instances
	4.3 Projecting the generated instances into the initial instance space

	5 Updating the instance space
	5.1 Where are the hard knapsack instances?

	6 Conclusions
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A Computational results for main algorithms
	Appendix B Computational results for additional algorithms
	References

