An Instance Space Analysis of Regression Problems

MARIO ANDRES MUNOZ and TAO YAN, The University of Melbourne
MATHEUS R. LEAL, Universidade Federal de Minas Gerais

KATE SMITH-MILES, The University of Melbourne

ANA CAROLINA LORENA, Instituto Tecnolégico de Aeronautica

GISELE L. PAPPA, Universidade Federal de Minas Gerais

ROMULO MADUREIRA RODRIGUES, Instituto Tecnolégico de Aeronautica

The quest for greater insights into algorithm strengths and weaknesses, as revealed when studying algorithm
performance on large collections of test problems, is supported by interactive visual analytics tools. A recent
advance is Instance Space Analysis, which presents a visualization of the space occupied by the test datasets,
and the performance of algorithms across the instance space. The strengths and weaknesses of algorithms can
be visually assessed, and the adequacy of the test datasets can be scrutinized through visual analytics. This
article presents the first Instance Space Analysis of regression problems in Machine Learning, considering the
performance of 14 popular algorithms on 4,855 test datasets from a variety of sources. The two-dimensional
instance space is defined by measurable characteristics of regression problems, selected from over 26 candi-
date features. It enables the similarities and differences between test instances to be visualized, along with the
predictive performance of regression algorithms across the entire instance space. The purpose of creating this
framework for visual analysis of an instance space is twofold: one may assess the capability and suitability of
various regression techniques; meanwhile the bias, diversity, and level of difficulty of the regression problems
popularly used by the community can be visually revealed. This article shows the applicability of the created
regression instance space to provide insights into the strengths and weaknesses of regression algorithms, and
the opportunities to diversify the benchmark test instances to support greater insights.

CCS Concepts: « Mathematics of computing — Regression analysis; - Human-centered computing
—> Visual analytics; « Theory of computation — Design and analysis of algorithms; « Computing
methodologies — Supervised learning by regression; - General and reference — Empirical studies;
Experimentation; Performance;

Additional Key Words and Phrases: Algorithm selection, instance spaces, machine learning, regression, visual
analytics

Funding was provided by the Australian Research Council, the Conselho Nacional de Desenvolvimento Cientifico e Tec-
nologico, and the Fundacdo de Amparo a Pesquisa do Estado de Sdo Paulo, under grants FL140100012, 305291/2017-3,
2012/22608-8 and 2019/20328-7.

Authors’ addresses: M. A. Muiioz, T. Yan, and K. Smith-Miles, School of Mathematics and Statistics, The University
of Melbourne, Parkville, Victoria 3010, Australia; emails: munoz@unimelb.edu.au, taoyanmicro@hotmail.com, smith-
miles@unimelb.edu.au; M. R. Leal and G. L. Pappa, Computer Science Department, Universidade Federal de Minas
Gerais, Av Antonio Carlos, 6627-Pampulha, 31270-901, Belo Horizonte, MG, Brazil; emails: matheusrleal22@gmail.com,
glpappa@dcc.ufmg.br; A. C. Lorena and R. Madureira Rodrigues, Divisdo de Ciéncia da Computagéo, Instituto Tecnologico
de Aeronautica, Praca Marechal , Eduardo Gomes, 50, 12228-900, Séo José dos Campos - SP - Brazil; emails: aclorena@ita.br,
romulomadu@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1556-4681/2021/03-ART28 $15.00

https://doi.org/10.1145/3436893

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 28. Publication date: March 2021.

mailto:permissions@acm.org
https://doi.org/10.1145/3436893

28:2 M. A. Munoz et al.

ACM Reference format:

Mario Andrés Muiioz, Tao Yan, Matheus R. Leal, Kate Smith-Miles, Ana Carolina Lorena, Gisele L. Pappa, and
Rémulo Madureira Rodrigues. 2021. An Instance Space Analysis of Regression Problems. ACM Trans. Knowl.
Discov. Data 15, 2, Article 28 (March 2021), 25 pages.

https://doi.org/10.1145/3436893

1 INTRODUCTION

Regression problems seek to learn the mathematical relationship between dependent variable
responses (outputs) and a set of independent variables (inputs). They are an important class of
Machine Learning (ML) problems, and are often a critical precursor to decision-making that first
requires prediction of likely responses to decisions before the most likely optimal decision can
be determined. The accuracy of the algorithm used to solve the regression problem and make a
prediction of responses is therefore a crucial component of the decision-making process. With in-
creasing pressure for algorithmic transparency and accountability of decisions, it is important to
develop methodologies and tools to scrutinize the performance of algorithms, and their suitability
and reliability for the task at hand.

There are many available methods for solving regression problems, but which one is likely to
be best suited to different datasets is poorly understood. Obviously if the mathematical relation-
ships between independent and dependent variables are linear, then many regression methods are
likely to be accurate and reliable. But for more challenging datasets, the dependence of algorithm
performance on distinguishing characteristics of the data must be understood in order to justify
the choice of one algorithm over another to support decision-making. Furthermore, the choice of
test datasets from which such insights are sought is critical, and we must ensure that the datasets
are suitable—unbiased, diverse, challenging, and discriminating—to support trust in algorithmic
transparency and accountability.

In recent years, there has been a growing interest in meta-analysis of the performance achieved
by diverse techniques in solving different ML problems [32]. By studying large collections of al-
gorithm performance results on diverse test datasets, whose mathematical and statistical features
can be measured, the aim is to build ML models to predict how algorithm performance depends on
dataset characteristics [29]. With such a meta-learning approach, one may highlight strengths and
weaknesses of each algorithm and obtain insights about situations in which they can be success-
fully employed [15]. This may aid new users in the choice of suitable techniques for solving their
particular problems. Moreover, it also allows one to identify potential gaps that can be explored in
order to develop new ML approaches and techniques [25].

Extending the ideas of meta-learning in the direction of interactive visual analytics, a recent
methodology known as Instance Space Analysis (ISA) has been developed by Smith-Miles and co-
workers [11, 19, 26]. ISA offers a framework to support visual insights into algorithm performance
that is twofold in its aims: to provide visual insights and analytics into the strengths and weak-
nesses of algorithms across the broadest possible space of test instances; and to provide a visual
analysis of the diversity, difficulty and discrimination capabilities of benchmark problem instances,
and their adequacy for building trust in conclusions about algorithm reliability. The visualization
of the instance space provides a perspective that is often hidden by tables of computational results
reporting summary statistics about algorithm performance averaged across all test instances. The
ISA methodology was originally proposed in [26] and demonstrated on combinatorial optimiza-
tion problems, but has since then been generalized to other algorithmic science domains such
as time series forecasting [11] and continuous black-box optimization [18]. In the field of ML, it
has recently been employed in the analysis of classification problems [19]. Using a diverse set of

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 28. Publication date: March 2021.

https://doi.org/10.1145/3436893

An Instance Space Analysis of Regression Problems 28:3

classification problems from the UCI [5], OpenML [31], and KEEL [1] repositories, this work also
attempted to enrich the instance space by the generation of new datasets spanning a wider range
of problem complexity. Within the same framework, it is possible to reveal the unique capabilities
of different classification algorithms, by visualizing and objectively measuring the area of their
footprints—regions of predicted good performance—in the instance space.

An online interactive visualization tool to support ISA has been developed by Smith-Miles,
Murioz, and co-workers, and is known as Melbourne Algorithm Test Instance Library with Data
Analytics (MATILDA) [27], whose MATLAB computational engine is freely available at GitHub
[20]. This article presents the first ISA of regression problems using MATILDA. Despite being very
related to classification problems, regression problems are far less investigated by the ML commu-
nity, with far fewer meta-analyses of regression problems in the ML literature. In [30], the authors
employ a meta-learning approach to select the kernel width for Support Vector Regressors (SVR).
There, 14 meta-features previously used in [12] are employed to describe 16 regression problems
and a nearest neighbor classifier using this dataset is able to rank the best kernel width values for
new problems. This work was extended in [7] by the combined use of meta-learning and search
techniques in the same problem, whereby the SVR parameter values suggested by meta-learning
were used as initial seed points by a search technique. The pool of regression problems was ex-
tended to 40 datasets. In an extensive experimental study, Amasyali and Ersoy [2] investigated
meta-regression using a set of 181 datasets and around 300 meta-features. As expected, the most
successful algorithm varies for distinct dataset collections. Despite the large set of meta-features
used by these authors, a large subset of them was very correlated to each other by definition.
Lorena et al. [14] presented a set of meta-features able to characterize the complexity of regres-
sion problems, and assessed performance on three meta-learning tasks: prediction of regression
function type, prediction of SVR parameter values, and prediction of the expected performance of
various regression techniques. The study in [6] presents an experimental comparison of 164 algo-
rithms in the solution of 52 non-linear regression problems. They also attempt to characterize the
strength of each algorithm with respect to the others. Another recent development worth noting is
the Item Response Theory (IRT) analysis of ML problems [16], inspired by educational psychology
studies of student performance on test questions. IRT in ML is an explanatory model which can
be used to relate the performance of a set of algorithms (like students) to the discriminatory and
difficulty level of a pool of datasets (like test questions) [3]. Despite being potentially relevant, the
IRT framework was not yet been applied in meta-analysis of regression problems in the literature.

In this article, we advance upon previous literature to provide a novel meta-analysis of regres-
sion problems and techniques in ML, which allows a visual analysis of the distribution of the
problems according to their characteristics, and subsets of problems for which each algorithm
is expected to perform better. Using the ISA framework, we will visualize for the first time the
location of common benchmark test problems in a two-dimensional (2D) space, examining their
features and identifying the regions in the space occupied by the easy and hard instances. We will
overlay the performance of algorithms across the instance space to gain insights into how various
methods are challenged by different properties of test instances. We will use ML methods to learn
to predict which regression method is recommended for different regions of the instance space.
Finally, we will analyze the sufficiency of the existing benchmark instances to support additional
insights for future studies of regression instance spaces.

The remainder of this article is organized as follows: Section 2 presents the ISA framework. The
methods employed in this article are described in Section 3. Section 4 presents some experiments
and discusses the achieved results, while Section 5 concludes the article and discussed future av-
enues for research.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 28. Publication date: March 2021.

28:4 M. A. Munoz et al.

zeP Footprints
Problem in instance
space Infer algorithm space
performance
for any x € P
Select or generate Define algorithm
a subset I C P footprints ¢ (ya.1)

1
1
: Select o to :
) vel maximise ||y|| Yoo €Y !
' Problem Performance :
: subset space \
1
1
1
1
1
: Estimate feature Estimate yo,» by
| vector f appling « to x :
1
1
1
1
: f, e F aeceA 1
| Feature " Algorithm :
: space o =S (f) space .
1
1
! |
Dimension reduction
and visualisation
2
9 (ffmya’gﬁ €R a* = S(g (fz»ya,z))
Instance - -
Learn selection mapping
space .
from the instance space

Fig. 1. Summary of the ISA methodology proposed in [26], underpinned by the Algorithm Selection frame-
work (in the dotted box) in [22].

2 THE INSTANCE SPACE ANALYSIS FRAMEWORK

The Algorithm Selection Problem (ASP) was stated by Rice [22] as finding a function able to map
the characteristics of a given instance of a problem to the performance of algorithms in such a way
that the algorithm that is predicted to achieve maximum performance for a given problem can be
identified among a pool of candidate algorithms. For such a mapping to be learned, four spaces or
sets are required [19, 29]:

—Sub-space of instances (I): composed of instances of the problem class.

—Feature space (): contains characteristics used to describe properties of the instances as a
summary feature vector.

— Algorithm space (A): containing the set of algorithms which are candidate for solving the
problem instances.

—Performance space (Y): one or more metrics measuring the performance achieved by the
algorithms in solving the problem instances.

These spaces are shown in the center of Figure 1, which summarizes the framework for the
generation of an instance space [19]. This framework was built upon Rice’s ASP original formu-
lation and adds some other sets and steps, which provides a visualization of the meta-analysis to
reveal strengths and weaknesses of the candidate algorithms, and also the representativeness of
the selected subset of instances.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 28. Publication date: March 2021.

An Instance Space Analysis of Regression Problems 28:5

Given a problem space (#) containing all possible instances of a problem class, a subset of
instances is selected (or generated) to compose I. Here % is the class of regression problems, while
I contains a selection of regression datasets from public repositories. The feature space ¥ should
gather a diverse set of measurements representing characteristics of the dataset, which may affect
the performance of an algorithm. These features are also named meta-features in the meta-learning
literature [9]. For instance, sparse datasets with a large number of attributes and a low number
of data points tend to be harder to analyze due to the probable presence of underrepresented
regions in the input space, and a regression problem can also be complex if it is described by
non-informative attributes [14]. Developing meta-features requires significant domain knowledge.
However, good meta-features should be: cheaper to compute than fitting a model or equivalent to
fitting a trivial model; be uncorrelated with other features and highly correlated with performance
of at least one algorithm; be agnostic of the true solution of the problem. The meta-features for
regression used in this article are divided into the following categories [2, 12, 14]:

Simple measures: basic characteristics, such as the size of the datasets, their number of fea-
tures, among others.

Statistical measures: measures of localization, dispersion, distribution, and correlation of
variables.

Information theoretic measures: measures of the information content of the variables.

Landmarking features: considers the predictive performance of simple baseline regressors
on the datasets.

Complexity measures: captures the intrinsic difficulty in solving the regression problem.

Under the ISA framework, the algorithm space A should also be composed of a diverse set of
alternative methods which can be used to solve the given instances. There are various regression
techniques, each with their own biases for solving regression problems in both the statistics and ML
areas [6, 23]. They can be generically divided into parametric vs. non-parametric models, linear vs.
non-linear models, among other categories. The more algorithms with different biases are included
in the analysis, the greater the chances of finding the best solution to a new problem instance. It
is also of interest to identify which algorithms are essentially obtaining very similar results across
the instance space, and may well be mechanistically rather similar, despite being uniquely named.

The performance space Y records information about the performance of the algorithms in A
when solving problem instances in I. In regression problems, there are various alternatives for
measuring the predictive performance of the generated models. Common alternatives are the Mean
Squared Error of the predictions compared to the known data outputs, the Mean Absolute Error,
and also normalized versions which try to resolve scale issues.

Finding the mapping S (-) from a problem instance described by a set of meta-features into one
or more algorithms which will have a high expected performance can be solved as a learning
problem itself. In that case, S (-) is also called a meta-learner [9, 32]. This has been the principle of
meta-learning studies [32], which started in the late 1990s. The idea is to use meta-knowledge of
previous problems with known solution to solve new learning problems. For instance, by gathering
the results of multiple models in several benchmark regression problem instances, one may be able
to induce predictive models able to indicate the best or a set of better methods for a new regression
dataset.

Beyond performance prediction, a meta-dataset relating the characteristics of multiple datasets
to the performances of a pool of diverse regressors provides the opportunity to visualize these
relationships via a 2D projection of the feature space known as an instance space [19]. The ISA
methodology allows visualization of datasets as points in the instance space, and identification
of pockets of hard or easy datasets, or even gaps that should ideally be fulfilled by generation or

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 28. Publication date: March 2021.

28:6 M. A. Munoz et al.

curation of new datasets. It is also possible to identify regions of the instance space where an algo-
rithm can be considered more competent when compared to others, with this region of expected
(predicted based on ML methods) good performance defined as the algorithm’s footprint. Such
knowledge can support the selection of the most suitable algorithms for new problem instances,
after inferring performance across the broader problem space #.

3 METHODOLOGY

To generate the regression instance space and use its visual analytics capability for insights, five
key steps are recommended [19]:

(1) Building a meta-dataset containing a set of problem instances I, described by the meta-
features in F and labeled according to the performance of the algorithms in A, as assessed
by a chosen performance metric Y. It is also necessary to define good performance ac-
cording to this metric;

(2) Filtering a subset of meta-features which can be viewed as more relevant to describe the
problem instances and their ability to explain variations in algorithm performance;

(3) Generation of the 2D instance space by projecting the instances from the high-
dimensional feature space to a 2D coordinate system using a dimension reduction method;

(4) Identification and characterization of the algorithm “footprints,” i.e., the areas of the in-
stance space in which performance is expected to be good, given the empirical evidence
presented to a ML algorithm; and

(5) Construct an automated algorithm selector that uses existing knowledge to predict which
algorithm may be suitable and best recommended for a new instance.

Earlier work on the ISA methodology [11, 26] relied on Principal Component Analysis as the
dimension reduction method for step 3, but in [19] a more powerful projection algorithm was
proposed that seeks to maximize the linear trends observed when considering the distribution of
meta-feature values and algorithm performance metrics across the instance space. This projection
algorithm is derived by solving a high-dimensional global optimisation problem numerically to
arrive at an optimal linear transformation that makes the resulting 2D instance space more inter-
pretable. We adopt this projection approach in this article, which is summarized in Section 3.3, and
refer the reader to [19] for details.

As a final step in the ISA methodology, the resulting 2D instance space can then be analyzed
for insights into the relative strengths and weaknesses of algorithms; predictions can be made
using ML methods about how algorithms are expected to perform in parts of the space where they
have not yet been tested; and the sufficiency of the existing benchmarks can be analyzed to see
if they are diverse, challenging and discriminating enough, or if there are gaps in the instance
space where new test instances should be created. This article will restrict to the description of
the methodology used to build the regression instance space and discussing the insights offered
for the particular meta-dataset considered in the present study. As a proof of concept to show
the potential of ISA for regression, we leave tasks such as the generation of new test instances to
future work. In the following sections, we describe how the enumerated steps were tackled in this
work for our chosen experimental setting.

3.1 Building the meta-dataset

3.1.1 Problem instances. Four sources of regression datasets were adopted:

Repositories: 246 datasets were collected from the KEEL [1], OpenML [31], and UCI Machine
Learning [5] public repositories.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 28. Publication date: March 2021.

An Instance Space Analysis of Regression Problems 28:7

BlackBoxData: 2,547 datasets are randomly selected instances from the Comparing COntin-
uous Optimisation (COCO) benchmark set [8]. Commonly used to test numerical opti-
misation algorithms such as BFGS, Nelder-Mead, and CMA-ES, this benchmark set has
24 basis functions which can be scaled to arbitrary dimensions and transformed through
translations and rotations, and symmetry breaking through oscillations about the iden-
tity. The COCO software uniquely identifies each instance using an index to allow repli-
cable experiments. To generate regression datasets, we reused the sample data originally
prepared for [17], which corresponds to: (1) Latin Hyper-cube samples of dimensions
D ={2,3,5,8, 10, 20, 40, 60, 100} and with 10° x D observations as the independent vari-
ables; and (2) the responses for two randomly selected instances from indexes [1, .. ., 30]
for each basis functions as the dependent variables. With some datasets being quite large,
we standardized their number of observations into five sizes {50, 100, 250, 500, 1000, 2000}
by randomly choosing observations. Of these 2,592, 45 were discarded due to erroneous
performance data from most algorithms.

EvolvedBlackBox: 1,763 datasets correspond to instances generated for testing black-box
optimisation algorithms [17]. These 2- and 10-dimensional functions were generated by
targeting the instance space of black-box optimization problems, using Genetic Program-
ming. As the COCO benchmark functions, we generated a regression dataset through a
Latin Hyper-cube sample and collected the function responses.

M3C: 299 datasets correspond to time series problems from the M3-Competition [13]. To
generate a regression dataset, we used the auto-regressive method, in which previous
values of the series are used to predict the next. The number of the features for the data
is 10% of the length of the original time series with a rounding and features are generated
from the number of the lagging from time series. For example, if time series has length
of 20, the features for the synthetic data should be two and those two features are lagged
by one and two, respectively, from original time series. This results in instances whose
observations are not independent and identically distributed (iid); hence, they may favor
algorithms which do not assume iid data. Therefore, we have used a 10% subset of the
available datasets.

This curation process results in a total of 4,855 regression datasets, which compose the set I
in our study. Let n designate the number of examples or observations within a base regression
dataset and m the number of input features or attributes (independent variables). The selected
datasets have n € [13, 2400] and m € [1, 108]. Most of the datasets (about 90%) have only quanti-
tative attributes. The remaining have mixed types of attributes (both quantitative and qualitative).
There are some regression techniques and also some meta-features that are suitable for quan-
titative attributes only. In such cases, two strategies were employed: disregarding the qualita-
tive attributes; or converting them to multiple numerical values using a binarization approach.
The meta-features extracted from the previous datasets are those defined and used in the articles
[2, 14, 30] and are described next.

3.1.2 Algorithms. The regression algorithms considered, composing the set A, were: Adaboost,
Bagging, Bayesian ARD, Decision Tree, e-SVR, linear SVR, v-SVR, Extra tree, Gradient Boosting,
Ridge Kernel regression, MLP Neural Network, Passive aggressive, Random Forest, and Stochastic
Gradient Descent (SGD), making a total of 14 regression techniques. All of them are used as avail-
able in the scikit-learn package [21]. They belong to different families of algorithms and present
distinct biases. According to the categorization presented in [6], we have representatives from
the following families of algorithms: Neural Networks (MLP); Support Vector Machines (SVMs)
(e-SVR, linear SVR and v-SVR); Regression Trees (Decision Tree and Extra Tree); Random Forests;

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 28. Publication date: March 2021.

28:8 M. A. Munoz et al.

Table 1. Algorithms Under Study Sorted by Their Percentage of
Good Instances, Pg, with the Percentage of Instances for which an
Algorithm is Uniquely Good, Pyg, and the Recalculated Percentages
of Good, Ps, and Uniquely Good, Pys, Instances for the Algorithms
Retained for Further Analysis

P, Pyg Py Pys
1 Gradient Boosting 41.6% 254% 44.7% 28.0%
2 Bayesian ARD 29.0% 213% 297% 21.9%
3 Bagging 223% 12% 235% 1.3%
4 Random Forest 22.2% 1.3% 23.3% 1.3%
5 e-SVR 15.6% 0.3%
6 v-SVR 15.1% 09% 16.4% 2.9%
7 Linear SVR 11.3% 09% 12.6% 2.2%
8 Adaboost 11.1% 09% 12.2% 1.0%
9 Decision Tree 7.8% 3.4% 8.8% 4.2%
10 MLP 6.9% 0.0%
11 Kernel Ridge 6.7% 1.3%
12 SGD 6.4% 0.1%
13 Passive Aggressive 6.2% 0.6%
14 Extra Tree 4.1% 1.4%

Generalized Linear Models (Passive aggressive and SGD); Bagging; Boosting (Adaboost, Gradient
Boosting); and others (Bayesian ARD and Ridge Kernel regression).

3.1.3 Performance metric. The predictive performance of the techniques was evaluated using a

five-fold cross-validation (CV) strategy with the Normalized Mean Absolute Error (NMAE) metric,
defined as [30]:
21 1yi — il
T o 1)
i=1 |yi - yl
where §J; represents a prediction for the i-th example in the dataset and 7 is the mean of the
target values. Being a normalized measure of performance, NMAE allows us to fairly compare
the performance of any algorithm on multiple datasets. Moreover, it gives equal relevance to
small and large errors, unlike the Normalized Mean Squared Error which emphasizes larger
errors [10].

We use a definition of good performance that states an algorithm’s performance on an instance is
good if it is within 5% of the best (lowest) NMAE compared to all other algorithms in the portfolio.
This definition of good performance will be needed in the construction of the instance space. Of
course, we could also consider a definition of good that only considers the best NMAE, or an
absolute measure of a NMAE below a given threshold, as we have done in previous studies [19,
26]. Using this definition of good, 59.0% of the instances have one good algorithm, 18.8% two, 9.5%
three, 3.8% four, and 2.9% five. There are no instances for which all algorithms are good. Table 1
shows the algorithms sorted by their percentage of good instances, Py, with the percentage of
instances for which an algorithm is uniquely good, Pys. From the top ten algorithms by P,, we
focus on those with a P,y > 0.5%. Table 1 also shows the recalculated percentages of good, P, and
uniquely good, Py, instances.

Naturally, if the definition of good is changed, then the results are also affected (different features
may be selected, and so the axes of the instance space coordinate system will also be changed),

NMAE =

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 28. Publication date: March 2021.

An Instance Space Analysis of Regression Problems 28:9

Table 2. Meta-features Employed in the Analysis

Abbreviation Name Category
nl Number of examples in the dataset [30] Simple

n2 The number of features in the dataset [30] Simple

n5 Proportion of attributes with outliers [30] Simple

n7 Sparsity of the target [30] Statistical

n8 Outliers in the target [30] Simple

n9 Stationary of the target [30] Statistical

cl Maximum feature correlation to the output [14, 30] Statistical

c2 Average feature correlation to the output [14, 30] Statistical

c3 Individual feature efficiency [14] Complexity
c4 Collective feature efficiency [14] Complexity
c5 Average correlation between features [2] Statistical

f2 Average feature F-test to the output [2] Statistical
I1_a Mean absolute error of OLS without symbolic attributes [14, 30] Landmarking
11_b Mean absolute error of OLS [14, 30] Landmarking
12_a Mean squared error of OLS without symbolic attributes [14, 30] Landmarking
12_b Mean squared error of OLS [14, 30] Landmarking
m2 Average mutual information to the output [30] Information
m5 Average mutual information among features [30] Information
r2_a R? from a linear model without symbolic attributes [30] Landmarking
r2_b R? from a linear model [30] Landmarking
sl Normalized output distribution [14] Complexity
52 Normalized input distribution [14] Complexity
s3 Error of the nearest neighbor regressor [14] Landmarking
s4 Non-linearity of nearest neighbor regressor [14] Complexity
t2 Ratio between the number of examples and the number of attributes [14, 30] Simple

t3 Proportion of symbolic features [2, 30] Simple

but this article aims to show how the instance space can be constructed and analyzed for a given
experimental setting that includes decisions such as definitions of good performance, choice of
instances, meta-features, algorithms and their parameters. The methodology can be repeated for
other experimental settings to explore the insights that are offered for a given set of experimen-
tal choices beyond the usual summary table of average results. The meta-datasets for this study
are available for download from MATILDA’s website! to support further exploration of different
experimental settings.

3.1.4 Meta-features. A set of 26 meta-features were employed to describe the datasets. They are
presented in Table 2, separated according to the category they belong to, namely simple, statistical,
information theoretic, landmarking and complexity-based. Despite the usage of over 300 meta-
features in [2], a careful examination reveals that many of them capture very similar aspects and
are highly correlated. Therefore, we opted to include meta-features from [2, 14, 30] that could
extract more distinct aspects from the benchmarks and could reveal the difficulty level of the
regression problems more clearly.

! Available at: https://matilda.unimelb.edu.au/matilda/problems/learning/regression.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 28. Publication date: March 2021.

https://matilda.unimelb.edu.au/matilda/problems/learning/regression

28:10 M. A. Munoz et al.

Table 3. Top 10 Meta-features Per Algorithm Sorted by Their Absolute Correlation with Performance

Adaboost Bagging Bayesian ARD Decision Tree Gradient Boosting Linear SVR v-SVR Random Forest

1 nl nl nl nl nl nl nl nl
0.5458 0.6783 0.4027 0.4991 0.7554 0.8054 0.9124 0.6372

2 t2 t2 c5 t2 t2 c5 c5 t2
0.4542 0.5969 0.3246 0.4660 0.6684 0.7198 0.7390 0.5610

3 c5 c5 t2 c5 c5 t2 t2 c5
0.4182 0.4875 0.2901 0.3722 0.5650 0.6695 0.6612 0.4625

4 mb s1 mb5 sl s1 m5 m5 s1
0.3142 0.3630 0.2509 0.2736 0.4057 0.5895 0.5783 0.3368

5 sl m5 I1_a mb5 m5 c2 c2 m5
0.2319 0.3512 0.1644 0.2671 0.4056 0.2875 0.3278 0.3350

6 c4 n2 11_b n2 n2 s1 s1 n2
0.1328 0.1790 0.1623 0.1743 0.1947 0.2777 0.2898 0.1677

7 c3 c4 12_a c4 cl r2_b c3 c4
0.1107 0.1488 0.1601 0.1665 0.1624 0.2674 0.2764 0.1471

8 n2 s2 12_b s2 c4 r2_.a r2_b cl
0.0929 0.1241 0.1568 0.1230 0.1399 0.2625 0.2504 0.1159

9 c2 cl sl c3 s2 c3 r2_a s2
0.0837 0.1179 0.1507 0.0976 0.1246 0.2625 0.2443 0.1140

10 m2 s4 r2_a cl s4 cl cl c3
0.0739 0.0656 0.1275 0.0962 0.0960 0.2602 0.1988 0.0576

In boldface/italics are those meta-features with high correlation (0.5 < |px,), while in boldface are those with mod-
erate correlation (0.3 < [px, 4| < 0.5). By selecting the top five meta-features, all of them would have at least moderate
correlation with one algorithm, with the only exception of /1_a.

3.2 Filtering the meta-features

Pre-processing of the meta-data is required in the construction of an instance space, and is fully
automated by the online tool MATILDA. Initially, each meta-feature is bounded between its median
plus or minus five times its interquartile range to reduce the effect of outliers, as these statistics are
robust estimators of the typical value and the spread, and encapsulate over 99.99% of the data. Next,
the meta-features are transformed using the one parameter Box-Cox transformation to stabilise
their variance and normalise the data. The transformation is defined by the equation:
-1 .
(D) iA#0 @)

' In(f;) ifA=0

where f; is the value of the feature for instance i and must be a value greater than zero. As such,
before the transformation, the values are shifted by adding one minus the minimum. The value of
A is estimated by maximising the Log-likelihood function. Finally, the tool applies a z-transform
to standardise each feature and performance value to mean zero and standard deviation one.
Next, the complete set of meta-features was filtered since many of them may be not corre-
lated enough with algorithmic performance to provide meaningful insights into the hardness
of instances and their ability to differentiate between the levels of difficulty for different al-
gorithms. Table 3 shows the top 10 meta-features per algorithm sorted from highest to lowest
absolute value of the correlation with performance, |py, ,|. In boldface/italics are those meta-
features with high correlation (0.5 < |px, 4|), while in boldface are those with moderate correlation
(0.3 < |px,yl < 0.5). All top five meta-features for all algorithms have at least moderate correlation

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 28. Publication date: March 2021.

An Instance Space Analysis of Regression Problems 28:11

with one algorithm, with the only exception of /1_a, which has a low but statistically significant
correlation of 0.1644 (p-value of 8.9361 x 1073!) with Bayesian ARD. We keep [1_a as it is almost
uncorrelated with any other algorithm, and Bayesian ARD does not have many strongly correlated
features.

Based on this filtering, the final set of seven meta-features is {n1, c2,c5,11_a, m5,s1,t2}. It is
noteworthy the presence of measures from all categories of meta-features in this set, providing
support to the idea that multiple characteristics should be considered to properly summarize the
algorithms’ performance in the data. Measures n1 and {2 are roughly related to how representative
the datasets are when considering their sizes. While all regression algorithms can benefit from
problems with a higher number of points n1, t2 relates this number to the number of attributes
and therefore tries to capture the sparsity of the input space. The lower the t2 value, the larger tends
to be data sparsity. All algorithms may struggle in face of sparse datasets, which tend to contain
underrepresented regions. The meta-features c2, ¢5, and m5 quantify the representativeness of the
input attributes. While c2 captures the average correlation of the input attributes to the output,
c5 measures the correlation between the input attributes only, that is, how redundant they are. A
high c2 value is obtained for datasets with many input features highly correlated to the output,
being informative for predicting the output variable. On the other hand, ¢5 assumes higher values if
many of the input attributes are redundant among each other, in which case many of them could be
removed to make the problem simpler for the regression techniques. m5 is related to ¢5, measuring
the redundancy of the input attributes, but using mutual information instead of correlation. I1_a
measures whether a linear model might fit the data well. It will be lower for linear or quasi-linear
problems, which can be considered simpler than non-linear problems. Finally, s1 measures the
smoothness of the relationship of similar data points. It first builds a Minimum Spanning Tree
(MST) from the input dataset, in which each vertex corresponds to a data point and the edges
measure their similarity. Next, s1 averages the differences of target values of neighbor examples in
the MST. For simpler regression problems, lower values of s1 are expected, representing a smooth
variation of the target values for similar input data.

Therefore, the final meta-feature set considers different aspects which are known to affect the
performance of the regression techniques: the representativeness of the data points as measured by
simple measures such as n1 and t2, related to the datasets sizes; the quality of the input attributes
for predicting the target attribute, as measured by c¢2; the redundancy of the input attributes, mea-
sured by ¢5 and m5; and the linearity and smoothness of the relation of the input attributes to the
target output, measured by /1_a and s1. Of course some of those characteristics may affect more
one technique over another due to their own biases. For instance, the linearity measure /1_a will
probably be a good descriptor of the behavior of generalized linear models and the linear SVR. But
the compromise set of meta-features found can be considered general enough to quantify different
aspects that influence the difficulty of a regression problem.

3.3 Constructing the Instance Space

In order to visualize instances and algorithmic performance we project from the 7D meta-feature
space to a 2D plane. While any dimensionality reduction method can be suitable for this task,
here we use the Prediction Based Linear Dimensionality Reduction (PBLDR) method developed
in our previous work [19]. For reference, we present the details of PBLDR in this section. Let
F € R™ be a matrix containing m features for n instances and Y € R™*? a matrix containing the
performance measure of a algorithms on n instances. An ideal projection of the instances for this
group of algorithms is achieved by finding the matrices A, € R¥™, B, € R™? and C, € R¥?

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 28. Publication date: March 2021.

28:12 M. A. Munoz et al.

which minimise the approximation error:

IF-FlI2 + Y - Y2, 3)
such that:
Z = AF, (4)
F = BZ (5)
Y = CZ (6)

where Z € R™*? is the matrix instance coordinates in the 2D space. We assume that m < n and F
is full row rank, i.e., rank (F) = m. If F is not full dimensional then we consider the problem in a
subspace spanned by F. Thus, we have the following optimisation problem:

min ||F-B,Z||% + ||Y - C,Z||%
st. Z=A,F (7)
(D) A, € R¥m
B, € R™*?
C, e R¥Z,

PBLDR uses the Broyden-Fletcher—Goldfarb-Shanno (BFGS) optimization algorithm to solve
numerically O, which is known to be convex but highly ill-conditioned with an infinite number
of solutions falling within a line. BFGS always finds a global optimum for D; therefore, the best
solution is the one with the highest topological preservation, defined as the correlation between
high- and low-dimensional distances, from a number of repeats Ny, which is set to 30. Algorithm 1
in Appendix A describes the dimensionality reduction method. The final projection matrix is de-
fined by Equation (8) to represent each dataset as a 2D vector z = (z1, z2) depending on its 7D
meta-feature vector via the following linear transformation:

0.5655 0.53031' [n1

—0.1581 0.4419| |2
—0.3881 —0.1159 | |5
z=| 03180 —0.2530| [I1_a 8)
—0.4138 —0.0987 | | m5
0.2884 —0.4519| |s1
0.0920 0.2102| |t2

3.4 Footprint analysis of algorithm strengths and weaknesses

An algorithm’s footprint is the area of the instance space where good or best performance is ex-
pected based on inference from empirical performance analysis [28] with good performance de-
fined as being within 5% of the best (lowest) NMAE compared to all other algorithms in the port-
folio, as described in Section 3.1.3. Besides its area, a, a footprint is characterized by its density, d,
defined as the number of instances enclosed by the footprint divided over the area, and its purity,
p defined as the percentage of good instances enclosed by the footprint. Carrying out a footprint
analysis is a process which can be broadly divided in three steps: (a) estimating the area, as, and
density, ds, of the section of the space containing instances, which are the baselines to normalize
the results; (b) building and characterizing the footprints for each algorithm; and (c) comparing
the footprints to reduce or eliminate contradictions between them. The process has been refined
through multiple iterations to reduce parameters, improve repeatability, and stability, with Algo-
rithms 2-4 in Appendix A describing the details of the latest version. To construct a footprint,

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 28. Publication date: March 2021.

An Instance Space Analysis of Regression Problems 28:13

Algorithm 3 uses DBSCAN to identify high density clusters of good instances. As outputs, DB-
SCAN provides a vector ¢ € {—-1,1,...,N.}, where “-1” marks an outlier, and values in [1, N.]
range correspond to the index of the identified clusters. DBSCAN requires two parameters, {k, ¢},
the former represents the minimal number of neighboring instances that would be considered a
cluster, whereas the latter correspond to the neighborhood radius. DBSCAN has been shown to
be robust to a variety of parameter values [24], therefore both of them are automatically chosen
following the equations [4]:

k « max (min ([r/207, 50), 3),
I (2)

rim

(range (z;) X range (z3)),

where r is the number of unique instances in the space with good performance, and T'(-) is the
Gamma function. The footprint is then constructed using an a-shape, a generalization of the con-
cept of convex hull from computational geometry, which corresponds to a polygon that tightly
encloses all the points within a cloud. An a-shape is constructed for each cluster, and all shapes
are bounded together as a MATLAB polygon structure.

Once constructed, contradicting sections can appear when two different conclusions can be
drawn from the same area of the instance space due to overlapping footprints, e.g., when com-
paring two algorithms. These sections are removed using Algorithm 4, where the contradicting
section is removed from the footprint with lower purity. The process is repeated N,y = 3 times,
although more than one try is often unnecessary. If the purity is the same for both footprints, the
section is kept, as there is insufficient evidence of dominance of either algorithm.

3.5 Automated algorithm selection in the instance space

We use the MATLAB implementation of SVMs with a polynomial kernel to partition the space into
distinct regions where each regression method has dominant performance. Moreover, the SVMs
can be used to suggest a method predicted to be good for an untested instance. For each one of
the regression algorithms under study, we train an SVM using as input the coordinates Z obtained
from PBLDR and as output our criterion of good, i.e., “1” if NMAE is within 5% of the best (lowest)
across all algorithms, and “0” otherwise. To tune the SVM parameters {C, y}, we use 30 iterations
of the Bayesian Optimization algorithm bounded between [1072,10%], with five-fold CV and the
probability of improvement loss function, which is defined as:

HO (Xpest) —m — Ho ()
o (x)

PI(x)=®

where x is a new point, X is the location of the lowest posterior mean, pig (Xpest) is the lowest
value of the posterior mean, op (x) being the posterior standard deviation at x and @ (-) being
the unit normal cumulative distribution function. Once the models are trained, the CV accuracy,
precision and recall are collected.

4 RESULTS

Based on the methodology described in the previous section, the experimental results are presented
and discussed next. We first present the visualization of the instance space, showing the location
of test instances and their source from the benchmark collections considered. We then examine
the performance of algorithms across the instance space, and the distribution of meta-features to
enable insights into which properties of instances create ease or difficulty for different algorithms.
These insights are further supported by the footprint analysis of each algorithm. Finally, we use
SVM models to learn to predict the performance of each algorithm across the instance space, and

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 28. Publication date: March 2021.

28:14 M. A. Munoz et al.

4 Sources
BlackBoxData
Q2 EvolvedBlackBox
M3C
2 Repositories
N0
-2
Q3 Q4
_4 ' J
-5 0 5

2

Fig. 2. Regression instance space showing sources of the benchmark problems, and the division into quad-
rants for discussing the obtained results.

combine them to recommend which algorithm should be used in various regions of the instance
space.

4.1 Instance Space structure and location of the source groups

The location of the instances in the instance space is shown in Figure 2, which also indicates the
sources of the test instances. We have four types of datasets by source: repositories which are in-
cluded in the KEEL [1], OpenML [31], and UCI [5] repositories, BlackBoxData, EvolvedBlackBox,
and M3C. OpenML and UCI are two popular public repositories used by the ML community. More-
over, Figure 2 shows the instance space divided into four quadrants, anti-clockwise from top-right.
According to this division, it is possible to notice that the BlackBoxData and EvolvedBlackBox
datasets are concentrated in quadrants Q1 and Q4, while M3C datasets are predominantly situated
at quadrants Q2 and Q3. On the other hand, the standard ML repositories are spread in the four
quadrants.

The repositories’ datasets only span a small area of the instance space; thus if we were relying
only on well-studied regression problems in the literature, we would be studying problems that
lack diversity. The synthetic datasets not only cover the repositories’ area, but also span the in-
stance space further. Nonetheless, there are still under-represented regions of the instance space
in all four corners, and opportunities for future work to generate more diverse regression datasets.

4.2 Distribution of the meta-features in the space
Figure 3 shows the distribution of the selected meta-features values across the instance space,

from minimal values as blue to maximal values as yellow. Considering the interpretation of the
meta-features values, we can observe the following:

—n1: the number of examples in the datasets increases from bottom-left (quadrant Q3) to the
up-right corner of the instance space, so that larger datasets are concentrated in quadrant
Q1.

—c2: the average correlation of the input attributes to the target increases from the bottom-
right to the top-left corner of the instance space, so that datasets in quadrant Q4 have more

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 28. Publication date: March 2021.

An Instance Space Analysis of Regression Problems 28:15

09
08
07

06

o o &0 05
El 4 4 04
03
2 2 2
. 02
3 3 3 o1
4 4 4 0
5 0 5 0 5 0 5
1 Z Z
(a) n1 (b) c2 (c) ¢5
m5 s1 Ma
4 4 4 1
3 3 09
08
2 2
07
1 1 06
)) 05
4 4 04
03
2 2
02
3 3 0.1
4 4 4 0
5 0 5 0 5 5 0 5
% % z
(d) ms (e) s1)11 a
2
4 1
3 09
08
2
07
1 06
S0 05
4 04
03
2
02
3 0.1
-4 0
5 0 5

(g) 12

Fig. 3. Distribution of meta-features, from minimum (blue) to maximum (yellow) values.

representative features for predicting the target and are easiest according to this meta-
feature.

—c5: datasets in the top-right direction of the instance space (Q1) tend to present more cor-
related input features, whilst this correlation is lower for datasets at the left corner (Q2 and
Q3); instances at the bottom of the space (quadrant Q4) are considered harder according to
this measure.

—mb5: this measure has a similar interpretation and behavior to that of ¢5, as expected, al-
though is tends to present lower values for most of the datasets.

—s1: the datasets at the top of the instance space (quadrants Q1 and Q2) present smoother
variations on the outputs for similar data items, which increases towards the bottom-left of
the instance space (Q4), which are harder regarding this aspect.

—11,: there is some relation between the s1 and [1_a values and interpretations in the IS, since
linear datasets will tend to present smoother variations on the outputs for similar examples.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 28. Publication date: March 2021.

28:16

M. A. Munoz et al.

N0 05
4 04
0.3
2
0.2
3 01
-4 0
0 5 -5 o 5
(a) Adaboost (b) Bagging (c) Bayesian ARD
4 1

-4 0

0 5 -5 0 5

(d) Decision Tree (e) Linear SVR (f) v-SVR

0.9
0.8
0.7
06
0.5
04
0.3
0.2
0.1
0

0 5

Z| Z1
(g) Gradient Boosting (h) Random Forest

Fig. 4. Distribution of NMAE for each of the six best performing regression algorithms, from minimum (blue)

to maximum (yellow) values.

Therefore, linear datasets are concentrated in Q1 and Q2, while datasets for which a non-
linear regressor might be required are concentrated in Q4.

—t2: the sparsity of the datasets increase from the top-right (Q1) towards the bottom of the
instance space (Q3 and Q4). Relating to n1, datasets with more examples (larger n1) values
tend to be less sparse, as expected.

4.3 Distribution of the algorithm performances in the space

Figure 4 shows the distribution of NMAE (from minimal values as blue to maximal values as yel-
low) for each of the eight algorithms listed in Table 1, which had good performance in a sufficiently

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 28. Publication date: March 2021.

An Instance Space Analysis of Regression Problems 28:17

large percentage of instances. From this instance space perspective we can see that most of the
algorithms find the instances in quadrant 1 (Q1, with positive values for both z; and z,) to be easy,
with lower NMAE. Examining where the algorithms are challenged though, a greater variation of
performance is observed. Most algorithms consistently find the instances in quadrant 3 (Q3) to be
hard. There are some easy instances spread in across the plots too, but largely they are concen-
trated towards the up-right corner. Combining the results of Figures 3 and 4 enables us to infer
the following observations about the strengths and weaknesses of the algorithms for particular
characteristics of the instances:

—Instances in Q1, with positive values on both z; and z; coordinates, are those which
most algorithms find easy to solve. From the meta-feature instance space, we can ob-
serve that such instances have three obvious characteristics. First, they correspond to
larger datasets, with more examples (high n1 values). Second, they are less sparse as cap-
tured by the higher ¢2 values, and contain more examples than input attributes. Third,
the input features are also less redundant among each other, as indicated by low val-
ues of ¢5 and mb5. Intuitively, because an instance with more examples and less corre-
lated attributes carries more useful information, all algorithms tend to find such datasets
easier.

—Quadrant Q2 contains datasets of mixed difficulties for the SVR and Bayesian ARD
regressors, while they are considered quite hard for tree-based regressors such as Adaboost,
Bagging, and Random Forest. The datasets in this quadrant show a smoother variation of
outputs for similar instances (low s1), a linear trend (low I1_a) and have input features
more related to the target values (high c2 values). These characteristics may have posed
challenges to the tree-based techniques in partitioning the input data space during their
processing.

—In Q3 we find instances that most of the algorithms find harder to solve. In contrast to
Q1, the instances in this quadrant have a lower number of examples (low n1 values) and
show a higher sparsity (lower t2, the ratio of number of examples to the number of input
attributes). The input attributes also tend to be more redundant, as noticed by the larger ¢5
and m5 values. For example, the M3C datasets are mostly located in this quadrant. These
instances will be hard to solve for most of the algorithms, since they are derived from time
series for which the attribute values are generated from original lagged time series (i.e., they
were not typically studied as regression benchmarks, but we have added them to this study
to explore greater diversity in instance difficulty).

—Finally, quadrant Q4 complements Q2 and contains datasets for which the difference of
outputs of similar instances is larger (high s1), with a non-linear trend (high /1_a values)
and input features less related to the target output values (low c2 values). Most regressors
had mixed results for these datasets.

4.4 Footprint analysis

Table 4 presents each algorithm’s footprint area (an), density (dy) and purity (pn), whenever
the algorithm is good or best, identified with the subscripts G or B respectively. The results are
normalized over the total area (19.7258) and density (242.0185). Moreover, Figure 5 illustrates
the footprints of those algorithms with an ¢ > 1.0%. From both the table and figure, we ob-
serve that two algorithms dominate: (a) Bayesian ARD, which covers a large but low density
section of Q2 and Q3 (an.g = 37.7%,dn.G = 24.0%), where most other algorithms do not per-
form well, resulting in a higher than average purity (pn,c = 86.8%); and (b) Gradient Boost-
ing, which covers a large but high density section of Q1 and Q4 (an.¢ = 77.3%,dN.c = 120.9%),

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 28. Publication date: March 2021.

28:18 M. A. Munoz et al.
Table 4. Footprint Analysis for the Eight Algorithms Under Study, Including Their Area
(an), Density (dn) and Purity (pn), Whenever the Algorithm is Good or Best, Identified
with the Subscripts G or B, Respectively
aN,G dn,c PN,G aN,B dn, s PN, B
Adaboost 0.5% 195.1% 62.5% 0.0% 0.0% 0.0%
Bagging 1.0% 108.0% 83.3% 6.0% 109.3% 31.5%
Bayesian ARD 37.7% 24.0% 86.8% 34.9% 26.1% 80.7%
Decision Tree 0.3% 41.5% 100.0% 6.7% 77.7% 41.6%
Gradient Boosting 77.3% 120.9% 47.6% 56.1% 145.4% 41.5%
Linear SVR 1.0% 58.5% 69.0% 1.1% 42.3% 63.6%
v-SVR 2.0% 25.4% 66.7% 0.8% 50.2% 68.4%
Random Forest 2.7% 99.2% 71.3% 1.8% 48.4% 39.0%
Average 15.3% 84.1% 73.4% 13.4% 62.4% 45.8%
4 4 - GOOD
3 BAD
FTPRN
2
1
N0
-1
2
3
_4-5 0 -4-5 0 5 -5 0 5
(a) Bagging (b) Bayesian ARD (c) Gradient Boosting
4 * ~ GoOD
3 3 BAD
FTPRN
2 2
1 1
N0 N0
1 -1
2 -2
3 3
4 4

(d) Linear SVR

(e) v-SVR

(f) Random Forest

Fig. 5. Footprints of the six algorithms with area, an,G > 1.0%, noting that two algorithms dominate, i.e.,
(b) Bayesian ARD and (c) Gradient Booster.

where other algorithms perform well, resulting in the lowest purity (pn.G = 47.6%).
When compared to the results from Table 1, we observe that these two algorithms have com-
plementary strengths and weaknesses, as they are uniquely good in a significant section of the
space. Moreover, while Bagging and Random Forests were the third and fourth ranked algorithms
in Table 1, we observe that their good performance is limited to small and dense areas in either

Q2 or Q4.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 28. Publication date: March 2021.

An Instance Space Analysis of Regression Problems 28:19

Table 5. Performance of the SVM Prediction Models

NMAE (o) Pr(G) NMAEg (0s) Accuracy Precision Recall C Y
Adaboost 0.211(0.481) 0.122 0.012(0.001) 88.2% 73.0% 4.6% 0.001 4.110
Bagging 0.293(2.655) 0.235 0.020(0.079) 78.8% 66.9% 19.5% 0.001 0.293
Bayesian ARD 0.358(2.839) 0.297 0.674(4.509) 76.5% 67.4% 40.9% 916.545 4.332
Decision Tree 0.289(1.539) 0.088 0.046(0.134) 92.5% 71.1% 25.3% 0.001 0.884
Gradient Boosting 0.260(1.630) 0.447 0.113(1.746) 66.1% 613% 65.7% 187.771 4.238

Linear SVR 1.615(8.267) 0.126 87.4% 0.0% 0.002 0.280
v-SVR 0.323(0.977) 0.164 0.013(0.000) 83.9% 69.2% 3.4% 0.001 1.282
Random Forest 0.290(2.752) 0.233 0.037(0.098) 78.0% 66.8% 11.2% 0.002 0.357
Oracle 0.118(0.281) 1.000

Selector 0.258(2.485) 0.562 0.243(2.699) 63.5% 39.6%

4.5 Prediction of Algorithm Strengths and Weaknesses

While a visual inspection of the strengths and weaknesses of each algorithm in regions of the
instance space explained by certain meta-feature values can be conducted, it is also useful to
somewhat automate the process of identifying where each algorithm’s regions of strength lie. To
this end, we use a series of SVMs to learn to predict if each algorithm’s performance is expected
to be good or bad at any point in the instance space. Table 5 shows the performance metrics
for this algorithm selector. As an idealized benchmark, we also present the results of an oracle
that always selects the right algorithm for a dataset with full knowledge of its performance. For
each algorithm we report its average NMAE across all instances with its standard deviation, o,
between parenthesis, its probability of being good, Pr (G), as well as the average NMAE across the
selected instances (N MAE 5) and its standard deviation, og, between parenthesis. We also present
the values of SVMs cross-validated accuracy, precision, and recall, as well as their parameters
{C,y}. The results show that our selector achieves an NMAE of 0.258, better than using any
one algorithm all the time. If we consider the selector’s success in choosing an algorithm that is
expected to have good performance however, we find that it is successful 56.2% of the time (Pr (G)
= 0.562), making it more reliable that any algorithm alone.

The resulting predictions from each individual SVM are illustrated in Figure 6. It is possible to
observe that different methods are expected to perform well in distinct regions of the instance
space, but no method is expected to perform well everywhere. For example, the two dominant
algorithms, Bayesian ARD, and Gradient Boosting, cover complementary sections of the space
confirming the observations from the footprint analysis in the previous section. Figure 7 combines
the results of the multiple SVMs into a portfolio of recommendations, taking the output of the
SVM predictor with the highest precision at each point. We observe that Bagging (an 5 = 6.0%),
Decision Tree (an,p = 6.7%) and Random Forest (an g = 1.8%) have small but unique areas of
good performance. On the other hand, the SVRs are not strongly preferred overall. There is a small
ambiguous area in the middle, where the selector is not confident that the existing algorithms stand
out. For these instances, a recommended course of action would be to use the best performing
algorithm, i.e., Gradient Boosting.

5 DISCUSSION AND CONCLUSION

This article presented a first attempt to generalize the ISA framework to the analysis of regression
problems in ML. Despite their utility, meta-analysis studies of regression problems are still incip-
ient in the related literature. A large meta-dataset composed of diverse regression problems from

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 28. Publication date: March 2021.

28:20 M. A. Munoz et al.

4 4 -0 4 .
- GOOD
5)) - BAD

N0
K
2
3
4 5 5 .4-5 0 5 4 5 5
(a) Adaboost (b) Bagging (c) Bayesian ARD

N 4 N -~ GooD
5) . . . BAD

(d) Decision Tree (e) Gradient Boosting (f) Random Forest

Fig. 6. Prediction results for six SVM models trained on each of the regression algorithms.

Predicted best algorithm

4
None
3 © adaboost
bagging
2 bayesian ARD
decision tree
1 grad boost
& o + random forest
-1
-2
-3
_4 1 J
-5 0 5

24

Fig. 7. Combined SVM recommendations.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 28. Publication date: March 2021.

An Instance Space Analysis of Regression Problems 28:21

benchmark repositories, described by meta-features from distinct categories and labeled accord-
ing to the performance of 14 different regression techniques was built. A careful initial selection
of a subset of relevant meta-features was first performed. From there, it was possible to generate
a suitable 2D instance space able to offer visual insights into the ability of the different regres-
sion techniques and also the representativeness of the problem instances used. We already have
strong evidence that quadrant 3 instances (at the bottom left of the instance space—Figure 2) tend
to be hard for most of the algorithms, and quadrant 1 instances (at the top-right of the instance
space) tend to be easy for most of the algorithms. The datasets in these regions have opposite char-
acteristics concerning the number of examples, sparsity and attribute redundancy. All regressors
performed better for datasets with more examples, less sparsity, and with less correlated attributes.

Of course, the insights offered in this article are dependent on the chosen experimental setting—
the choice of meta-data and definitions of good performance and other parameter settings. The
ISA merely supports a researcher to gain visual insights into the computational results generated
by a given experimental setting, and a more comprehensive study would be needed to draw more
definitive conclusions about regression problems and algorithms more generally. We leave this for
future work, and hope that our sharing of the meta-data and the instance space tools [27] will
facilitate such explorations.

Future work will consider performing other analysis within the regression instance space, such
as measuring the algorithmic power of different regression techniques and generating new prob-
lem instances to expand further across the instance space. Additional meta-features can also be
added to the analysis, such as the very recent developments based on IRT for measuring instance
hardness in classification problems [16], which should be first generalized for regression problems,
rather than classification, and for measuring the instance difficulty at a dataset level.

The regression instance space generated in this study can be viewed and explored interactively
as a library problem on MATILDA’s website. There, the full interactive functionality of MATILDA
can be seen, including the ability to hover the mouse over each instance to view details of its
source, features, and algorithm performance results. We encourage other researchers to explore the
instance space to extract additional insights in this manner. The meta-data can also be downloaded,
included all code for feature calculation, so that additional instances, algorithms, performance
metrics and features can be considered in extensions to this work.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 28. Publication date: March 2021.

28:22 M. A. Munoz et al.

APPENDIX
A PSEUDO-CODE FOR THE IMPLEMENTED ALGORITHMS

This appendix presents the pseudo-code for two methods: (a) the PBLDR method; and (b) the
Footprint Analysis method; where the former has one procedures described in Algorithm 1, and
the latter has three procedures described in Algorithms 2—-4.

ALGORITHM 1: Prediction-Based Linear Dimensionality Reduction (PBLDR) method.
Input: A matrix F € R of instance features, a matrix Y € R"*? of performance measures, and a
number of tries Niry.
Output: A matrix Z € R™? of coordinates in the 2D instance space, and a set of projection matrices

{Ar.Br.Cp .
1 Dy « EuclideanDistance (F); // Calculate the distances between instances in the
feature space
2 Dy < MatrixAsColumnVector (Dg); // Reshape as a column vector
3 Pbest < 9
4 fori=1to Ny do // Repeat Ntry times
5 // Initialize the projection matrices randomly between [-1,1]
6 Ao < UniformRandomMatrix (2, m,[-1,1]);
7 By < UniformRandomMatrix (m,2,[-1,1]);
8 Cp <« UniformRandomMatrix (a,z2,[-1,1]);
9 {A;,B;,C;} « BFGS (D, Ag, By, Co); // Use BFGS to find a solution to D
10 Z; «— A;F;
11 D; < EuclideanDistance (Z;);
12 D; <« MatrixAsColumnVector (Dyp);
13 pi < PearsonCorrelation (Dg,Dpr);
14 if ppess < pi then // If this is the best solution so far
15 {Ar,Br,Cr} < {Ai,B;, Ci};
16 7 — 7Zi;
17 Pbest <~ Pis
18 end
19 end

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 28. Publication date: March 2021.

An Instance Space Analysis of Regression Problems 28:23

ALGORITHM 2: Footprint analysis algorithm.

11

12

13

14

15

16

Input: A matrix Z € R™? of coordinates in the 2D instance space, a matrix Y € {0, 1

Out

}nxa

of binary

X1 of indexes indicating the best performing

performance measures, and a vector p € {1,...,a}
algorithm for an instance.
put: Three footprint sets, {A, B,T'}, which correspond to good, bad and best performance.

Function FootprintAnalysis(Z,Y,p) is

end

S « BuildFootprint(Z,1); // Calculate the area, density and purity of the space
fori=1toado // Build the three footprints for all algorithms
A; « BuildFootprint (Z, y;);
B; « BuildFootprint (Z, —y;);
I'; « BuildFootprint (Z,p = i);
end
fori=1toado
forj=i+1toado
// Compare the best performance footprints for two different algorithms
and remove conflicts
{I';,Tj} « CompareFootprints(I';,T',Z,p = i,p = j);

end
// Compare the good and bad performance footprints of an algorithm and remove
conflicts
{Aj,B;} < CompareFootprints(A;,B;i,Z,yB, i, 7YB,i);
end

ALGORITHM 3: Footprint construction algorithm

10

11

12

13

14

15

Input: A matrix Z € R™? of coordinates in the 2D instance space and a vector y € {0, 1}"*! of binary

Out

performance measures.
put: A footprint .

Function BuildFootprint(Z,y) is

end

Z, « UniquePoints ({zily; = TRUE}); // Find the unique points Z, that have y; = TRUE
{r,c} « MatrixSize (Z,); // Find the number of rows and columns of the matrix
k « max (min ([r/207,50), 3);
£ — (kF (2) /\/ﬁ) (range (z1) X range (z2));
¢ < DBSCAN (Zy,, k,¢); // Use DBSCAN to identify outliers and clusters of dense data
d.polygon « 0
for i = 1 to max (c) do
// For every detected cluster, build an a-shape
®.polygon « JoinPolygons (®.polygon, BuildAlphaShape ({zilc; = i}));
end
®.area < FindPolygonArea (®.polygon);
®.density « CountElements (®.polygon,Z) /®.area;
®.purity « CountElements (®.polygon, {z;|y; = TRUE}) /CountElements (®.polygon, Z);

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 28. Publication date: March 2021.

28:24 M. A. Munoz et al.

ALGORITHM 4: Footprint comparison algorithm

1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Input: A base and test footprints {®g, ®7}, a matrix Z € R™? of coordinates in the 2D instance space
and two vectors yg, yr € {0,1}™! of binary performance measures.
Output: A base and test footprints {®p, 7} with removed contradictions.
Function CompareFootprints(®p,®r,Z,yp,yr) is
C « PolygonIntersection (®g.polygon, ®r.polygon);
Ntry «— 0
Nmax < 3;
while FindPolygonArea (C) > 0 A Nyry < Npayx do
g < CountElements (C, {zilyB,i = TRUE}) /CountElements (C,Z);
nr < CountElements (C, {zilyT,i = TRUE}) /CountElements (C,Z);
if 7g > 77 then
‘ dr.polygon « RemovePolygon (®7.polygon, C);
else if 75 < 77 then
‘ ®p.polygon « RemovePolygon (®p.polygon, C);
else
‘ break;
end
C « PolygonIntersection (®g.polygon, ®7.polygon);
Ny < Nyy + 15

end

®p.area < FindPolygonArea (®p.polygon);

®p.density « CountElements (®p.polygon, Z) /Pp.area;

®p.purity « CountElements (®p.polygon, {z;|y; = TRUE}) /CountElements (®p.polygon, Z);
®r.area « FindPolygonArea (®7.polygon);

®r.density « CountElements (®r.polygon, Z) /P .area;

@7 .purity < CountElements (®7.polygon, {z;|y; = TRUE}) /CountElements (®7.polygon, Z);

end

ACKNOWLEDGMENTS

The authors are grateful to Professors Telmo Filho and Ricardo Prudencio for sharing their code
for feature calculation of IRT.

REFERENCES

[1] Jests Alcala-Fdez, Alberto Fernandez, Julian Luengo, Joaquin Derrac, Salvador Garcia, Luciano Sanchez, and

Francisco Herrera. 2011. KEEL data-mining software tool: Data set repository, integration of algorithms and ex-
perimental analysis framework. Journal of Multiple-Valued Logic & Soft Computing 17, 2-3 (2011), 255-287.

[2] M. Fatih Amasyali and Okan K. Ersoy. 2009. A Study of Meta Learning for Regression. Technical Report. ECE Technical

Reports, Purdue University.

[3] Yu Chen, Telmo Silva Filho, Ricardo B. C. Prudéncio, Tom Diethe, and Peter Flach. 2019. IRT: A new item response

model and its applications. In Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics,
Vol. 89.

[4] M. Daszykowski, B. Walczak, and D. L. Massart. 2001. Looking for natural patterns in data: Part 1. Density-based

approach. Chemometrics and Intelligent Laboratory Systems 56, 2 (2001), 83-92. DOI : https://doi.org/10.1016/S0169-
7439(01)00111-3

[5] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. Retrieved from http://archive.ics.uci.edu/ml.
[6] Maria José Gacto, Jose Manuel Soto-Hidalgo, Jests Alcala-Fdez, and Rafael Alcala. 2019. Experimental study on 164

algorithms available in software tools for solving standard non-linear regression problems. I[EEE Access 7 (2019),
108916-108939.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 28. Publication date: March 2021.

https://doi.org/10.1016/S0169-7439(01)00111-3
https://doi.org/10.1016/S0169-7439(01)00111-3
http://archive.ics.uci.edu/ml

An Instance Space Analysis of Regression Problems 28:25

(7]

(17]
(18]
(19]
(20]

(21]

— ——
NN
=W N
[l it

(25]

[26]

(27]
(28]
[29]
(30]
(31]

(32]

Taciana A. F. Gomes, Ricardo B. C. Prudéncio, Carlos Soares, André L. D. Rossi, and André Carvalho. 2012. Combining
meta-learning and search techniques to select parameters for support vector machines. Neurocomputing 75, 1 (2012),
3-13.

Nikolaus Hansen, Anne Auger, Steffen Finck, and Raymond Ros. 2014. Real-Parameter Black-Box Optimization
Benchmarking BBOB-2010: Experimental Setup. Technical Report RR-7215. INRIA. Retrieved from http://coco.lri.fr/
downloads/download15.02/bbobdocexperiment.pdf.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. 2019. Automated Machine Learning. Springer.

Rob J. Hyndman and Anne B. Koehler. 2006. Another look at measures of forecast accuracy. International Journal of
Forecasting 22, 4 (Oct. 2006), 679-688. DOI : https://doi.org/10.1016/j.ijforecast.2006.03.001

Yanfei Kang, Rob J. Hyndman, and Kate Smith-Miles. 2017. Visualising forecasting algorithm performance using time
series instance spaces. International Journal of Forecasting 33, 2 (2017), 345-358.

Petr Kuba, Pavel Brazdil, Carlos Soares, and Adam Woznica. 2002. Exploiting sampling and meta-learning for param-
eter setting support vector machines. In Proceedings of the IBERAMIA. Vol. 2002. 217-225.

MultiMedia LLC. 2019. International Institution of Forecasters. Retrieved from https://forecasters.org/resources/time-
series-data/m3-competition/.

Ana C. Lorena, Aron I. Maciel, Péricles B. C. de Miranda, Ivan G. Costa, and Ricardo B. C. Prudéncio. 2018. Data
complety meta-features for regression problems. Machine Learning 107, 1 (2018), 209-246.

Julian Luengo and Francisco Herrera. 2015. An automatic extraction method of the domains of competence for learn-
ing classifiers using data complexity measures. Knowledge and Information Systems 42, 1 (2015), 147-180.

Fernando Martinez-Plumed, Ricardo B. C. Prudéncio, Adolfo Martinez-Uso, and José Hernandez-Orallo. 2019. Item
response theory in Al: Analysing machine learning classifiers at the instance level. Artificial Intelligence 271, June
2019 (2019), 18-42.

Mario A. Munoz and Kate A. Smith-Miles. 2019. Generating new space-filling test instances for continuous black-box
optimization. Evolutionary Computation 28, 3 (2019), 379-404. DOI : https://doi.org/10.1162/evco_a_00262

Mario A. Muiioz and Kate Smith-Miles. 2017. Performance analysis of continuous black-box optimization algorithms
via footprints in instance space. Evolutionary Computation 25, 4 (2017), 529-554.

Mario A. Mufoz, Laura Villanova, Davaatseren Baatar, and Kate Smith-Miles. 2018. Instance spaces for machine
learning classification. Machine Learning 107, 1 (2018), 109-147.

Mario A. Munoz and Kate Smith-Miles. 2020. Instance Space Analysis: A Toolkit for the Assessment of Algorithmic
Power. Retrieved from https://github.com/andremun/InstanceSpace.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cour-
napeau, Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. 2011. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research 12, 85 (2011), 2825-2830. http://jmlr.org/papers/v12/pedregosalla.html.

John R. Rice. 1976. The algorithm selection problem. In Advances in Computers. Vol. 15. Elsevier, 65-118.

Thomas P. Ryan. 2008. Modern Regression Methods. Vol. 655. John Wiley & Sons.

Erich Schubert, Jorg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu. 2017. DBSCAN revisited, revisited:
Why and how you should (still) use DBSCAN. ACM Transactions on Database Systems 42, 3 (July 2017), 21 pages.
DOI : https://doi.org/10.1145/3068335

Michael R. Smith, Tony Martinez, and Christophe Giraud-Carrier. 2014. An instance level analysis of data complexity.
Machine Learning 95, 2 (2014), 225-256.

Kate Smith-Miles, Davaatseren Baatar, Brendan Wreford, and Rhyd Lewis. 2014. Towards objective measures of al-
gorithm performance across instance space. Computers & Operations Research 45, May 2014 (2014), 12-24. DOI : https:
//doi.org/10.1016/j.cor.2013.11.015

Kate Smith-Miles, Mario A. Munoz and Neelofar. 2019. MATILDA: Melbourne Algorithm Test Instance Library with
Data Analytics. Retrieved from https://matilda.unimelb.edu.au.

Kate Smith-Miles and Thomas T. Tan. 2012. Measuring algorithm footprints in instance space. In Proceedings of the
2012 IEEE Congress on Evolutionary Computation. IEEE, 3446-3453.

Kate A. Smith-Miles. 2009. Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Computing
Surveys 41, 1 (2009), 6.

Carlos Soares, Pavel B. Brazdil, and Petr Kuba. 2004. A meta-learning method to select the kernel width in support
vector regression. Machine Learning 54, 3 (2004), 195-209.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. 2013. OpenML: Networked science in machine
learning. SIGKDD Explorations 15, 2 (2013), 49-60. DOI : https://doi.org/10.1145/2641190.2641198

Ricardo Vilalta and Youssef Drissi. 2002. A perspective view and survey of meta-learning. Artificial Intelligence Review
18, 2 (2002), 77-95.

Received February 2020; revised July 2020; accepted November 2020

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 28. Publication date: March 2021.

http://coco.lri.fr/downloads/download15.02/bbobdocexperiment.pdf
http://coco.lri.fr/downloads/download15.02/bbobdocexperiment.pdf
https://doi.org/10.1016/j.ijforecast.2006.03.001
https://forecasters.org/resources/time-series-data/m3-competition/
https://forecasters.org/resources/time-series-data/m3-competition/
https://doi.org/10.1162/evco_a_00262
https://github.com/andremun/InstanceSpace
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1145/3068335
https://doi.org/10.1016/j.cor.2013.11.015
https://doi.org/10.1016/j.cor.2013.11.015
https://matilda.unimelb.edu.au
https://doi.org/10.1145/2641190.2641198

