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Abstract
The inherent difficulty of solving a continuous, static, bound-constrained and single-objective black-box optimization

problem depends on the characteristics of the problem’s fitness landscape and the algorithm being used. Exploratory

landscape analysis (ELA) uses numerical features generated via a sampling process of the search space to describe such

characteristics. Despite their success in a number of applications, these features have limitations related with the com-

putational costs associated with generating accurate results. Consequently, only approximations are available in practice

which may be unreliable, leading to systemic errors. The overarching aim of this paper is to evaluate the reliability of five

well-known ELA feature sets across multiple dimensions and sample sizes. For this purpose, we propose a comprehensive

experimental methodology combining exploratory and statistical validation stages, which uses resampling techniques to

minimize the sampling cost, and statistical significance tests to identify strengths and weaknesses of individual features.

The data resulting from the methodology is collected and made available in the LEarning and OPtimization Archive of

Research Data v1.0. The results show that instances of the same function can have feature values that are significantly

different; hence, non-generalizable across instances, due to the effects produced by the boundary constraints. In addition,

some landscape features under evaluation are highly volatile, and strongly susceptible to changes in sample size. Finally,

the results show evidence of a curse of modality, meaning that the sample size should increase with the number of local

optima.

Keywords Black-box optimization � Bound-constrained optimization � Continuous optimization � Exploratory landscape

analysis � Single-objective optimization

1 Introduction

The expectation that a good solution to a continuous, static,

bound-constrained and single-objective black-box opti-

mization problem can be found reasonably fast by a given

algorithm depends on the characteristics of the problem’s

fitness landscape (Sala and Müller 2020). The ‘hardness’ of

such problems is related to landscape characteristics such

as modality, smoothness and variable separability, and the

way that such characteristics are exploited by an algorithm.

Therefore, by quantifying the landscape characteristics we

can potentially identify which algorithm works ‘best’ on a

given problem. Exploratory Landscape Analysis (ELA) is

an umbrella term for a range of sample-based methods for

measuring the landscape characteristics of a problem,

which generate one or more numerical results describing

particular characteristics, called features. ELA has been

successfully used for identifying strengths and weaknesses

of algorithms (Malan and Engelbrecht 2014), automatic

algorithm selection (Bischl et al. 2012a; Kerschke and

Trautmann 2019a), per instance algorithm configuration

(Belkhir et al. 2016a, 2017) and generation (Miranda et al.

2017) methods, and benchmark construction techniques

(Muñoz and Smith-Miles 2020).

However, ELA features have limitations worth

acknowledging if landmines are to be avoided. For exam-

ple, their assumptions are valid on simple instances, where

& Mario Andrés Muñoz
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it is easier to isolate a specific characteristic. New infor-

mation cannot be added seamlessly without incurring a

significant bias or computational cost (Muñoz et al. 2012).

Identifying features that correlate with algorithm perfor-

mance is difficult, time consuming and not always intuitive

(Alissa et al. 2019), with some being more predictive than

others. Since we currently lack a good understanding of

which features are the most relevant (Renau et al. 2019), a

new feature may be needed each time a different algorithm

is being considered, or a characteristic is found to be

influential. Moreover, some features are hard to interpret,

limiting the provision of meaningful explanations and

restricting their usage as inputs to machine learning-based

selection or configuration models. If none of the algorithms

under consideration are recommended for a problem using

algorithm selection methods (Smith-Miles et al. 2014), and

we need to design a new algorithm, our ability to gain

required insights from the features is severely impaired.

Finally, but not least importantly, as the dimension of the

instance increases, so too does the computational cost of

the feature calculations measured in terms of function

evaluations (Müller and Sbalzarini 2011; He et al. 2007).

Therefore, the cost of calculating accurate features can be

greater than the cost of running an algorithm to solve the

problem (Beck and Freuder 2004; He et al. 2007), and only

approximate features can be calculated in practice (He

et al. 2007). Although approximated features can be used

for automatic algorithm selection and configuration (Ker-

schke et al. 2016; Belkhir et al. 2016a, 2017; Kerschke and

Trautmann 2019a), they are random variables whose dis-

tribution depends on the function instance, the sample size,

and even the sample generator (Renau et al. 2020). Hence,

it is necessary to have a sufficiently large sample such that

the median of the distribution has converged.

In order to avoid the kinds of systemic errors introduced

by uncertainties in approximated features, and to ensure the

simplicity and efficiency of systems relying on such fea-

tures, we propose some reliability criteria. An approxi-

mated feature is reliable if it: (a) produces useful

information, (b) is free of vulnerabilities that could lead to

inaccurate interpretations, (c) has low variance, (d) is dif-

ferent between functions, (e) is stable across instances of

the same function generated through translations or rota-

tions, (f) converges quickly, and (g) is uncorrelated with

other features. Unfortunately, there is limited literature

exploring the reliability of approximated features in detail,

specifically the strengths and weaknesses of the various

types of ELA features. Muñoz and Smith-Miles (2015)

explored the effect that translations had on the features,

when the cost function is bound-constrained, demonstrat-

ing that translations led to phase transitions; hence, pro-

viding evidence of non-generality of the features across

instances. Renau et al. (2019) explored the robustness of

features against the random sampling process, the number

of sample points, and the expressiveness in terms of their

ability to discriminate between problems. Focusing on a

fixed dimension of five and seven feature sets, they deter-

mined that most features are not robust against the sam-

pling method, and are similar for several function pairs.

Saleem et al. (2019) proposed a method to evaluate fea-

tures based on a ranking of similar problems and Analysis

of Variance (ANOVA), which does not require machine

learning models or confounding experimental factors.

Focusing on 12 features, four benchmark sets in two- and

five-dimensions, and four one-dimensional transformed

functions, they identified that not a single feature is capable

of identifying all the landscape characteristics but some

features prove valuable in capturing certain characteristics

of the landscape. Moreover, they emphasize the necessity

to examine the variability of a feature with different sample

sizes, as some can be estimated with small sizes, while

others not. Finally, Škvorc et al. (2020) used ELA to

develop a generalized method for visualizing a set of

arbitrary optimization functions, focusing on two- and ten-

dimensional functions. By applying feature selection, they

showed that many features are redundant and most are non-

invariant to simple transformations such as scaling and

shifting.

In this paper, we advance the concepts studied in these

previous works, by exploring the reliability of five well-

known ELA feature sets on a larger set of dimensions,

across multiple sample sizes. For this purpose, we propose

a systematic experimental methodology combing explora-

tory and statistical validation stages, which uses statistical

significance tests and resampling techniques to minimize

the computational costs, both in collection time and storage

space. Assuming that it is a random variable, a feature with

a high-variance distribution may exhibit extreme changes

across experiments due to the sample points collected,

making it unreliable. Moreover, estimating the distribution

allows us to determine whether the difference in value

between instances or functions is statistically significant.

The data resulting from the proposed methodology, applied

to the Comparing Continuous Optimizers (COCO) noise-

less benchmarks, is collected and made available in the

LEarning and OPtimization Archive of Research Data

(LEOPARD) v1.0 (Muñoz 2020)—another contribution of

this work. The results demonstrate that some features are

highly volatile for particular functions and sample sizes. In

addition, a feature may have significantly different values

between two instances of a function due to the bounds of

the input space. This implies that the results from an

instance should not be generalized across all instances.

Finally, the results show evidence of a curse of modality,

which means that the sample size should increase with the

number of local optima in the function.
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This paper is organized as follows. Section 2 presents

the details of the five feature sets under evaluation: fitness

distance correlation (Jones and Forrest 1995), dispersion

(Lunacek and Whitley 2006), fitness distribution analysis

(Mersmann et al. 2011; Marin 2012), model fitting

(Mersmann et al. 2011), and information significance (Seo

and Moon 2007). Section 3 presents the proposed experi-

mental methodology, and describes the data contained in

LEOPARD. Results are presented in Sect. 4. The impli-

cations of the findings are presented in Sect. 5. The paper

finalizes with the conclusions in Sect. 6.

2 Exploratory landscape analysis

Exploratory landscape analysis are methods used to mea-

sure specific problem landscape characteristics thought to

be related to the difficulty of the underlying optimization

task, i.e., modality, smoothness, global structure, variable

scaling and separability (Muñoz et al. 2015b), through

feature sets. Figure 1 maps the feature sets evaluated in this

paper to the landscape characteristics they measure. Before

presenting the technical details of each set, we define our

notation. Without loss of generality for maximization, a

continuous, static, bound-constrained and single-objective

optimization problem is a function to be minimized,

f : X ! Y, where X � RD is the input space, Y � R is the

output space, and D 2 N� is the dimensionality of the

problem. A sample point x 2 X is a D-dimensional vector,

and y 2 Y is the sample point’s cost or fitness. The set of

global optima is defined as

xO 2 X : 8x 2 X ; f xð Þ� f xOð Þf g. Let X � X be an input

sample of size n, and the output sample, Y � Y, be the

result of evaluating X in f.

Fitness distance correlation (Jones and Forrest 1995)

measures the relationship between the location in the

input space and the fitness value. It aims to identify

whether a landscape is unimodal or multimodal, and

whether it has a strong global structure or not. It is

defined as the Pearson correlation between the fitness

value yi and the Euclidean distance, di, between xo and xi
with xo approximated by the best point from the sample

(Müller and Sbalzarini 2011), as follows:

FDC ¼ 1

n� 1

Xn

i¼1

yi � �y

r̂y

� �
di � �d

r̂d

� �
ð1Þ

where �y and �d are the mean fitness and the mean distance

between xo and xi respectively, r̂y and r̂d are the sample

standard deviation of the fitness and the distance

respectively. Arguably, FDC is invariant to shifts and

rotations on the input space, because they are global

isometries of the Euclidean space, i.e., shifts and rota-

tions do not affect the distance between sample points.

Dispersion (Lunacek and Whitley 2006), like FDC, is a

measure of the relationship between the location of the

samples in the input space and the fitness value. It is

defined as the normalized average Euclidean distance

between the qn; q\1 fittest sample points. The assump-

tion behind this feature is that points taken from well

correlated landscapes have similar fitness if they are

close to each other. The feature is normalized over the

diagonal of the input space as follows:

DISPq ¼
1

xmax � xmink k
1

qn

Xqn

i¼1

Xqn

j¼1

d xi; xj
� �

ð2Þ

where xmin and xmax are the upper and lower bounds of

the input space respectively, and q is the truncation level

between the 0; 1½ � range, which we set to

q ¼ f0:01; 0:02; 0:05; 0:07; 0:10; 0:20; 0:50g. As it is the
case with FDC, it can be proven that DISPq is theoreti-

cally invariant to shifts and rotations on the input space,

because they are global isometries of the Euclidean

space.

Fitness distributions is a powerful approach to assess the

complexity (or hardness) of a problem, as the fitness

probability distribution is independent from the repre-

sentation of the input space (Rosé et al. 1996). Accord-

ing to Mersmann et al. (2011), the level of smoothness

and the global structure of the function can be charac-

terized through the skewness and kurtosis, which are the

Modality

Smoothness

Global
Structure

Variable
Scaling

Variable
Separability

FDC

Dispersion

Model
Fitting

Information
Significance

Fitness
Distributions

Fig. 1 A mapping of the feature sets (left) to landscape characteristics

(right) used in this study. Here, five different sets are used to quantify

five different landscape characteristics. It should be noted that the

features must be used in combination to paint a clear picture of the

underlying problem landscape
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standardized third and fourth moments of the distribu-

tion. Skewness is a measure of the symmetry of the

distribution, with a negative value indicates that the

distribution’s tail is heavier on the left side, where as a

positive value indicates that the tail is heavier on the

right side. On the other hand, kurtosis measures the

propensity of the distribution to produce outliers without

identifying aspects of the peak. The sample skewness, c,
and kurtosis, j, are both calculated using their unbiased

estimators, which in turn are derived from expansions of

the unbiased estimators of the third and fourth cumu-

lants, k3; k4f g and the standard deviation, k2, as follows:

c � k3

k
3=2
2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n n� 1ð Þ

p

n� 2

1
n

Pn
i¼1 Dy

3
i

1
n

Pn
i¼1 Dy

3
i

� �3=2 ð3Þ

j � k4
k42

¼ n� 1

n� 2ð Þ n� 3ð Þ

nþ 1ð Þ
1
n

Pn
i¼1 Dy

4
i

1
n

Pn
i¼1 Dy

4
i

� �2 � 3 n� 1ð Þ
 !

þ 3

ð4Þ

where Dyi ¼ yi � �y. Moreover, it might be of use to

quantify the complexity of the distribution instead of

characterizing the shape, through the entropy, H Yð Þ
(Marin 2012), which we estimate using the kd-tree par-

tition method (Stowell and Plumbley 2009).

Model fitting is another approach that can also be used to

analyze the modality and the global structure of the

landscape using linear or quadratic regression (Mers-

mann et al. 2011). Model fitting can be thought of as

measuring the distance between a reference problem and

the problem under analysis (Graff and Poli 2010). In

addition, included interaction terms in the fitted model to

add information about linear variable dependencies,

which it is equivalent to measure linear variable

dependencies (Rochet et al. 1996; Davidor 1991). In

total, we train four models: linear model without

interactions, L, linear model with interactions, LI,

quadratic model without interactions, Q, and quadratic

model with interactions QI (Mersmann et al. 2011).

As an example, assume that we are fitting a two-

dimensional quadratic regression model with variable

interactions, i.e., yi ¼ b0 þ b1x1;i þ b2x1;i þ b3x1;ix2;i þ
b4x

2
1;i þ b5x

2
2;i; where b ¼ b0; b1; . . .; b5f g are the esti-

mated regression coefficients and xi ¼ x1;i; x2;i
� �

is a

sample point. We fit the model using least squares, such

that b̂ ¼ X>X
� ��1

XY. The fit of this model is measured

using the Adjusted Coefficient of Determination, �R2,

which is calculated using Eq. (5) where ŷi is the

estimated fitness, �y is the mean of the observed fitness,

and bj j is the cardinality of the estimated coefficients. In

our example, bj j ¼ 6.

�R2 ¼ 1þ bj j
n� bj j � 1

P
yi � ŷið Þ2

P
yi � �yð Þ2

ð5Þ

In addition, to estimate the level of variable scaling we

measure the minimum and maximum of the absolute

value of the linear model coefficients, i.e., min bLj jð Þ and
max bLj jð Þ, which indicate the most extreme scales of

the variables; and the ratio between the minimum and

the maximum absolute values of the quadratic

term coefficients in the quadratic model, i.e.,

min bQ
		 		� �

=max bQ
		 		� �

, which is an indicator of the

conditioning of the function (Mersmann et al. 2011).

Information significance is a method used to measure

variable dependency or Epistasis (Seo and Moon 2007),

which is an important characteristic, as a careful analysis

of variable interactions suggests that a given problem

might be broken down into simpler problems of lower

dimensionality (Pošı́k 2005; Mersmann et al. 2010).

Most methods proposed for Epistasis, assume linear

interactions between variables (Davidor 1991; Naudts

et al. 1997; Fonlupt et al. 1998; Rochet et al. 1998). In

contrast, information significance measures non-linear

variable dependencies based on mutual information,

expressing dependency as the joint probability of a group

of variables relative to the probability of each variable.

To use this method, let V ¼ 1; . . .;Df g be a set of

variable indexes, where D is the dimension of the

problem, v 2 V is the index of one of such variables, and

V � V is a combination of such variables. The informa-

tion significance of a variable combination V, n Vð Þ, is
the uncertainty coefficient calculated using Eq. (6),

where Ĥ Yð Þ is the estimated information entropy and

Î XV ;Yð Þ ¼ Ĥ XVð Þ þ Ĥ Yð Þ � Ĥ XV ; Yð Þ is the estimated

mutual information.

n Vð Þ ¼ Î XV ;Yð Þ
Ĥ Yð Þ

ð6Þ

To summarize the results, we calculate the mean

information significance, n kð Þ, of order k using Eq. (7)

(Seo and Moon 2007), where k ¼ Vj j.

n kð Þ ¼ 1

D

k

� �
X

V�V; Vj j¼k

n Vð Þ:
ð7Þ

The method is dependent on Ĥ Yð Þ, which we estimate

using the kd-trees (Stowell and Plumbley 2009). How-

ever, the result is not bounded between 0; 1½ � as it is for
binary spaces. Because the number of possible variable

combinations increases with D, we only calculate the
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information significance of first, f 1ð Þ, second, f 2ð Þ and D-

th, f Dð Þ orders.

We conclude this brief review of ELA feature sets with

an acknowledgment that other sets have been proposed in

the literature (Kerschke and Trautmann 2019b). However,

all the feature sets described above are cheap i.e., they

share the advantage that any sample of size n is required to

calculate them all; hence, reducing the overall computa-

tional cost of our experiments (Muñoz et al. 2015b). By

definition, and as experimentally demonstrated by Škvorc

et al. (2020), these features are expected to be invariant to

scaling or shifting of the function by a constant, as their

values are calculated relative to the average cost that

includes such constants.

3 Experimental methodology

To investigate the reliability of the features, we propose a

two-stage experimental methodology spanning exploratory

and statistical analysis stages. Table 1 provides a high-

level overview of this methodology, by listing specific

questions related to performance characteristics of the

features considered and a brief outline of the approach used

to answer the questions.

The aim of the exploratory validation stage is to

demonstrate that the feature fulfills its stated objectives.

We are particularly interested in identifying vulnerabilities,

in other words, we wish to answer questions such as ‘‘when

is the feature likely to fail or have similar results to other

features?’’, and ‘‘how easy it is to produce an inaccurate

interpretation?’’.

The aim of the statistical validation stage is to assess the

reliability of the feature under varying experimental con-

ditions. Our main premise is that a feature ck f ; nð Þ for a

given function instance f calculated from a sample of

size n is a random variable, with randomness being

originated by the sampling or feature calculation

procedures and not the function itself. Therefore, it can be

also defined as ck f ; nð Þ 	 T x1; y1ð Þ; x2; y2ð Þ; . . .; xn; ynð Þð Þ;
where xi; yið Þ; i ¼ 1; . . .; n are also random variables. As

such, ck has a probability distribution whose variance, r2k ,
should converge to zero when n ! 1, otherwise r2k is

dependent on both f and n. The statistical validation

focuses on three aspects:

1. Measuring the magnitude of r2k . A high value indicates

that the feature is unreliable, as it changes across

experiments for a particular function due to sampling.

2. Testing the significance of the difference in feature’s

values across functions, instances or sample sizes.

Differences between two features that are not statisti-

cally significant indicate that the features may con-

verge to the same value.

3. Detecting linear correlations between features. Strong

correlation, either positive or negative, implies that the

features could be equivalent.

The MATLAB implementation of the Comparing Con-

tinuous Optimizers (COCO) noiseless benchmarks v13.09

(Hansen et al. 2014) are used in our experiments. The

motivation for this choice of benchmark problems revolves

around practical advantages. For example, there is a wealth

of data collected about the performance of a large set of

search algorithms, and there are established conventions on

the number of dimensions and the limits on number of

function evaluations. In addition, the software implemen-

tation of the benchmark set generates instances by trans-

lating and rotating the function in the input and output

spaces. Let fk;l be an instance k ¼ 1; . . .; 15 of the test

functions l ¼ 1; . . .; 24. The functions in the COCO set are

scalable with the dimension D, which we set to

D ¼ 2; 5; 10; 20f g. Ideally, if the features are to be used for

algorithm selection, their additional computational cost

should be a fraction of the budget allocated to a single

search algorithm, which is usually bounded within COCO

at 104 
 D function evaluations (Hansen et al. 2014).

Table 1 A summary of the experimental methodology used to establish the reliability of landscape features. Answers to the seven key questions

provides important insight into the reliability of particular landscape characteristics

Stage Key question Approach

I. Exploratory Is the feature fulfilling its stated objectives? Demonstrate that the feature can produce useful information

Is the feature free of major vulnerabilities? Find counter examples to highlight potential issues

II. Statistical Is the feature non-volatile? Calculate the feature’s variance

Is the feature different between functions? Test the significance of the differences across functions

Is the feature stable across instances of the same function? Test the significance of the differences across instances

Does the feature converge quickly? Test the significance of the differences across sample sizes

Is the feature uncorrelated with other features? Check for correlations between features

Analyzing randomness effects on the reliability of exploratory landscape analysis 135
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Belkhir et al. (2016b) and Kerschke et al. (2016) use

sample sizes of 30
 D and 50
 D respectively, which are

close to the population size of an evolutionary algorithm.

However, Belkhir et al. (2016b) establishes that 30
 D

produces poor approximations of the feature values,

although they can be improved by training and resampling

a surrogate model. Nevertheless, their experiments also

demonstrate that most features for the COCO benchmark

set level-off between 102 
 D and 103 
 D. These results

are supported by Škvorc et al. (2020), who determined that

for D ¼ 2 a sample size of at least 200
 D was necessary

to guarantee convergence.

Given this evidence and to balance the cost of our com-

putations, we set the lower bound for the sample size at

102 
 D, corresponding to 1% of the budget, and the upper

bound at 103 
 D, corresponding to 10% of the budget,

whichwe consider to be reasonable sample sizes.We divided

the range between 102 
 D and 103 
 D into five equally

sized intervals in base-10 logarithmic scale, with the objec-

tive of producing a geometric progression analogous to the

progression in D. As a result, we have five samples for each

dimension. The samples have sizes n equal to

100; 178; 316; 562; 1000f g 
 D points, where each one is

roughly 80% larger than the previous. We generate the input

samples, X, using MATLAB’s Latin Hypercube Sampling

(LHS) function lhsdesign with default parameters.

An output sample, Yk;l � Y, is the result of evaluating X
in one of the first 15 instances of the 24 functions from the

COCO benchmark. This data generation procedure guar-

antees that the differences observed on the features depend

on the output sample and not on the input sample; hence, it

eliminates a source of uncertainty. As D increases, the size

of the X is relatively smaller with respect to the size of X .

This is an unavoidable limitation due to the curse of

dimensionality.

A trial set, Zk;l, is the combination of input and output

samples; therefore, a trial set of n points has Dþ 1 vari-

ables. For example, a trial set for a two-dimensional

function has three variables: the two input variables,

x1;i; x2;i

 �

, and the output variable, yi. With one trial set for

each instance of each function, at each dimension and for

each sample size, we have a total of 7200 trial sets to

analyze 24
 15
 4
 5 ¼ 7200ð Þ.
To calculate the variance, we estimate the empirical

probability distribution of each feature, bpr ckð Þ. There are

multiple approaches to this problem. For example, to take

multiple, independent trial sets per function (Renau et al.

2019), which would guarantee the most accurate estimator

of bpr ckð Þ. However, this comes at the substantial compu-

tational of cost collecting the function responses and cal-

culating the features, particularly as n and D increase.

Another approach is to train a surrogate model with a small

sample, and then resample from the model (Belkhir et al.

2016b), which would provide a low computational cost

estimate of bpr ckð Þ. However, the resample also includes

assumptions generated by the surrogate that may not cor-

respond to the actual function. Moreover, parametric

assumptions cannot be made, and there is no guarantee of

fulfilling asymptotic convergence. Therefore, we use

bootstrapping (Efron and Tibshirani 1993) to estimate

bpr ckð Þ, which is a type of resampling method that uses the

empirical distribution to learn about the population distri-

bution as follows: Let Z ¼ z1; . . .; znf g; zi ¼ xi; yið Þ; i ¼
1; . . .; n be a sample of n independent and identically dis-

tributed random variables drawn from the distribution

pr Zð Þ. We can consider ck ¼ T pr Zð Þð Þ to be a summary

statistic of pr Zð Þ for example the mean, the standard

deviation, or in our case an ELA feature. For each

j ¼ 1; . . .;N, let Z�
j be a bootstrap sample, which is a new

set of n points independently sampled with replacement

from Z. From each one of the N bootstrap samples, we

calculate a bootstrap statistic, ĉ�k;j also in our case a feature.

The set of N bootstrap statistics is used to find the bootstrap

distribution, bpr� ckð Þ. We estimate the variance of the

bootstrap distribution, r̂2 ĉkð Þ, as follows:

r̂2 ckð Þ ¼ 1

N

XN

j¼1

c�k;j

� 2
� 1

N

XN

j¼1

c�k;j

 !2

ð8Þ

where N ¼ 2000. In other words, from each sample of size

n we create N resamples with replacement, also of size n,

from which we estimate all the features under examination.

To identify whether the difference in a feature is sta-

tistically significant, we employ the Wilcoxon rank-sign

test at the 95% significance level. The null hypothesis is

that the median of the two distributions are equal. Ideally,

the difference should be significant when the features for

two different problems are compared. The opposite indi-

cates that the feature does not provide useful information

because it converges to the same value regardless of the

function. The difference should not be significant when the

features are from two instances of the same problem, unless

the feature captures variable dependencies; or when the

feature is calculated with two samples of different sizes,

which indicates that the feature starts to converge at small

sample sizes. To illustrate the importance of significance

testing, Fig. 2 shows a kernel estimate of the probability

density function of FDC; c Yð Þf g for the first five instances

of the f1 function from COCO, which were generated

through translation. Although the features have different

mean values, their probability distribution overlap, imply-

ing that the difference may not be significant.

To mitigate false rejection errors, we use Benjamini and

Yekuteli’s method (Benjamini and Yekutieli 2001) to

correct the p-values resulting from the tests over each
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family, setting the False Discovery Rate, FDR, at 5%. If

the method rejects some hypotheses using conventionally

low alpha levels such as 5%, we can be confident that the

number of false discoveries is much smaller than the

number of correct rejections (Groppe et al. 2011). We

summarize the results by counting the percentage of tests

which are statistically significant for each function at each

dimension. The methodology assumes that the features

fulfill the requirements for bootstrapping; bpr� ckð Þ is a good
estimate of bpr ckð Þ; and ck is not biased, which means that

the median of bpr� ckð Þ converges to the real value of ck.

Bootstrapping has limitations due to resampling with

replacement. Although the size of Z� is the same than Z,

asymptotically only 63.2% of the points are unique in Z�

(Bischl et al. 2012b). Therefore, some areas may be better

represented in the sample than others. We assume that this

effect is ameliorated by having a large value of N. More-

over, a LHS is a type of stratified sampling, which may not

fulfill the independence assumption within bootstrapping.

The Appendix demonstrates that this assumption holds

experimentally, and there is no practical difference on the

results between taking N uniformly distributed random

samples of n points and bootstrapping N times a LHS of n

points. Nevertheless, it should be acknowledged that a

bootstrapped LHS is strictly no longer a LHS; hence, we

can expect its variance reduction properties to be affected

(Stein 1987). Combining bootstrapping with LHS or

pseudo-random sampling methods is not uncommon on

system simulation experiments where data could be

expensive to obtain (Storlie et al. 2009; Tian et al. 2014),

as it reduces the cost of collecting and storing data. For

example, storing 2000 points of a 2D function in double

precision require approximately 48kB of memory

2000
 3
 8ð Þ. Replicating this experiment 2000 times

would require approximately 96MB of memory in total,

whereas generating 2000 bootstrap indexes stored as 16-bit

unsigned integers would require 8MB 2000
 2000
 2ð Þ
plus the original 48kB of memory for the data. This cor-

responds to approximately 8% of the storage space, without

accounting any saving due to compression.

Finally, we calculate the Pearson correlation between

each of the features. We follow a rule of thumb that con-

siders a correlation between 0.7 and 0.9 to be high, and

between 0.9 and 1.0 to be very high (Hinkle et al. 2003).

With a dataset of 7200 different values of each feature,

there is enough evidence to identify whether one feature is

correlated with another.

The experimental data, consisting of the input and out-

put samples, indexes of the bootstrap samples, and feature

values, their bootstrapped values and summary statistics of

bpr ckð Þ, such as the feature variances, is collected in the

LEarning and OPtimization Archive of Research Data

(LEOPARD) v1.0 (Muñoz 2020) as compressed CSV files.

All data was originally generated using MATLAB 2012b.

4 Results

We present the results from our experiments for both the

exploratory and statistical validation stages. In the

exploratory validation stage, the overarching aim was to

identify whether a landscape feature fulfills its stated

objectives. We were particularly interested in determining

whether the feature generates similar results to other fea-

tures, and importantly, how features can be misinterpreted.

To highlight the vulnerabilities, a series of unique experi-

ments were identified and examined using selected test

functions from the COCO benchmarks. We describe the

details of the experiment before presenting the results in

Sect. 4.1. In the statistical validation stage, quantifying

reliability of features was the primary goal. That is, the aim

was to identify the comparative advantages and disadvan-

tages of each feature, by analyzing the relationships

between them, and the statistical significance of their dif-

ferences. We present the results of the statistical stage in

Sect. 4.2.

4.1 Exploratory validation stage

4.1.1 Fitness distance correlation

We focus our exploratory validation of FDC on deter-

mining whether two instances of the same function may

have similar values of FDC; hence, its interpretation pro-

vides clues about the complexity of the function. We col-

lected a sample of D
 103 points that is then evaluated on

Fig. 2 Kernel estimate of the probability density function for two

related features: FDC and c Yð Þ for the first five instances of the f1
function from the COCO benchmarks functions. The overlap between

probability density functions indicates that the difference in their

mean values could be insignificant
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Fig. 3 Fitness-distance clouds

for the first instance of the

functions from the COCO

benchmark at D ¼ 2. The

horizontal axis represents the

distance from the estimated

global optimum, whereas the

vertical axis represents the

fitness
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the first instance from each one of the functions from the

COCO benchmark at D ¼ 2. The results are illustrated in

Fig. 3 using scatter plots of the fitness, y, on the vertical

axis against the distance d between xo and xi on the hori-

zontal axis. We call this representation Fitness-Distance

cloud.

For most functions, the fitness increases as the distance

from the estimated global optimum increases, except for

functions f21; f22; f23; f24f g. This trend is the most evident

for f1. We can infer that FDC � 1 for f1, and that FDC ¼ 1

for an inverse conical function, which is not included in the

benchmark set. We observe that linear correlation is a poor

summary of the complex shape that the Fitness-Distance

cloud might have. Therefore, it might be inappropriate to

provide an interpretation of FDC, such as the one by

Müller and Sbalzarini (2011).

We evaluate the sample extracted above on the first 15

instances of ten selected functions from the COCO

benchmark at D ¼ 2, two from each one of the groups

defined by (Hansen et al. 2011a). These functions are

f1; f4; f6; f9; f10; f13; f15; f19; f23; f24f g. We calculated the FDC

for these functions, and we classify the functions into five

categories depending on its FDC value and the rule of

thumb by Hinkle et al. (2003) for the interpretation of the

Pearson correlation. The categories are: (1) Very high

0:9; 1:0½ �, (2) High 0:7; 0:9½ �, (3) Moderate 0:5; 0:7½ �, (4)
Low 0:3; 0:5½ � and (5) Little �0:3; 0:3½ �. The minimum and

maximum value of FDC among the first 15 instances, and

the category to which they belong are presented in Table 2.

The distributions of the values are presented as box-plots in

Fig. 4.

Table 2 and Fig. 4 suggest that the instances of the same

function can be classified into different categories, imply-

ing that a function cannot be categorized correctly using

the results from a single instance. For example, the

Attractive Sector (f6) and the Sharp Ridge (f13) functions

have at least one instance with little correlation and one

with high correlation. There are functions, such as the

Sphere (f1) and the Katsuura (f23) functions, whose cate-

gories do not change over the instances under analysis. In

summary and answering the questions for Stage I from

Table 1, FDC is a limited summary of the shape of the

Fitness-Distance cloud, resulting on instances of the same

function having FDC values that range from little to high

correlation. Therefore, FDC is a reliable measure for the

smoothest and ruggedest functions, but it is deceptive for

those in between.

4.1.2 Dispersion

We focus our exploratory validation of DISPq on deter-

mining the influence of the truncation level, q, on the value

of DISPq. We expect that the difference between functions

decreases as q increases. We extracted a D ¼ 10 sample of

104 points. Then, we calculated the value of DISPq for the

first instance of five functions from the COCO benchmark

at D ¼ 10. The functions are f1; f9; f10; f15; f23f g, one from

each one of the groups defined by (Hansen et al. 2011a).

Figure 5 shows the results, illustrating the relationship

between log10 qð Þ and the value of DISPq. In addition, the

figure shows a linear fit between log10 qð Þ and DISPq.

Since the same input sample was used for all functions

and the average distance between points is 0.401, then

DISPq at q ¼ 1:00 should converge also to 0.401. The

figure shows that the linear fit does converge towards 0.401

for the five functions. In addition, this value is close to the

theoretical convergence bound of DISPq, which is equal to

1=
ffiffiffi
6

p
(Morgan and Gallagher 2014). For function f23 the

values of DISPq are close to the theoretical convergence

level regardless of q. This result suggests that the function

is either very rugged or neutral.

Table 2 Minimum and maximum values of the FDC for the first 15

instances of ten selected functions from the COCO benchmark, and

their classification according to the rule of thumb proposed by Hinkle

et al. (2003)

min Class max Class

f1 0.969 (1) 0.973 (1)

f4 0.159 (5) 0.717 (2)

f6 - 0.290 (5) 0.904 (1)

f9 0.316 (4) 0.519 (3)

f10 0.295 (5) 0.863 (2)

f13 0.288 (5) 0.900 (1)

f15 0.368 (4) 0.865 (2)

f19 0.216 (5) 0.604 (3)

f23 - 0.036 (5) 0.030 (5)

f24 - 0.143 (5) 0.733 (2)

Under the same experimental conditions, two instances of the same

function can be classified in opposite classes

Fig. 4 Distribution of values of the FDC for the first 15 instances of

ten selected functions from the COCO benchmark. The distribution

demonstrates that the values from Table 2 do not correspond to

extreme outliers
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The linear fit suggests that it is likely that the DISPq

values are highly correlated. To verify this observation, we

calculate the values of DISPq at q ¼
f0:01; 0:02; 0:05; 0:07; 0:10; 0:20; 0:50g for the first 15

instances at 2; 5; 10; 20f g dimensions and with a sample

size of 100; 178; 316; 562; 1000f g 
 D points. Then, we

calculated the Pearson correlation between all the values of

DISPq. The results are presented in Table 3.

The results in the table show that the values of DISPq

are almost perfectly correlated, i.e., qx;y � 1, for most

values of q. This suggest that it may not be necessary to

calculate DISPq at different values of q, and perhaps only

one level is sufficient. Since the difference in the values of

DISPq between functions is inversely proportional to q,

then the highest discrimination between functions is

achieved with q ¼ 0:01. This level has the additional

advantage of being the least computational expensive value

to calculate. In addition, we consider it adequate to cal-

culate the value of DISPq for q ¼ 1:00 to verify whether

the average distance converges to the theoretical limit of

1=
ffiffiffi
6

p
.

We shift the focus of the exploratory evaluation to

determining whether two instances of the same function

may have similar values of DISP0:01. We calculated

DISP0:01 for the first 15 instances of the same ten functions

that we analyzed for the FDC. The minimum and maxi-

mum value of DISP0:01 from the 15 instances are presented

in Table 4. The table includes the relative difference

between the minimum and maximum value, RD, which is

expressed as a percentage of the maximum. The RD help us

to analyze the sensitivity of DISP0:01 to translational shifts

and orthogonal rotations of a function. Moreover, the dis-

tributions of the values are presented as box-plots in Fig. 6.

Table 4 and Fig. 6 show that, while the ranges for the

value of DISP0:01 can be small for some instances of a

function under these experimental conditions, they can

have large relative variations, i.e., over 10% for all func-

tions and close to 70% for some functions. It is not yet

clear whether DISP0:01 converges to the same value

between instances as n ! 1, i.e., the RD for all functions

will converge to zero. We find that the values of DISP0:01

cannot be generalized between instances under these

experimental conditions. In summary and answering the

questions for Stage I from Table 1, DISPq works best with

a small value of q, providing the highest level of

Fig. 5 Relationship between the truncation level and the value of the

Dispersion for the first instance of five functions from the COCO

benchmark at D ¼ 10. On the horizontal axis is the truncation level,

represented as log10 qð Þ, whereas on the vertical axis is the Dispersion

value. The figure also shows a linear fit of the relationship, which

converges to 0.401 for log10 qð Þ ¼ 0, a close value to the theoretical

convergence bound of DISPq. Moreover, the highest discrimination

between functions is achieved with q ¼ 0:01, and may not be

necessary to calculate DISPq at other values of q

Table 3 Pearson correlation between the values of DISPq for

q ¼ 0:01; . . .; 0:50f g

0.02 0.05 0.07 0.10 0.20 0.50

0.01 0.98 0.95 0.93 0.92 0.90 0.85

0.02 0.98 0.97 0.96 0.94 0.88

0.05 1.00 0.99 0.97 0.91

0.07 1.00 0.98 0.92

0.10 0.99 0.93

0.20 0.97

In boldface are those values for which the correlation is high, i.e.,

0:7� qx;y\0:9, while the remaining values are very high, i.e.,

0:9� qx;y � 1:0. The results show that all of the levels of DISPq are

highly correlated, suggesting that only one level should be calculated

Table 4 Minimum and maxi-

mum values of the DISP0:01 for

the first 15 instances of ten

functions from the COCO

benchmark, and their relative

difference

min max RD (%)

f1 0.044 0.056 21.4

f4 0.083 0.121 31.2

f6 0.055 0.077 28.0

f9 0.106 0.165 35.9

f10 0.158 0.320 50.5

f13 0.071 0.221 67.8

f15 0.109 0.153 29.0

f19 0.173 0.210 17.7

f23 0.342 0.399 14.4

f24 0.217 0.262 17.4

Under the same experimental

conditions, the difference

between the minimum and the

maximum exceeds 10% of the

maximum and can be close to

70%
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discrimination between functions, while high values of

q are vulnerable to quick convergence to the same value.

4.1.3 Fitness distributions

We focus our exploratory validation of the Fitness Distri-

butions on determining whether two instances of the same

function may have similar distributions. We obtain a

sample of D
 103 points, which is evaluated on the first

instance from each one of the functions from the COCO

benchmark at D ¼ 2. Then, we estimated the Fitness

Distribution using a kernel density estimator with a

Gaussian kernel and bandwidth h ¼ 1:06r̂p�1=5, where r̂ is

the sample standard deviation. The distributions are illus-

trated in Fig. 7, which shows that most of the problems

have a left skewed distribution, except for f5, f22 and f23.

This may explain why fast (significant) improvements are

often made in early stages evolutionary optimization pro-

cess; however, it becomes increasingly difficult to make

minimal improvements afterwards. On the other hand,

functions like f22 and f23, which have a distribution close to

uniform and no exploitable global structure, are difficult

because it is equally probable to find both fit and unfit

points. This does not apply for f5 as it has an

exploitable gradient. Perhaps, the COCO benchmark set

lacks functions with a right skewed distribution, similar to

the needle-in-a-haystack function or other deceptive func-

tions, for which it would be difficult to make progress at

the start of the search or convergence to poor local optima

is frequent; hence, indicating whether the search can

explore the space and find those uncommon regions.

To further explore the fitness distributions, we estimated

the entropy, H Yð Þ, skewness, c Yð Þ, and kurtosis, j Yð Þ, for
the first 15 instances of the same ten functions that we

analyzed for the FDC. The minimum and maximum value

and RD for each feature between the 15 instances are

presented in Table 5 whereas the distributions of the values

are presented as box-plots in Fig. 8. The values of c Yð Þ
suggest that most of the functions have left skewed dis-

tributions excepting f23, which is almost non-skewed, i.e.,

c Yð Þ � 0. The values of j Yð Þ suggest that most of the

functions are leptokurtic, i.e., j Yð Þ[ 3, which means that

the fitness distribution has a ‘‘fat’’ tail that slowly con-

verges to zero, indicating a higher propensity to generate

outliers. Some strongly leptokurtic distributions, i.e.,

j Yð Þ[ 10, are associated with high variable scaling

functions, such as f6; f9f g. On the other hand, only f23 is

platykurtic, i.e., j Yð Þ\3, which means that the distribu-

tion has a ‘‘thin’’ tail with less propensity to generate

outliers. Following Hansen et al. (2011a) classification of

the functions, we observe different values of the features

within the groups. For example, f10; f13f g are described as

unimodal functions with high conditioning. The range of

both c Yð Þ and j Yð Þ for these two functions overlap;

however, this is not the case for the range of H Yð Þ indi-

cating that the constraints present in f13 affect this feature’s

ability to detect ill-conditioning.

The difference in the value of H Yð Þ between instances

of a function does not exceed 10% excepting f1; f4; f6; f15f g.
In some cases, i.e., f9; f19; f23; f24f g, it is close to 1%. For

c Yð Þ and j Yð Þ, the differences exceed 40% for most cases.

As it is the case for DISP0:01, the results suggest that these

features may not be generalized between instances of a

function. In summary and answering the questions for

Stage I from Table 1, H Yð Þ is a more reliable indicator of

similarities between instances of the same function, while

also having a clear relationship with ill-conditioning

(Muñoz et al. 2015a). However, c Yð Þ and j Yð Þ can swing

widely between instances, and lack a clear interpretation,

reducing the interpretability of the results.

4.1.4 Model fitting

We focus our exploratory validation of the Model Fitting

method on determining the sensitivity of the adjusted

coefficient of determination, �R2, to translational shifts of a

function. For this purpose, we fitted linear and quadratic

regression models to two instances of the Rastrigin func-

tion in one dimension (Eq. 9) bounded between �5; 5½ �.
We generate the shifts by setting the value of di to

�5:0; 2:5f g. Figure 9 illustrates the results.

y ¼ 10 � 2� cos 2p xþ dið Þð Þð Þ þ xþ dið Þ2 ð9Þ

Fig. 9a shows that the linear fit of the model is affected

by the bounds of the function. We calculated �R2 for both

instances. The result for Instance 1 is 0.889 and for

Instance 2 is 0.660, and their difference is � 0:228. These

results suggest that �R2 of a linear fit converges to 1 when

the optimum is closer to the bounds than to the center of

the space, for some simple functions such as the Sphere.

Therefore, we may have different values of �R2 for different

instances of the same function.

Fig. 6 Distribution of values of the DISP0:01 for the first 15 instances

of ten selected functions from the COCO benchmark. The distribu-

tions demonstrate that f10 and f13 have wider distributions, which

corresponds to large RD values
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Fig. 7 Kernel density estimator

of the Y-distribution for the first

instance of each of the 24

functions from the COCO

benchmark at D ¼ 2. For most

of the functions, the distribution

is left skewed
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The results are different for the quadratic model, which

are illustrated in Fig. 9. We calculated �R2 for both

instances. The result for Instance 1 is 0.947 and for

Instance 2 is 0.841. The instance with the highest �R2 is also

the one with the optimum close to the bounds; however, the

difference between both values is smaller compared to the

result from the linear model. The quadratic model has more

degrees of freedom than the linear model, i.e., the cardi-

nality of the estimated regression coefficients, bj j, is larger.

Hence, the quadratic model may overfit to the data, which

results in different functions having seemingly similar

values of �R2.

We calculated �R2 using four models for the first 15

instances of the same ten functions that were used in the

analysis for FDC. The four models considered are: linear

model without interactions, L, linear model with interac-

tions, LI, quadratic model without interactions, Q, and

quadratic model with interactions QI. Table 6 shows the

minimum and maximum value of �R2 from the 15 instances

and RD and Fig. 10 presents the distributions of the values

as box-plots.

By comparing the results from the linear models in

Table 6a with the quadratic models in Table 6b, we

observe a gradual decrease on RD as the degrees of free-

dom increase. The only exception being f23, which has

similar differences for all models. However, because the

minimum value of �R2 is zero for this function, RD is not the

best indicator of sensitivity of �R2. In summary and

answering the questions for Stage I from Table 1, �R2
QI is the

most reliable indicator of similarities between instances,

that includes both linear and quadratic effects, and it is the

least vulnerable to wrong interpretations based on transla-

tions of the function.

4.1.5 Information significance

We focus our exploratory validation of the Information

Significance on determining whether it is a suitable feature

of variable dependency. For this purpose, we examine the

effects of an orthogonal rotation in the input space has on

the Information Significance. Rotations are a simple way to

generate variable dependencies. The three functions under

evaluation are the Sphere (Eq. 10), Ellipsoidal (Eq. 11) and

Table 5 Minimum and

maximum values of the entropy,

H Yð Þ, skewness, c Yð Þ, and
kurtosis, j Yð Þ for the first 15

instances of ten functions from

the COCO benchmark, and their

relative difference

H Yð Þ c Yð Þ j Yð Þ

min max RD (%) min max RD (%) min max RD (%)

f1 3.661 4.641 21.1 0.451 0.804 43.9 2.475 3.109 20.4

f4 5.778 7.106 18.7 0.841 1.999 57.9 2.601 7.531 65.5

f6 7.097 13.151 46.0 0.703 5.478 87.2 2.130 37.591 94.3

f9 10.045 10.151 1.0 1.904 3.547 46.3 6.132 18.567 67.0

f10 16.659 17.757 6.2 0.906 1.878 51.8 2.779 6.281 55.8

f13 6.986 7.679 9.0 0.144 1.047 86.3 1.975 3.713 46.8

f15 5.809 7.562 23.2 0.920 4.175 78.0 2.795 26.022 89.3

f19 4.701 4.767 1.4 1.835 3.512 47.7 5.915 18.161 67.4

f23 4.277 4.298 0.5 - 0.033 0.109 130.0 1.912 1.992 4.0

f24 4.228 4.278 1.2 0.536 0.665 19.4 2.938 3.377 13.0

Fig. 8 Distribution of values of the (top) entropy, H Yð Þ, (middle)

skewness, c Yð Þ, and (bottom) kurtosis, j Yð Þ for the first 15 instances

of ten functions from the COCO benchmark. The distribution

demonstrates that H Yð Þ have tighter ranges, whereas c Yð Þ and

j Yð Þ can swing widely between instances, reducing the interpretabil-

ity of the results
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Rastrigin (Eq. 12) functions at D ¼ 2, where z ¼ Rx. The

matrix R controls the rotation and it is calculated using

Eq. (13), where x is a rotation angle in radians within the

0; p½ � range. The scale vector for the Ellipsoidal function,

C, is equal to 1 1000½ �. The results are illustrated in

Fig. 11.

y ¼
X2

i¼1

z2i ð10Þ

y ¼
X2

i¼1

Ciz
2
i ð11Þ

y ¼10 � 2�
X2

i¼1

cos 2pzið Þ
 !

þ
X2

i¼1

z2i ð12Þ

R ¼
cos xð Þ � sin xð Þ
sin xð Þ cos xð Þ

� �
ð13Þ

Fig. 11a is a top view of the Sphere function surface and

Fig. 11b is a line plot of n x1ð Þ, n x2ð Þ, n 1ð Þ, n 2ð Þ and r 1ð Þ
n ,

which is the standard deviation of the information signifi-

cance of order 1. The Sphere function is rotational

invariant, which means that ideally n x1ð Þ ¼ n x2ð Þ ¼ n 1ð Þ,

n 2ð Þ [ n 1ð Þ and r 1ð Þ
n ¼ 0 for any value of x within the

range. The results in Fig. 11b are consistent with the ideal

results. There is a small difference between the values of

n x1ð Þ and n x2ð Þ, which may be attributed to numerical

rounding errors.

Fig. 11c is a top view of the Ellipsoidal function surface

and Fig. 11d is a line plot of the features. Unlike the Sphere

function, the Ellipsoidal function is not rotational invariant.

Therefore, the values of n x1ð Þ and n x2ð Þ are equal at p
4

radians and have a phase difference of p
2
radians. At

0; p
2
; p

� �
radians, n 1ð Þ is maximum, which is less than the

maximum values of n x1ð Þ or n x2ð Þ. In addition, n 2ð Þ � n 1ð Þ

when x is between 0:127; 1:428½ � and 1:777; 3:015½ �

Fig. 9 Linear and quadratic

models for the Rastrigin

function in one dimension.

Instance 1 (I1) is displaced in X
to the right, with its optimum at

x ¼ 5:0, while Instance 2 (I2) is

displaced in X to the left, with

its optimum at x ¼ �2:5. The
figure illustrates how the linear

fit may be different between

instances, whereas the quadratic

fit may be similar

Table 6 Values of �R2 of four models for the first 15 instances of ten

selected functions from the COCO benchmark at D ¼ 2, using a

sample of 2000 points

�R2
L

�R2
LI

min max RD (%) min max RD (%)

(a) Linear models

f1 0.012 0.887 98.6 0.012 0.887 98.6

f4 0.153 0.852 82.0 0.153 0.852 82.0

f6 0.227 0.906 74.9 0.397 0.911 56.4

f9 0.091 0.220 58.6 0.248 0.574 56.8

f10 0.000 0.821 100.0 0.187 0.930 79.9

f13 0.062 0.922 93.3 0.127 0.949 86.6

f15 0.091 0.866 89.5 0.514 0.952 46.0

f19 0.091 0.228 60.1 0.235 0.553 57.5

f23 0.000 0.002 100.0 0.000 0.002 100.0

f24 0.356 0.392 9.2 0.367 0.402 8.7

(b) Quadratic models

f1 1.000 1.000 0.0 1.000 1.000 0.0

f4 0.776 0.990 21.6 0.776 0.990 21.6

f6 0.573 0.994 42.4 0.378 0.993 61.9

f9 0.853 0.881 3.2 0.381 0.791 51.8

f10 0.992 0.998 0.6 0.298 0.993 70.0

f13 0.917 0.992 7.6 0.258 0.976 73.6

f15 0.774 0.992 22.0 0.362 0.945 61.7

f19 0.839 0.864 2.9 0.378 0.849 55.5

f23 0.000 0.003 100.0 0.000 0.002 100.0

f24 0.588 0.621 5.3 0.583 0.606 3.8
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radians. Perhaps the variables can be separated when x is

not within these ranges.

The Information Significance appears to generate cor-

rect measurements of the variable dependencies on the

Ellipsoidal function. However, this was not the case for the

Rastrigin function. Figure 11e is a top view of this function

surface and Fig. 11f is a line plot of the features. An

appropriate pattern is not evident in Fig. 11f, implying that

the Information Significance has lost its ability to identify

variable dependencies due to the high modality of the

function.

To further explore this observation, we calculated the

values of n 1ð Þ and n 2ð Þ for the first 15 instances of the same

10 functions from the COCO benchmark at D ¼ 2 that we

analyzed for the FDC. To obtain a sample of n ¼ 2000

points, we followed the procedure described in Sect. 3.

Table 7 shows the minimum and maximum value of the

features from the 15 instances and their relative difference,

RD and Fig. 12 presents the distributions of the values as

box-plots.

For the Sphere function, f1, the three features in Table 7

have RD above 30%. This seems counter-intuitive because

f1 is rotational and translation invariant; hence, we expec-

ted that RD � 0:0% for all features. However, this can be

explained by the differences on the experiment above and

the COCO benchmark. For the former, the optimum value

is fixed at 0; 0ð Þ, whereas for the latter the optimum is

randomly displaced within a bounded space, where sec-

tions of the function would be present in some instances

but absent in others. In other words, for these features, a

translational shift over two or more variables creates

dependencies between them. For the Rotated Ellipsoidal

function, f10, whose instances are created by rotation, have

RD above 90% for n x1ð Þ as expected. Highly multimodal

functions, such as the Katsuura, f23, and Lunacek bi-Rast-

rigin, f24, functions, have feature whose values are

approximately zero. As the values for f23 are above 90%;

RD is not the best indicator of the sensitivity of these

features to translational shifts and orthogonal rotations.

We use the mean and the standard deviation to sum-

marize the results for the Information Significances of first

and second orders. Figure 13 shows two scatter plots where

each mark represents the value of n Vð Þ for Vj j ¼ 1; 2f g,
while the boxes represent the range of n kð Þ � r kð Þ

n , and the

center line is equal to n kð Þ. We analyze the first five

instances of the Rotated Ellipsoidal function, f10, from the

COCO benchmark at D ¼ 10. We use a sample of 104

points.

Fig. 13 shows that for Instances 1; 2f g, there are three

variables with values of n Vð Þ, Vj j ¼ 1 above average,

whereas the remaining variables have values of n Vð Þ below
average. This implies that these three variables may have

higher independence. On the other hand, Instance 5 has

variables with values of n Vð Þ close to average, which

implies that all the variables may be dependent from each

other. We observe similar patterns in both figures. Com-

binations of the independent variables in Instances 1; 2f g
have values of n Vð Þ; Vj j ¼ 2 above average. Instance 5 has

variable combinations with values of n Vð Þ close to the

average. The analysis of n kð Þ provide similar conclusions.

High values of n kð Þ imply that most of the variables are

independent, such as those for Instances 3; 4f g. In sum-

mary and answering the questions for Stage I from Table 1,

Information Significance features not only capture variable

dependencies produced by rotations, but also by transla-

tional shifts within a bounded space and other non-linear-

ities. Therefore, as it confounds multiple effects, their

Fig. 10 Distribution of values of �R2 of the (top) linear model without

interactions, L, (second) linear with interactions, LI, (third) quadratic
without interactions, Q, (bottom) and quadratic with interactions QI
models for the first 15 instances of ten selected functions from the

COCO benchmark. The distribution demonstrates that the most

reliable feature is �R2
QI , as it has the least variability, includes both

linear and quadratic effects, and it is the least vulnerable to wrong

interpretations based on translations of the function
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interpretation as variable independence measures becomes

limited.

4.2 Statistical validation stage

The results from Sect. 4.1 suggest that translational shifts

and orthogonal rotations significantly impact on the value

of most features; hence, the conclusions drawn from

several instances of the same function may be contradic-

tory. However, it is not yet clear if the difference between

features is statistically significant or not. In addition, these

results do not show if there are relationships between the

different landscape features. In this section, we present the

results of the statistical stage.

Fig. 11 Effect that a rotation in

the input space has on the

Information Significance

features. a, c, e are top views of

the surfaces for the Sphere,

Ellipsoidal and Rastrigin

functions respectively, whereas

b, e, f show the value of features

against the rotation angle. The

features capture variable

dependencies only for smooth

functions, whose optimal value

has not been displaced, such as

the Sphere and Ellipsoidal

functions
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4.2.1 Magnitude of the bootstrap variance

We estimated the variance of the features using boot-

strapping and Eq. (8). A high variance indicates that a

feature may change for a particular function due to the

sample points collected. As such, the magnitude of the

variance should be reported. Figure 14 shows the average

variance for the max bLj jð Þ feature over the the first 15

instances for the Sphere, f1, and Bent Cigar, f15, functions

from the COCO benchmark set. Each line on the graph

represents a dimension of the function. On the horizontal

axis is the sample size. In both figures, the variance

decreases as the sample size increases, albeit not

monotonically. However, if we focus on the vertical axis,

we notice the difference on magnitude of the variances.

The figure shows that for f1, the average variance for

max bLj jð Þ is in the 10�3; 10�1½ � range, whereas for f12, the
average variance is in the 1015; 1018


 �
range. This is a large

difference in orders of magnitude. Considering that the

variance quantifies the volatility of the feature, this fig-

ure implies that for f12 the value of max bLj jð Þ might change

several orders of magnitude depending on the instance.

Table 7 Values of n 1ð Þ and n 2ð Þ for the first 15 instances of ten

selected functions from the COCO benchmark at D ¼ 2, using a

sample of 2000 points

n 1ð Þ n 2ð Þ

min max RD (%) min max RD (%)

f1 0.076 0.115 34.4 0.131 0.203 35.5

f4 0.063 0.098 36.2 0.075 0.123 38.7

f6 0.011 0.076 86.0 0.048 0.100 52.5

f9 0.018 0.041 56.8 0.037 0.067 44.5

f10 0.002 0.042 95.1 0.027 0.046 41.2

f13 0.010 0.085 87.7 0.065 0.136 52.0

f15 0.019 0.081 76.5 0.074 0.128 42.4

f19 0.018 0.065 72.3 0.048 0.081 41.3

f23 - 0.006 - 0.003 142.3 - 0.012 - 0.005 136.0

f24 0.022 0.027 18.7 0.043 0.053 18.9

Fig. 12 Distribution of values of (top) n 1ð Þ and (bottom) n 2ð Þ for the
first 15 instances of ten selected functions from the COCO

benchmark. The distributions show that these features capture

variable dependencies produced by translational shifts within a

bounded space, confounding multiple effects, their interpretation as

variable independence measures becomes limited

Fig. 13 Value of the information significance of first and second

orders for the first five instances of the Rotated Ellipsoidal function,

f10, from the COCO benchmark at D ¼ 10. Each mark represents the

value of n Vð Þ for Vj j ¼ 1; 2f g, while the boxes represent the range of
n kð Þ � r kð Þ

n , and the center line is equal to n kð Þ. Variables or

combinations above the average indicate higher independence, while

values clustered together indicate dependencies

Fig. 14 Average variance for max bLj jð Þ feature for the Sphere (top)

and Bent Cigar (bottom) functions against the sample size. Both the

horizontal and vertical axis are on a logarithmic scale. The

figure shows how the variance of a feature might be large or small

depending on function
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Because max bLj jð Þ is a variable scaling feature, and f12 has

a condition number, which is the ratio between the highest

and lowest scaled variables, close to 106, it explains the

range of the feature.

We calculate the Quartile Coefficient of Dispersion,

QCD, to summarize the variance of each feature at each

sample size. The QCD is a normalized measure of varia-

tion, defined as the ratio between the median and the inter-

quartile range of the statistic. Figure 15 illustrates the

results. The horizontal axis represents the QCD in a base-

10 logarithmic scale. Large values of QCD indicate that the

feature often has large variances. Therefore, for the same

function but two different samples of the same size, the

feature values may be different by several orders of mag-

nitude. We call these features volatile, and unreliable under

the definitions described in Table 1. Both min bLj jð Þ and

max bLj jð Þ are volatile, matching the results from Fig. 14.

4.2.2 Statistical significance of the difference
between features

Table 8 shows the results of the tests of statistical signifi-

cance between functions, instances and sample sizes for the

landscape features. The number between parenthesis indi-

cates the size of the family of tests for which the False

Discovery Rate (FDR) was adjusted using the method by

Benjamini and Yekutieli (2001). The table shows that all

the features have values that are statistically different

between functions. These results imply that it is unlikely

that for two different functions the features will converge

to the same value. Hence, these features discriminate

between functions.

Between function instances for the landscape features,

Table 8 shows that the number of tests for which H0 was

rejected is close to 100% for almost all the features.

Therefore, the features have values that are statistically

different between instances, implying that the features for

two different instances may not converge to the same

value. Hence, the features also discriminate between

instances of the same function. Given this result, we

examine which functions have at least one pair of instan-

ces, at any sample size, for which less than 50% of the

adjusted tests was rejected, i.e., which functions had

instances with half of its features being statistically similar.

We encounter that for all dimensions, functions

ff1; . . .; f15g have at least two similar instances. With the

exception of f3; f4f g, these functions are unimodal, with

various degrees of conditioning, allowing features such as

R2
QI to converge. This also highlights the difficulty of

finding similar instances as modality increases, which can

be explained by the larger space where the global optimum

can be located, minimizing the chance that the features

converge.

Between sample sizes for the landscape features,

Table 8 shows that, against our expectation and similarly to

the instance results, the number of tests for with H0 was

rejected is close to 90% for almost all the features. This

result implies that the features do not converge during the

early steps of the optimization process. As was the case

with the instance tests, we examine which functions have at

least one pair of sample sizes, for which less than 50% of

the adjusted tests were rejected. We find that f5 at each

dimension have at least an instance for which there is no

significant difference between sample sizes; for f2 an

instance was found with no significant differences for D ¼
2 between 316; 562; 1000f g 
 D, and for D ¼ 5 between

562; 1000f g 
 D; and for f12 at D ¼ 2 between

562; 1000f g 
 D. These results match those by Saleem

et al. (2019), confirming that sample size effects need to be

considered when features are estimated, as they not only

depend on the problem landscape and feature definition,

but also the sample size.

In summary, and answering the questions for Stage II

from Table 1, the features under study discriminate

between functions and instances by providing significantly

different results between them. Moreover, the results do

not converge within the sample sizes under study, as they

produced significantly different results between them. This

implies that features obtained using different sample sizes

are incompatible, even if they are taken from different

functions or instances.

4.2.3 Correlation between features

Table 9 shows the Pearson correlation, qx;y, between the

landscape features and the dimension of the problem, D.

Fig. 15 Quartile coefficient of dispersion (QCD) of the bootstrapped

variance. The horizontal axis is in a base-10 logarithmic scale. Both

min bLj jð Þ and max bLj jð Þ have very large values of QCD, which

indicates that these two feature are volatile

148 M. A. Muñoz et al.

123



We boldfaced the value of the correlation of DISP0:01

because it is the only feature with high positive correlation,

i.e., qx;y � 0:7 (Hinkle et al. 2003). In Sect. 4.1, we

explained that the average distance between points con-

verges to 1=
ffiffiffi
6

p
as n increases (Morgan and Gallagher

2014). This also explains why DISP0:01 is correlated with

D implying that they could be equivalent.

Table 10 shows the value of qx;y between the landscape

features. We observe that FDC has high correlation with
�R2
Q, the quadratic model without interactions. These two

features are related because FDC is based on the Euclidean

distance of all points to the approximated global optimum,

x̂o, which can be thought of as the square root of a quad-

ratic relationship of the points. In addition, the �R2 for all

models have high correlations. There are two possible

reasons for this result. First, that the function is simple

enough that a linear or a quadratic model have a good fit.

For example, the Linear Slope function, f5, has a �R2 ¼ 1

regardless of the model, whereas the Sphere function, f1,

has values of �R2
QI ¼ �R2

Q ¼ 1. Second, that the function is so

complex that a linear or a quadratic model are not good

enough; hence, the fit of the model does not improve by

increasing the degrees of freedom.

The mean Information Significances of first, n 1ð Þ, and D-

th, n Dð Þ, orders are moderately correlated between each

other, and highly correlated with the mean information

significance of second order, n 2ð Þ. In addition, n Dð Þ ¼ n 2ð Þ

for any two-dimensional function, which means that a

quarter of the data analyzed of each feature are equal. This

implies that perhaps n 1ð Þ captures most of the information

that n 2ð Þ and n Dð Þ may contain, and it may be sufficient to

only calculate n 1ð Þ.
The skewness, c Yð Þ, and kurtosis, j Yð Þ, of the fitness

distribution are highly correlated, implying that the higher

the skewness the ‘‘fatter’’ the tail of the distribution. Using

the evidence on Fig. 7 and Table 5, we conclude that those

functions with high c Yð Þ and j Yð Þ are likely to have high

Table 8 Percentage of rejected tests at the 5% confidence level between function, instances and sample sizes for the landscape features

D Function (20700) Instances (12600) Sample Size (3600)

2 (%) 5 (%) 10 (%) 20 (%) 2 (%) 5 (%) 10 (%) 20 (%) 2 (%) 5 (%) 10 (%) 20 (%)

FDC 98.5 98.8 98.9 98.9 95.9 96.3 95.6 95.2 93.8 94.9 95.1 94.6

DISP0:01 96.0 97.7 98.2 98.8 89.7 93.0 93.9 94.2 95.8 96.9 97.7 98.2

R2
L

99.6 99.7 99.7 99.8 93.2 93.3 93.5 93.7 82.2 88.9 90.6 91.4

R2
LI

99.6 99.8 99.8 99.8 93.3 93.7 93.5 93.4 84.8 90.7 92.1 94.6

R2
QI

99.5 99.4 99.6 99.5 88.9 89.6 89.6 89.5 82.7 86.5 88.3 89.6

R2
Q

99.4 99.4 99.4 99.5 89.5 89.6 89.3 89.6 81.3 84.7 86.5 87.2

min bLð Þ 99.5 99.5 99.4 99.3 93.6 89.3 85.6 81.7 90.8 89.7 88.0 86.0

max bLð Þ 99.8 99.9 99.9 100.0 93.7 93.7 93.5 93.5 80.6 87.0 90.8 90.8

CN 97.9 97.8 97.8 98.0 89.5 85.7 85.2 82.4 86.8 85.3 84.6 83.6

H Yð Þ 99.8 99.9 100.0 100.0 94.8 96.7 97.7 98.1 95.8 96.4 96.1 97.3

n Dð Þ 98.4 98.8 99.5 99.6 93.8 95.9 97.0 97.0 99.0 98.3 96.2 96.5

n 1ð Þ 98.7 98.2 98.6 99.0 93.2 93.6 95.0 94.5 98.4 98.3 96.6 97.0

n 2ð Þ 98.4 98.8 99.2 99.4 93.8 95.4 96.0 96.4 99.0 98.2 97.1 96.3

c Yð Þ 99.4 99.7 99.8 99.7 96.9 97.4 97.0 97.3 85.5 91.7 93.5 95.5

j Yð Þ 99.4 99.4 99.4 99.5 95.9 97.3 97.4 96.8 86.9 91.5 94.0 95.1

Ideally, comparisons between functions should have a high number of rejections, whereas between instances and sample sizes should have low

number of rejections

Table 9 Pearson correlation (qx;y) between the dimension of the

problem, D, and the landscape features. In boldface are those features

with high correlation, i.e., qx;y � 0:7

qx;y qx;y qx;y

FDC - 0.181 �R2
Q

- 0.067 n Dð Þ - 0.346

DISP0:01 0.714 min bLð Þ - 0.033 n 1ð Þ - 0.457

�R2
L

- 0.023 max bLð Þ 0.022 n 2ð Þ - 0.449

�R2
LI

0.033 CN - 0.120 c Yð Þ 0.028

�R2
QI

- 0.014 H Yð Þ 0.059 j Yð Þ 0.084

Only DISP0:01 has a high correlation with D, implying they could be

equivalent, i.e., they provide similar information
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variable scaling. In summary and answering the questions for

Stage II from Table 1, the studied feature set can be sum-

marized into four reliable features, �R2
QI ;CN; n

1ð Þ;H Yð Þ
n o

,

that are weakly correlated, have low volatility and clear

interpretations.

5 Discussion

We have identified the strengths and weaknesses of five

feature sets using a well-structured, experimental method-

ology focused on both exploratory and statistical validation

stages which was summarized in seven key questions in

Table 1. The answers to these questions are condensed in

Table 11. Importantly, we have demonstrated that the

results of an ELA feature for one instance cannot be gen-

eralized over all the instances of a function for all the

features under analysis, even if the feature is theoretically

invariant to translational shifts and orthogonal rotations,

such as FDC. This effect is due to the bounds on the input

space. When an instance is generated by translating or

rotating a function, there are sections of the function pre-

sent in some instances and absent in others. This boundary

effect is evident in the features extracted through model

fitting, where two instances of the same function produced

values at the opposite bounds of the feature range. There-

fore, it is important to consider the impact of this boundary

effect on the theoretical analysis of landscape features, as it

implies that one function instance is insufficient to describe

a function with certainty when bounds are considered. This

in itself is not a practical limitation of a given feature, as

demonstrated in previous work (Belkhir et al. 2016a;

Muñoz and Smith-Miles 2017; Kerschke and Trautmann

2019a), some features are good predictors of performance

for some algorithms and not for others. Therefore, invariant

features are useful for invariant algorithms, such as CMA-

ES, while variant features are useful for variant algorithms,

such as Classic PSO (Hansen et al. 2011b).

The results show the importance of stating the experi-

mental conditions for the evaluation of the feature. Due to

the fact that landscape features are approximate values, the

Table 10 Pearson correlation

(qx;y) between the landscape

features combinations

DISP0:01 �R2
L

�R2
LI

�R2
QI

�R2
Q

min bLð Þ max bLð Þ

FDC - 0.469 0.694 0.586 0.698 0.782 - 0.011 - 0.050

DISP0:01 - 0.236 - 0.169 - 0.308 - 0.364 - 0.046 - 0.001

�R2
L

0.859 0.730 0.841 - 0.032 - 0.059

�R2
LI

0.839 0.680 - 0.009 - 0.028

�R2
QI

0.870 - 0.030 - 0.066

�R2
Q

- 0.052 - 0.094

min bLð Þ 0.584

max bLð Þ

CN H Yð Þ n Dð Þ n 1ð Þ n 2ð Þ c Yð Þ j Yð Þ

FDC 0.253 0.076 0.216 0.377 0.358 - 0.130 - 0.110

DISP0:01 - 0.242 0.055 - 0.320 - 0.552 - 0.508 - 0.078 0.041

�R2
L

- 0.137 0.227 0.229 0.367 0.344 - 0.105 - 0.102

�R2
LI

- 0.162 0.361 0.202 0.260 0.287 0.025 - 0.073

�R2
QI

- 0.013 0.390 0.265 0.341 0.369 - 0.020 - 0.124

�R2
Q

0.014 0.252 0.284 0.432 0.412 - 0.142 - 0.149

min bLð Þ - 0.019 0.175 0.010 - 0.003 0.004 0.148 0.062

max bLð Þ - 0.062 0.241 0.002 - 0.014 - 0.007 0.309 0.186

CN - 0.312 0.022 0.041 0.076 - 0.131 - 0.059

H Yð Þ 0.240 0.090 0.184 0.419 0.197

n Dð Þ 0.624 0.877 0.179 - 0.048

n 1ð Þ 0.872 0.046 - 0.056

n 2ð Þ 0.121 - 0.056

c Yð Þ 0.760

In boldface are those features with qx;y � 0:7
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results generated from the features should be reported

along with a measure of their volatility, such as the vari-

ance. We observed in Fig. 15 that some features, such as

min bLj jð Þ and max bLj jð Þ, are volatile on average, where

others, such as �R2
QI , are nonvolatile. The volatility of the

feature helps to anticipate whether the changes in the

feature may affect further analysis stages. We can expect

that a volatile feature might affect the results of a subse-

quent analysis stage, if the feature is important in that

stage’s context.

A larger sample size, n, leads to a more accurate feature,

but also leads to a more accurate estimation of the variance.

Ideally, the variance should converge to zero when

n ! 1, otherwise it is dependent on f and n, as mentioned

in Sect. 3. During the experimental analysis, we found that

the variance of a feature, such as FDC, decreases when

n increases for some functions and increases for other

functions. Analyzing the change of the variance due to the

change in the value of n may provide additional evidence

about the complexity of a function.

Modality has a similar effect on the sample size as the

dimension of the problem. For example, consider the one-

dimensional function y ¼ sin 2puxð Þ, where u controls the

number of local optima in the landscape. Following the

Nyquist-Shannon sampling theorem, we would require at

least 2u points to know the exact number of local optima.

Therefore, if u increases, the number of points required

also increases. This curse of modality is present even in low

dimensional functions. It affects estimations of the local

optima and any feature based on the distance between an

estimated optimum and any other points. For example, the

value of DISP0:01 for the Katsuura function, f23, which

converges towards 1=
ffiffiffi
6

p
, as illustrated in Fig. 5.

The combination of an exploratory and statistical anal-

ysis described in this paper is subject to two practical

limitations worthy of further discussion. First, it can be

argued that the sample size is relatively limited as the

dimension of the function increases. To obtain a more

precise feature value for complex functions, it may be

adequate to evaluate larger sample sizes, for example, D

104 points. However, memory and computational time

requirements pose practical constraints. For example, the

calculation of a distance matrix, for a 20 dimensional

sample of 20
 104 points at double precision, requires a

memory space of approximately 320GB, which often

exceeds the memory available in a current workstation.

Moreover, our choice of sample generator may also induce

bias on the results, as sampling strategies have a demon-

strated effect of convergence of the features depending on

their space-covering characteristics (Renau et al. 2020;

Crombecq et al. 2011).

Second, it can be argued that a more systematic

approach should be employed to test the effect of instan-

tiation on the features. Since the search space expands with

dimension, the 15 random instances generated with the

COCO software are more sparse in the space as the

Table 11 A summary of the results from applying the experimental methodology proposed in Sect. 3

Useful? Vulnerable? Low variance? Different between Uncorrelated?

Functions? Instances? Sample Size?

FDC 4 Medium ruggedness 4 4

DISP0:01 4 Convergence to same value 4 4

R2
L

4 Translations 4 4

R2
LI

4 Translations 4 4

R2
QI

4 4 4

R2
Q

4 Translations 4 4 4

min bLð Þ 4 4 4

max bLð Þ 4 4 4

CN 4 4 4 4

H Yð Þ 4 4 4

n Dð Þ 4 Translations 4 4

n 1ð Þ 4 Translations 4 4

n 2ð Þ 4 Translations 4 4

c Yð Þ 4 Any transformation 4 4 4

j Yð Þ 4 Any transformation 4 4

Check marks indicate positive answers to each question
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dimension increases. This is another expression of the

curse of dimensionality. Ideally, there should be at least a

linear increment on the total instances with the dimension;

however, this is also subject to memory constraints.

6 Conclusions

In this paper, we have proposed a robust experimental

methodology that considered the landscape features as

random variables, allowing us to identify comparative

advantages and disadvantages of each feature. Moreover,

we evaluated the sensitivity of the features to the sample

size and to shifts and rotations of the function.

We have drawn three conclusions from these experi-

ments: First, all landscape features should be reported

along with a measure of their volatility. Second, the value

of a feature from one instance cannot be generalized over

all the instances of a function, even if the feature is theo-

retically invariant to translational shifts and orthogonal

rotations. Third, modality has a similar effect on the sample

size as the dimension of the problem, e.g., as the number of

local optima increases the size of the sample should also

increase. By only focusing on the value of the feature,

without considering its distribution, we may not have

obtained these valuable insights.

Given that the features studied in this paper are sensitive

to function transformations, our current research focuses on

developing methods that help us better explain these

changes, on both the features and the location of functions

in an instance space (Muñoz and Smith-Miles 2015, 2017).

Moreover, some statistical tests used in our experiments

can be used to determine the reliability of the features in

other fields where feature-based approaches to algorithm

selection are becoming popular, such as forecasting (Kang

et al. 2017).

Appendix: Validation of the assumptions
behind the experimental methodology

Our experimental methodology makes assumptions that

can be summarized in two questions: (a) Since Latin

Hyper-cube Samplin (LHS) is a type of stratified sampling,

is the independence assumption still valid? (b) What are the

differences between multiple uniformly distributed random

samples, bootstrapping a single uniformly distributed ran-

dom sample, and bootstrapping a single LHS, when cal-

culating the variance of an estimate? To answer these

questions, we have carried out two simple experiments that

demonstrate that there is no practical difference on the

results between taking multiple uniformly distributed ran-

dom samples and bootstrapping a LHS. On the first

experiment, we address the independence assumption, by

calculating the magnitude of the auto-correlation with lags

in the 1; 50½ � range, for data drawn from the 0; 1½ � interval.
For this assumption to hold for LHS, the magnitudes of the

auto-correlation should follow the same trend that for a

uniformly distributed random sample and be close to zero,

indicating that it is not possible to estimate the value of one

point from another. We repeat this experiment 1000 times

and average the results, which are presented in Fig. 16a for

samples with 200; 600; 1000f g points. Other than the

descending trend for a sample of 200 points, which can be

explained by the decrease in points in the sample for which

the auto-correlation can be calculated, the results

Fig. 16 Validation of the

assumptions behind our

experimental methodology. a
Average magnitude of the auto-

correlation with lags in the

1; 50½ � range, for data drawn

from the 0; 1½ � interval. b
Distribution of the variance of

the mean from N samples of n
points, IID n;Nð Þ, bootstrapping
N times a sample of n points,

IIDþ B n;Nð Þ, and
bootstrapping N times a LHS of

n points, LHSþ B n;Nð Þ. The
results confirm that there is no

practical difference between

taking N uniformly distributed

random samples and

bootstrapping N times a single

LHS
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demonstrate that the independence assumption holds for a

LHS in practice.

On the second experiment, we address the second ques-

tion by estimating the variance of the mean from these three

different sampling regimes, using data drawn from the 0; 1½ �
interval. On the first one, called IID n;Nð Þ, we took N uni-

formly distributed random samples of n points. On the sec-

ond one, called IIDþ B n;Nð Þ, we took one uniformly

distributed sample of n points and bootstrapped it N times.

On the third one, called LHSþ B n;Nð Þ, we took one LHS of

n points and bootstrapped it N times. Each sampling regime

produced N mean estimates, from which the variance is

calculated. The experiments are repeated 1000 times for all

the combinations of n;Nf g ¼ 200; 600; 1000f g. The results
are shown in Fig. 16b as box-plots, which demonstrate that

there is no practical difference between taking N uniformly

distributed random samples and bootstrapping N times a

single LHS.
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Lübke K, Szepannek G, Trautmann H, Vichi M (eds) Applica-

tions in statistical computing—from music data analysis to

industrial quality improvement, studies in classification, data

analysis, and knowledge organization. Springer, Berlin,

pp 93–123. https://doi.org/10.1007/978-3-030-25147-5_7

Kerschke P, PreußM, Wessing S, Trautmann H (2016) Low-budget

exploratory landscape analysis on multiple peaks models. In:

GECCO ’16. ACM, New York, pp 229–236. https://doi.org/10.

1145/2908812.2908845

Analyzing randomness effects on the reliability of exploratory landscape analysis 153

123

https://doi.org/10.1145/3321707.3321845
https://doi.org/10.1007/978-3-540-24664-0_4
https://doi.org/10.1007/978-3-319-45823-6_15
https://doi.org/10.1145/3071178.3071343
https://doi.org/10.1145/2330163.2330209
https://doi.org/10.1145/2330163.2330209
https://doi.org/10.1016/j.ejor.2011.05.032
https://doi.org/10.1016/j.ejor.2011.05.032
https://doi.org/10.1007/BFb0056848
https://doi.org/10.1007/BFb0056848
https://doi.org/10.1016/j.artint.2010.07.005
https://doi.org/10.1111/j.1469-8986.2011.01273.x
https://doi.org/10.1111/j.1469-8986.2011.01273.x
https://doi.org/10.1145/1830761.1830790
https://doi.org/10.1016/j.asoc.2011.03.001
http://coco.lri.fr/downloads/download15.02/bbobdocexperiment.pdf
http://coco.lri.fr/downloads/download15.02/bbobdocexperiment.pdf
https://doi.org/10.1162/evco.2007.15.4.435
https://doi.org/10.1162/evco.2007.15.4.435
https://doi.org/10.1016/j.ijforecast.2016.09.004
https://doi.org/10.1016/j.ijforecast.2016.09.004
https://doi.org/10.1162/evco_a_00236
https://doi.org/10.1007/978-3-030-25147-5_7
https://doi.org/10.1145/2908812.2908845
https://doi.org/10.1145/2908812.2908845


Lunacek M, Whitley D (2006) The dispersion metric and the CMA

evolution strategy. In: GECCO ’06. ACM, New York,

pp 477–484. https://doi.org/10.1145/1143997.1144085

Malan K, Engelbrecht A (2014) Characterising the searchability of

continuous optimisation problems for PSO. Swarm Intell

8(4):1–28. https://doi.org/10.1007/s11721-014-0099-x

Marin J (2012) How landscape ruggedness influences the perfor-

mance of real-coded algorithms: a comparative study. Soft

Comput 16(4):683–698. https://doi.org/10.1007/s00500-011-

0781-5

Mersmann O, PreußM, Trautmann H (2010) Benchmarking evolu-

tionary algorithms: towards exploratory landscape analysis. In:

PPSN XI. LNCS, vol 6238. Springer, pp 73–82. https://doi.org/

10.1007/978-3-642-15844-5_8

Mersmann O, Bischl B, Trautmann H, PreußM, Weihs C, Rudolph G

(2011) Exploratory landscape analysis. In: GECCO ’11. ACM,

pp 829–836. https://doi.org/10.1145/2001576.2001690
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