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ABSTRACT
Differences in performance between algorithms can be attributed
to the interaction between their unique rule-sets and the char-
acteristics of the instance’s landscape. However, understanding
this interaction can be difficult because algorithms are often com-
posed of multiple elements, and in the worst cases are described
using opaque notation and metaphors. In this paper, we introduce
a methodology for the behavioral analysis of optimization algo-
rithms, based on comparing algorithm dynamics in a given problem
instance. At the methodology’s core lays the hypothesis that if two
algorithms, with the exact same initial conditions, have similar dy-
namics, then their rule-sets are also similar. An examination of Grey
Wolf Optimization, shows that it exhibits bias leading to similar
behavioral patterns regardless of the function.

CCS CONCEPTS
• General and reference → Empirical studies; Experimenta-
tion; • Theory of computation→ Bio-inspired optimization;
• Computing methodologies → Randomized search.
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1 INTRODUCTION
An optimization algorithm uses a rule-set to iteratively identify
better solutions for a problem instance. Consequently, algorithms
can out-perform in some instances and under-perform in others,
depending on the interaction between the rule-set and the char-
acteristics of the instance’s landscape. This bias can be difficult to
understand, because algorithms are often composed of multiple
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interconnected pieces and, in the worst cases, are described us-
ing opaque notation and metaphors [16]. Therefore, experimental
benchmarking is an essential part of the analysis of an optimization
algorithm, as its aims are, among others, to provide an assessment of
an algorithm’s performance, and illustrate the search behavior [1].

Research into the control of their behavior has revealed that
Evolutionary Algorithms (EA), due to the interactions between in-
dividual, create structures that resemble complex networks, which
go through transitions between stochastic and deterministic chaotic
regimes [22]. Moreover, EAs are highly non-linear, discrete dynam-
ical systems, whose state is given by the location of each individual
at a given iteration; hence, it is fully observable and recordable [22].
Therefore, techniques for non-linear dynamical systems’ analysis
could be useful for examining and comparing algorithm behavior
in a given problem instance.

Based on these concepts, here we introduce a methodology for
the behavioral analysis of optimization algorithms. We hypothesize
that if two algorithms, acting on the same problem instance, start-
ing from the same location and with the same random seed, have
similar dynamics, then their rule-sets are also similar. To capture
the dynamics into a set of features, we make use of Recurrence
Quantification Analysis (RQA), a technique from chaotic systems
recently employed by Vantuch et al. [17, 18] in the analysis of EAs.
Using concepts derived from Instance Space Analysis (ISA) [11, 15],
we construct a visualization that represents an algorithm/instance
system as a point in a two-dimensional space. We test three algo-
rithms, Particle Swarm Optimization (PSO), Grey Wolf Optimizer
(GWO) and Simple Genetic Algorithm (SGA). We combine these
results with Landscape Analysis (LA) features to identify when and
why our hypothesis is true. Our results show that, although PSO
and GWO, with default parameters, do not show statistically signifi-
cant similarities in behavior, GWO appears to exhibit systemic bias,
leading to similar behavioral patterns regardless of the function, as
long as this does not have ill-conditioning and multiple funnels.

The paper continues as follows: Section 2 presents the back-
ground of this work, focusing on RQA. Then, Section 3 presents
our methodology and experimental settings. Section 4 presents and
discusses our results, and Section 5 concludes our paper with some
limitations and ways forward on this research.

2 BACKGROUND
2.1 Algorithm state
Let us define an algorithm state. Assuming minimization, an uncon-
strained black-box continuous optimization problem is a function
f , defining a map between the decision space, 𝒳 ⊂ Rm , and the
objective space, 𝒴 ⊂ R, withm ≥ 1. Let x ∈ 𝒳 be a candidate and
y ∈ 𝒴 its cost. At each iteration i , an algorithm produces a matrix of
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candidates, Xi =
[
xi ,1 . . . xi ,k . . . xi ,n

]
,Xi ∈ R

m×n , with costs,
y ∈ Rn , where n is the number of individuals in the population.
The vector xi ,k is the i-th state of an individual k , and the matrix
Xi is the i-th state of the algorithm, which can be thought of as the
result from a function д, that is:

Xi = д (Xi−1, yi−1)

yi = f (Xi )

Let x(i) =
[
x⊤i ,1 . . . x

⊤
i ,k . . . x

⊤
i ,n

]⊤
, x(i) ∈ Rmn be a vector

representation of the state, which is a point on the high-dimensional
phase space. From its initial conditions, the state evolving over time
traces a path in the phase space known as the trajectory, whose
shape can elucidate qualities not obvious otherwise.

2.2 Recurrence Quantification Analysis
Recurrence Quantification Analysis (RQA) is a methodology used
to characterize and detect transitions in the behavior of a dynamical
system [9], and used by Vantuch et al. [17, 18] to demonstrate that
swarm algorithms exhibit transitions between convergent (orderly)
and non-convergent (chaotic) behavior, with these “phase-like” tran-
sitions being statistically different and dependent on the algorithm
itself. Conceptually, RQA is based on two observations of dynamical
systems: (a) similar states often evolve similarly; and (b) some states
occur over and over again. Although RQA is based on principles
from deterministic dynamics, the method makes no assumptions
about the underlying system [10]. In the following sections, we will
describe the basic concepts behind RQA.

2.2.1 Recurrence Plots (RP). Introduced by Eckmann et al. [5], an
RP is a visualization used to examine the recurrences of a trajectory
in the phase space. In essence, it is a representation of a binary
distance matrix between state vectors, R, with its axes correspond-
ing to time increasing from left to right and bottom to top. The
elements of R are given by the equation:

Ri , j (ε) = 1
(
ε −



x(i) − x(j)



2 ≤ 0

)
(1)

where x(i) are the observed states of the system at times {i, j} =
1, . . . ,T , ε is a threshold, 1 (·) denotes the indicator function, and
∥·∥2 denotes the Euclidean distance. The most important parameter
is ε , which determines if two states are neighbors or not. If the value
of ε is too small, almost no recurrence will be observed, limiting
our ability to learn about the structure of the underlying system.
On the other hand, if it is too large, almost every state will be
considered a neighbor of another, leading to plots with significant
artifacts [9]. A common rule of thumb is to use a value of ε equal to a
percentage of the maximum phase space diameter. Figure 1 presents
a distance matrix and the resulting RPs for a system composed of
a 20-individual GWO algorithm exploring the two-dimensional
Katsuura (f23) function from COCO [6]. Five runs of 50 generations
were started from different, randomly selected points, whereas the
values of ε are equal to {5%, 15%, 25%} of the phase space diameter.

In general, an RP such as those shown in Figure 1 can present
small-scale behavioral patterns, which can be of four types:
Isolated dots represent rare states that persist for a short time.
Diagonal lines represent an evolution process between states that

is similar at different times. For example, for two starting

(a)

(b) ε = 5% (c) ε = 15% (d) ε = 25%

Figure 1: State vectors represented as (a) a distance matrix,
and recurrence plots for (b) ε = 5%, (c) ε = 15%, and (d)
ε = 25% of the phase diameter, for a 20-individual GWO algo-
rithm on the two-dimensional Katsuura (f23) function from
COCO [6] during five runs.

times i and j, xi ≈ xj , xi+1 ≈ xj+1, . . . , xi+ℓ−1 ≈ xj+ℓ−1, or
more generally as Ri+k , j+k ≡ 1 |ℓ−1k=0, where ℓ is the length
of the time of the interval in which the recurrence occurs.
Diagonal line patterns can be formally described as:(

1 − Ri−1, j−1
) (
1 − Ri+ℓ, j+ℓ

) ℓ−1∏
k=0

Ri+k , j+k ≡ 1

Vertical or horizontal lines represent an interval where the state
changes slowly or not at all. For example, for two starting
times i and j, xi ≈ xj , xi ≈ xj+1, . . . , xi ≈ xj+v−1, or more
generally as Ri , j+k ≡ 1 |v−1k=0 . Vertical line patterns can be
formally described as:

(1 − Ri , j−1)(1 − Ri , j+v )
v−1∏
k=0

Ri , j+k ≡ 1

Bowed lines are patterns without constant slope or gradient, rep-
resenting a similar evolution of the state but at different
velocities, indicating changing system dynamics.

These small-scale patterns can result in large-scale ones, which
can be of four other types:
Homogeneous behavior or large recurrent states, which occur

when the time taken to return to a steady state is shorter
compared to the time spanned by the experiment.

Periodic and quasi-periodic behavior, represented by strong di-
agonal patterns.
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Drifting behavior, which occurs when the system has slowly vary-
ing parameters, represented by less recurrence as the states
move further from the main diagonal.

Disrupted which have abrupt changes in dynamics, causing sec-
tions without recurrence.

For example, in Figure 1, the large black blocks represent homo-
geneous states, which indicate that the GWO algorithm quickly
converges to a different local optima on each run. Moreover, these
local optima form two groups, from which it is possible to escape
into one of its composing optima, but not into another group. Each
restart results in a disruption of the behavior. Moreover, the system
does not present any periodical behavior, meaning that the individ-
uals cannot continue exploring the problem after convergence.

2.2.2 Cross-Recurrence Plots (CRP). An extension of RP used to
analyze two systems on the same phase space, CRPs aim to identify
interactions [10, 20]. In essence, it is a visual representation of a
binary distance matrix between the state vectors of two systems,
CA,B , with axes corresponding to time. The elements of CA,B are
given by the equation:

CA,Bi , j (ε) = 1
(
ε −



x(i),A − x(j),B



2 ≤ 0

)
where x(i),A and x(j),B are the observed states of systems {A,B}
at times {i, j} = 1, . . . ,T respectively. As in Eq.(1), ε is a threshold,
1 (·) denotes the indicator function, and ∥·∥2 denotes the Euclidean
distance. In a CRP, synchronization results in diagonal structures,
whose distortion represents temporal dilation or compression.

2.2.3 RQA measures of complexity. To quantify the information
presented in an RP and CRP, several measures of complexity have
been proposed based on the point density and the diagonal and
vertical line structures [9]. These are:

Recurrence rate (RR) is the simplest measure, corresponds to the
percentage of recurrence points in an RP, i.e.,

RR =
1
T 2

T∑
i , j=1

Ri , j

As T → ∞, RR corresponds to the probability that a state
recurs to a ε-neighborhood in the phase space.

Determinism (DET ) is the percentage of points forming diagonal
lines in an RP, i.e.,

DET =

∑T
ℓ=ℓmin

ℓP (ℓ)∑T
ℓ=1 ℓP (ℓ)

where ℓmin is a user-defined parameter. Processeswith uncor-
related or weakly correlated, stochastic or chaotic behavior
cause none or very short diagonals, while deterministic pro-
cesses cause longer diagonals. Therefore, DET is a measure
of the predictability of the system.

Divergence is the inverse of the longest diagonal line found on
the RP, ℓmax, which is related to the exponential divergence
of the phase space trajectory, i.e., shorter diagonal lines rep-
resent faster divergence of the trajectory segments.

Entropy (ENTR) of the probability of finding a diagonal line of
exactly length ℓ in the PR, i.e.,

ENTR = −

T∑
ℓ=ℓmin

p (ℓ) lnp (ℓ)

Therefore, ENTR captures the complexity of the diagonal
line structure of the RP.

Laminarity (LAM) is the measure analogous to DET but on verti-
cal lines, and corresponds to the percentage of points forming
a vertical line on an RP, i.e.,

LAM =

∑T
v=vmin vP (v)∑T
v=1vP (v)

where vmin is a user-defined parameter, and often equal to
ℓmin. This measure represents the occurrence of laminar
states in the system, and will decrease if the RP consist of
more single points.

Trapping time (TT ) corresponds to the average length of a verti-
cal line structure, i.e.,

TT =

∑T
v=vmin vP (v)∑T
v=vmin P (v)

That is, TT identifies how long a system will be trapped in a
given state.

These empirical measures, although helpful for finding various
transitions in dynamical systems, have as a drawback is their lack
of invariance with parameters, such as ε [9].

2.3 Landscape Analysis
Landscape Analysis (LA) are data-based methods for measuring
characteristics of a problem, i.e., modality, smoothness, global struc-
ture, variable scaling and separability [13], which generate one or
more features describing particular characteristics. LA has been
successfully used for identifying strengths and weaknesses of al-
gorithms [8], automatic algorithm selection [7], and per instance
algorithm configuration [2] methods, and benchmark construction
techniques [12]. For this work, we employed 31 LA features, which
we used on previous work [11].

2.4 Algorithms
We focus our analysis on Particle Swarm Optimization (PSO), Grey
Wolf Algorithm (GWO) and Simple Genetic Algorithm (SGA), with
the PSO and GWO sharing conceptual similarities worthy of anal-
ysis, and SGA serving as a conceptually different control. Swarm
algorithms are a natural fit for RQA because they model individuals
moving across the landscape, drawing a trajectory. For SGA, we
assume that no offspring is created, but instead each individual has
changed its state [22], allowing our methodology to be applicable
to other population-based algorithms.

PSO models the social interactions between bird flocks or fish
schools. In its canonical version [14], each individual i = 1, . . . ,n
is represented by a position, xi ,k , and a velocity, vi ,k , vectors of
sizem. Both vectors are initialized at random, and updated at each
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iteration using the equations:

vi+1,k = ωvi ,k + γ1r1 ⊙
(
pi ,k − xi ,k

)
+ γ2r2 ⊙

(
li ,k − xi ,k

)
xi+1,k = xi ,k + vi+1,k

where {r1, r2} are vectors of uniformly distributed random numbers
between [0, 1]; {γ1,γ2} are acceleration coefficients; ω is the inertia
weight;

{
pi ,k , li ,k

}
are the personal best and local (for a group of

neighboring particles) best positions at the current iteration; and ⊙

indicates the point-wise product between vectors.
GWOmodels the hierarchy and hunting behaviors of a wolf pack.

Camacho-Villalon et al. [4] considers GWO to be a PSO algorithm
in which three best particles are used to bias the movement of the
others, as follows:

si ,1 = gi ,1 − (2γi − 1) ri ,1
��2qi ,1 ⊙ gi ,1 − xi ,k

��
si ,2 = gi ,2 − (2γi − 1) ri ,2

��2qi ,2 ⊙ gi ,2 − xi ,k
��

si ,3 = gi ,3 − (2γi − 1) ri ,3
��2qi ,3 ⊙ gi ,3 − xi ,k

��
xi+1,k =

(
si ,1 + si ,2 + si ,3

)
/3

where
{
gi ,1, gi ,2, gi ,3

}
are the position of the three best particles

at the current iteration;
{
ri , j , qi , j

}
, j = 1 . . . , 3 are vectors of uni-

formly distributed random numbers between [0, 1]; and γj is a
decreasing acceleration coefficient that goes from 2 to 0.

SGA is an implementation of a genetic algorithm, using two-
individual tournament selection, exponential crossover and poly-
nomial mutation. During selection, two individuals are drawn
at random, and the one with the lowest fitness is selected. At
crossover, a random position is selected in the parent chromosome
and then inserts, on each successive gene, the partner values with
a user-given probability. Finally, during mutation, a sample cen-
tered around each gene is taken from the polynomial distribution
Pr (δ ) = 0.5 (n + 1) (1 − |δ |)n , with δ being drawn uniformly from
(−1, 1).

3 METHODOLOGY
Our methodology aims to identify the conditions in which two
algorithms behave similarly, as evidence that their rule-sets are
similar in practice. That is, the algorithms are not ‘complementary,’
a condition necessary for the construction of well-performing al-
gorithm portfolios [7]. At the core of our methodology are four
hypotheses: For different initial conditions, if the same algorithm
independently runs over the same problem instance twice, then the
dynamics of the system over the two runs should have similarities.
Similarly, assuming the same initial conditions, if the same algo-
rithm runs over two different instances, two different algorithms
run over the same instance, or two different algorithms run over
two different instances, then the dynamics of the system should
have differences. We distinguish between shared and specific initial
conditions, where the former refers to those comparable between
algorithms, i.e., the starting point and random seed, and the latter
refers to those which are incomparable, i.e., the acceleration coeffi-
cients in PSO and GWO, and other algorithm-specific parameters.
The methodology has four steps:

Collecting the data includes selecting both the benchmark in-
stances and the algorithms under study. Then, running the

algorithms for an equal number of function evaluations with
the same shared initial conditions.

Extracting the RQA measures of complexity from (a) the RP
resulting from comparing the state of the algorithm, x(i), and
(b) the CRPs resulting from comparing the state of each indi-
vidual, xi ,k , against all others, which for n individuals results
in n (n − 1) /2 CRPs. As we are agnostic on the settings for
ε and ℓmin, the two user-defined parameters from RQA, we
define a grid with ε = {5%, 10% . . . , 25%, 30%} of the phase
space diagonal, and ℓmin =

{
21, . . . , 24

}
, resulting in 24 com-

binations. With six RQA measures per combination, we have
144 measures resulting from the RP and each CRP. To sum-
marize the results from the individuals’ comparison, we take
the average measures across all CRPs. In total, we obtain 288
features. Simultaneously, we extract the LA features from a
suitable dataset, this often being an independent experiment
using Latin Hypercube or a similar sampling method.

Visualization is achieved by projecting the RQA measures into
a two-dimensional Behavioral Space. For this purpose, we
use Principal Component Analysis (PCA) to reduce from 288
features into K components which capture over 95% of the
variance. Finally, these K components are further reduced
into a two-dimensional space, Z, using t-Stochastic Network
Embedding (t-SNE).

Statistical analysis helps us determine whether the behavior of
the algorithms are similar or not, by testing the hypotheses:

(1) For two independent sets of runs of an algorithm on an
instance, we use multivariate one-way analysis of vari-
ance (MANOVA1) to determine whether the means are
co-located in Z, meaning that the behavior is not signifi-
cantly different. Then, we split the instances in two groups,
those with co-located means and those without. We use a
two-sample t-test (t-test2) to check whether the means of
the LA features from these two groups are equal or not.
If a feature has means that are not equal, then we take
this as evidence that this feature affects the consistency
between runs of an algorithm.

(2) For two sets of runs of an algorithm on two instances, we
use MANOVA1 to determine for which combinations of
instances the means are co-located in Z. If they are, then
we use t-test2 to check whether the means of LA features
from these two instances are equal, in which case we take
this as evidence that instances with this feature result in
similar behaviors from the algorithm. As we are interested
on the majority trend, if a feature has more than 60% of its
tests with the null hypothesis rejected, then we consider
that this feature to affect the behavior of an algorithm.

(3) For independent sets of runs of two algorithms on the
same instance, we use MANOVA1 to determine for which
instances the means are co-located inZ, meaning that both
algorithms behave similarly. Then, we split the instances
into two groups, those with co-located means and those
without. We use t-test2 to check whether the means of
the LA features from these two groups are equal or not.
If a feature has means that are not equal, then we take
this as evidence that the behavior is similar between the
algorithms for problems with this feature.
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(4) For independent sets of runs of two algorithms on two
instances, we use MANOVA1 to determine for which com-
binations of algorithms and instances the means are co-
located in Z, meaning that both algorithms behave simi-
larly. If they are, then we use t-test2 to check whether the
means of LA features from these two instances are equal,
in which case we take this as evidence that instances with
this feature result in similar behaviors from the algorithms.
As we are interested on the majority trend, if a feature
has more than 60% of its tests with the null hypothesis
rejected, then we consider that this feature to affect the
behavior of an algorithm.

3.1 Experimental settings
As benchmark instances, we use the 2010 BBOB scenario from
COCO [6] atm = 2, i.e., the first fifteen instances from each of the
24 functions, resulting in 360 instances for analysis. As algorithms,
we use the PSO, GWO and SGA implementations from pygmo, the
Python interface of the pagmo2 library [3], with default parameters.
The environment is Anaconda Python 3.7.6, with pygmo 2.16.0 and
COCO 2.4. Each algorithm is run ten times with a population of 20
individuals for 50 generations, resulting in 103 function evaluations
per run, or 104 evaluations per algorithm/instance combination.
Each run has a random seed taken from a set, which in turn was
generated by setting the random seed to 10, and then drawing ten
integers from a uniform distribution between [1, 1000]. At each
iteration i , we collect the state, x(i), and cost, yi , vectors.

To extract the RQAmeasures, we reorganize the state vector data
into three matrices, with rows corresponding to generations. Two
of them containing either the first or the last five runs,

{
X(A),X(B)

}
,

and one containing all the ten runs, X(C). The former two are used
to test Hypothesis 1, whereas the latter one is used for testing
Hypotheses 2 to 4. Using Yang’s implementation of the RQA mea-
sures [19], we estimate {RR,DET , ℓmax , ENTR, LAM,TT } for the
RP and CRPs as described above, for each of

{
X(A),X(B),X(C)

}
,

resulting in three datasets, all of them with 288 features for 360
instances. Simultaneously, we extract the 31 LA features by generat-
ing a sample, XLHS, of size 2× 103 using Latin hypercube sampling.
Then, we evaluate XLHS on each instance from the COCO bench-
mark to obtain a sample, YLHS. By sharing XLHS across instances,
the differences observed in the features are not due to sampling,
and the computational cost is reduced. Visualization and statistical
analysis are carried out in MATLAB r2020a Update 7 using the
inbuilt libraries. The significance level α is set to 0.01, as to reduce
the probability of false positives. Code and data are available at
github.com/andremun/rqa_gecco.

4 RESULTS
4.1 Recurrence Matrices
Figure 2 illustrates the distance matrix between states of the first
five runs from each of the three algorithms under study, on three
functions from the COCO, i.e., Ellipsoidal, f2, Step Ellipsoidal, f7,
and Katsuura, f23. On f2, the three algorithms have very distinct
behavior, i.e., PSO always converges to different states, GWO con-
verges on some runs to the same state, and SGA quickly converges
on all runs to the same state. On f7, PSO and GWO converge to

(a) PSO - f2 (b) GWO - f2 (c) SGA - f2

(d) PSO - f7 (e) GWO - f7 (f) SGA - f7

(g) PSO - f23 (h) GWO - f23 (i) SGA - f23

Figure 2: Distance matrices between states of the first five
runs from PSO, GWO and SGA, on the Ellipsoidal, f2, Step
Ellipsoidal, f7, and Katsuura, f23 functions from the COCO.

similar states on the five runs, as can be observed by the checkered
structure of the matrix, while SGA converges to very distinct states,
as the lighter areas of the matrix show. On f23, both GWO and SGA
show similarities, as they converge to similar states on each run,
whereas PSO always converges to a different state on each run.

4.2 Behavioral Space
Figure 3 presents the Behavioral Space, a two-dimensional projec-
tion of the RQAmeasures, where eachmark is an algorithm/instance
combination. The color represent the algorithm. We can observe
twowell-separated clusters. The first corresponding to SGA, located
in the top left corner, and the second corresponding to PSO and
GWO, located in the bottom center. Arguably, this second cluster
could be further split, with some PSO results having a behavior
closer to that of GWO. However, the figure shows differences be-
tween the swarm algorithms and the control.

Figure 4 illustrates the two RQA measures with the highest
correlation with the space axes, i.e., the percentage of points form-
ing diagonal lines with a minimum length of 16, DET (ε = 5%,
ℓmin = 16), and the average percentage of points forming vertical
lines with a minimum length of 8 for the individuals, LAM (ε = 5%,
ℓmin = 8). Broadly, the first measure separates PSO and SGA from
GWO. This implies that GWO, which has larger values of this mea-
sure, tends to be a process with a more deterministic behavior,
resulting in a higher consistency, potentially making it more pre-
dictable. On the other hand, the second measure separates PSO and
GWO from SGA. This implies that the individuals of SGA, which
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Figure 3: Behavioral Space obtained by projecting the RQA
measures, extracted from the ten run data, into two dimen-
sions using PCA and t-SNE. Color marks indicate the algo-
rithm, i.e., PSO (•), GWO (•) and SGA (•).

(a) DET (ε = 5%, ℓmin = 16) (b) LAM (ε = 5%, ℓmin = 8)

Figure 4: RQA measures with the highest correlation with
the two-dimensional space axes.

has larger values of this measure, tend to stay at steady states more
consistently than the swarm algorithms.

Figure 5 shows the COCO benchmarks divided into four groups,
(a) f1 − f6, (b) f7 − f12, (c) f13 − f18 and (c) f19 − f24, giving us
finer grain information on the location of each function. We fo-
cus the results from PSO and GWO around the origin coordinates,
(0.0, 0.0), where most similarities appear to exist. We observe that
there is no overlap on the location of functions, e.g., { f5, f9, f14, f19}
have some instances located nearby the origin. However, for f5,
the centroid is located approximately on (3.32, 15.63) for PSO (+)
and (25.26,−17.47) for GWO (×); for f9, it is located approximately
on (−18.19,−24.85) for PSO (+) and (5.97, 9.89) for GWO (×); for
f14, it is located approximately on (−4.61, 0.16) for PSO (+) and
(8.70,−5.86) for GWO (×); and for f19, it is located approximately on
(−16.31,−38.22) for PSO (+) and (10.45, 5.60) for GWO (×). These
results indicate that it is unlikely that statistically significant differ-
ences will be observed for Hypotheses 3 and 4.

Table 1: Results for testing whether two independent sets
of runs of an algorithm on the same instance are co-located
(Hypothesis 1)

(a) P-values of MANOVA1. In bold are values less than 0.01.

Function PSO GWO SGA Function PSO GWO SGA

f1 0.637 0.992 0.007 f13 0.699 0.707 0.000
f2 0.635 0.219 0.000 f14 0.000 0.709 0.082
f3 0.720 0.033 0.001 f15 0.190 0.042 0.002
f4 0.077 0.827 0.020 f16 0.674 0.892 0.052
f5 0.086 0.005 0.143 f17 0.696 0.774 0.002
f6 0.004 0.973 0.000 18 0.468 0.982 0.000
f7 0.950 0.210 0.000 f19 0.564 0.054 0.000
f8 0.225 0.909 0.000 f20 0.000 0.042 0.000
f9 0.011 0.001 0.001 21 0.562 0.924 0.003
f10 0.967 0.116 0.000 f22 0.557 0.991 0.001
f11 0.447 0.964 0.001 f23 0.678 0.225 0.000
f12 0.814 0.328 0.000 f24 0.030 0.159 0.000

(b) P-values of t-test2. In bold are values greater than 0.01.

Feature PSO GWO SGA Feature PSO GWO SGA

FDC 0.017 0.007 1.000 ϵmax 0.000 0.001 0.015
DISP1% 0.000 0.004 0.460 M0 0.000 0.000 0.884
R2
L 0.000 0.001 0.154 EL10 0.409 0.000 0.004

R2
LI 0.000 0.000 0.563 EQ10 0.000 0.000 0.109

R2
QI 0.000 0.000 0.589 ET10 0.000 0.000 0.297

R2
Q 0.000 0.006 0.761 LQ10 0.503 0.000 0.000

βmin 0.400 0.495 0.616 EL25 0.000 0.000 0.046
βmax 0.278 0.378 0.518 EQ25 0.000 0.288 0.209
CN 0.000 0.962 0.796 ET25 0.000 0.000 0.429
H (Y ) 0.268 0.154 0.000 LQ25 0.018 0.000 0.014
ξ (N ) 0.000 0.000 0.000 EL50 0.000 0.040 0.464
ξ (1) 0.011 0.000 0.000 EQ50 0.000 0.000 0.683
ξ (2) 0.000 0.000 0.000 ET50 0.000 0.000 0.804
γ (Y ) 0.009 0.363 0.102 LQ50 0.967 0.002 0.245
κ(Y ) 0.993 0.640 0.142 PKS 0.000 0.000 0.929
Hmax 0.000 0.000 0.133

4.3 Statistical analysis
4.3.1 Hypothesis 1. Table 1a shows the p-values of MANOVA1 for
testing whether two independent sets of runs of an algorithm on an
instance are not significantly different. These results indicate that
both PSO and GWO tend to converge similarly across runs; hence,
they are more consistent and could be more predictable on the same
instance. On the other hand, SGA is more discrepant, i.e., it is more
dependent on the starting point and random seed. Table 1b shows
the p-values for ttest2 for verifying which LA features are influen-
tial. We observe that for SGA, features derived from Information
Significance are not influential, which may indicate that variable
dependencies do not result in discrepancies. On the other hand,
features that attempt to measure ill-conditioning, such as βmax and
H (Y ), are influential for the consistency of both PSO and GWO.

4.3.2 Hypothesis 2. Figure 6 illustrates the combination of func-
tions on which the same algorithm produces similar convergence
behavior. A color mark is used to signify that the combination pro-
duces a p-value of MANOVA1 less than 0.01. This effect is more
common on GWO with 25.0% of the combinations, then SGA with
14.9% of the combinations and finally PSO with 8.0% of the com-
binations. These results align with our observations on Figure 4,
which showed that GWO tends to behave more consistently across
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(a) f1 − f6 (b) f7 − f12

(c) f13 − f18 (d) f19 − f24

Figure 5: Location of the COCO benchmarks, where color and mark combinations represent an algorithm/instance system.

functions. In other words, GWO tends to produce similar behav-
ioral patterns, regardless of the function being explored, which
may indicate a systemic bias. This is likely to be a disadvantage, as
it shows that the algorithm does not adapt to new environments
as well as PSO or SGA. Testing this observation is left for further
research. The figure also shows pairs of functions where all algo-
rithms have similar convergence behavior, e.g., (f1, f14), (f3, f4),
(f7, f18), (f8, f13), (f10, f12), (f11, f21), and (f13, f18).

Table 2 shows the percentage of ttest2 which resulted in their
p-values being higher than 0.01, that is, the mean of the feature
was not significantly different between a pair of functions. This is a
measure of the shared features that produced consistent results for
an algorithm across pairs. Broadly, {EL10, EL25, EL50, LQ50} are fea-
tures that indicate multi-modality. Observing the pairs of functions
listed above, in most cases these are functions with single funnels.
Exploring this observation further is left for future research.

4.3.3 Hypotheses 3 and 4. MANOVA1 found that the means are
not co-located, meaning that independent runs of two different
algorithms, on either the same or different instances, do not share

statistically significant similarities in behavior. Given the results
observed for Hypothesis 1 and 2 above, which indicated that PSO
and GWO are more consistent across ill-conditioned instances, with
GWO potentially suffering from systemic bias, and Figure 4, which
indicated that GWO is more consistent across functions, it could
be possible to find a set of parameters for which GWO mimics
PSO’s behavior. However, testing this observation is left for further
research.

5 CONCLUSION
We have presented an experimental benchmarking methodology
for the behavioral analysis of optimization algorithms for black-box
optimization, based on comparing algorithm dynamics in a given
problem instance. The results from comparing PSO, GWO and SGA
show that, although we did not observe statistically significant
behavioral similarities on the experimental conditions tested, it is
likely that there is a set of conditions in which similarities could
appear. In particular, if there is a set of parameters, or instances
with certain characteristics, that would collapse the behavior of one
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Figure 6: Results from MANOVA1 for testing whether two
sets of runs of an algorithm on two functions are co-located
(Hypothesis 2). Color marks indicate the combination and
the algorithm for which their p-value is less than 0.01, i.e.,
PSO (•), GWO (•) and SGA (•).

Table 2: Percentage of t-test2 that rejected the null hypoth-
esis for testing whether two sets of runs of an algorithm on
two functions are co-located (Hypothesis 2). In bold are per-
centage values higher than 50%.

Feature PSO GWO SGA Feature PSO GWO SGA

FDC 31.8% 36.2% 36.6% ϵmax 18.2% 4.3% 4.9%
DISP1% 31.8% 24.6% 26.8% M0 27.3% 17.4% 17.1%
R2
L 31.8% 44.9% 48.8% EL10 86.4% 78.3% 78.0%

R2
LI 27.3% 31.9% 29.3% EQ10 27.3% 30.4% 34.1%

R2
QI 4.5% 11.6% 17.1% ET10 18.2% 7.2% 17.1%

R2
Q 18.2% 15.9% 26.8% LQ10 22.7% 27.5% 26.8%

βmin 18.2% 13.0% 14.6% EL25 59.1% 65.2% 63.4%
βmax 22.7% 11.6% 12.2% EQ25 22.7% 27.5% 34.1%
CN 27.3% 24.6% 34.1% ET25 22.7% 11.6% 19.5%
H (Y ) 13.6% 11.6% 2.4% LQ25 27.3% 24.6% 31.7%
ξ (N ) 13.6% 20.3% 9.8% EL50 54.5% 53.6% 58.5%
ξ (1) 27.3% 18.8% 19.5% EQ50 22.7% 20.3% 29.3%
ξ (2) 13.6% 20.3% 9.8% ET50 31.8% 33.3% 36.6%
γ (Y ) 13.6% 11.6% 9.8% LQ50 50.0% 52.2% 56.1%
κ(Y ) 9.1% 10.1% 7.3% PKS 22.7% 20.3% 22.0%
Hmax 9.1% 10.1% 4.9%

algorithm into the behavior of another. The first focus of our future
work is to investigate these conditions. The results presented above
provide us with some clues. More importantly, we observed that
GWO appears to exhibit systemic bias, leading to similar behavioral
patterns regardless of the function, as long as this does not have
ill-conditioning and multiple funnels.

Finally, other techniques from complex systems’ analysis may
be useful for extending the Behavioral Space. For example, Zelinka
et al. [21] proposes representing an algorithm as a Coupled Map
Lattice (CML) systems, opening the opportunity for calculating fea-
tures such as degree centrality, mean neighbor degree, community
is done among the others.
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