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Abstract
This article presents a method to generate diverse and challenging new test instances
for continuous black-box optimization. Each instance is represented as a feature vec-
tor of exploratory landscape analysis measures. By projecting the features into a two-
dimensional instance space, the location of existing test instances can be visualized, and
their similarities and differences revealed. New instances are generated through genetic
programming which evolves functions with controllable characteristics. Convergence
to selected target points in the instance space is used to drive the evolutionary process,
such that the new instances span the entire space more comprehensively. We demon-
strate the method by generating two-dimensional functions to visualize its success, and
ten-dimensional functions to test its scalability. We show that the method can recreate
existing test functions when target points are co-located with existing functions, and
can generate new functions with entirely different characteristics when target points
are located in empty regions of the instance space. Moreover, we test the effectiveness
of three state-of-the-art algorithms on the new set of instances. The results demonstrate
that the new set is not only more diverse than a well-known benchmark set, but also
more challenging for the tested algorithms. Hence, the method opens up a new avenue
for developing test instances with controllable characteristics, necessary to expose the
strengths and weaknesses of algorithms, and drive algorithm development.

Keywords
Algorithm selection, benchmarking, black-box continuous optimization, exploratory
landscape analysis, instance generator.

1 Introduction

In continuous black-box optimization (BBO), as in other optimization fields, the per-
formance of algorithms is assessed experimentally using a collection of well-studied
benchmark instances (Whitley et al., 1996). There is often an eager belief that these
benchmarks are diverse and representative enough, such that the conclusions drawn
from experimentation hold for future unobserved instances. It is also expected that the
benchmarks reveal the unique strengths and weaknesses of various algorithms. How-
ever, strong evidence suggests that benchmark selection has considerable impact on
the algorithm assessment (Liao et al., 2015). Since the current benchmarks may not be
sufficient, this article proposes a method to redress the situation. This method enables
existing benchmarks to be better understood in the context of the broadest possible in-
stance space. Moreover, the method also generates new test instances with controllable
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characteristics, ensuring the diversity we need for insightful algorithm performance
analysis.

Careful synthetic generation of benchmark instances for continuous BBO is a ne-
cessity, since real-world continuous BBO problems are often ill-defined or involve time-
consuming simulations or experiments, thus limiting the number of realistic instances
available for testing. Furthermore, synthetic instances can exhibit different properties
and structure compared to real-world ones, which merely reflect the kinds of problems
from current and past applications, and do not help us prepare for the possibilities of fu-
ture real-world problems. Synthetic generation of instances with controllable properties
is therefore essential to augment algorithm testing beyond a limited set of real-world
problems.

The plethora of algorithms that have been proposed for continuous BBO makes
rigorous algorithm stress testing all the more critical. The abundance of algorithms is
well explained by the fact that BBO problems can be found in diverse practical fields,
and that solutions are sometimes urgently needed. Consequently, new methods are of-
ten proposed (and sometimes reinvented) by researchers and practitioners from fields
outside the core optimization community of applied mathematics and computer sci-
ence (Sörensen, 2015). However, the resulting algorithmic diversity has compromised
our ability to understand the uniqueness, strengths, and weaknesses of most of them
(Hough and Williams, 2006), leading to lax research practices, concealment of signif-
icant algorithmic innovations (Sörensen, 2015) and recycling of ideas (Weyland, 2010;
Črepinšek et al., 2012; Piotrowski et al., 2014). Given that some algorithms are likely to
be preferable to others for a given instance (Langdon and Poli, 2007), selecting a good
algorithm requires expert knowledge in a broad spectrum of candidates, as well as skills
in algorithm engineering and statistics. However, this does not guarantee success, and
algorithm selection remains at best cumbersome.

To develop an empirically based theory for algorithm selection that holds to rig-
orous scrutiny, a robust experimentation protocol should be followed (Hooker, 1995;
Smith-Miles and Bowly, 2015). For example, statistical analysis must be used to evalu-
ate the results, as required by most evaluation frameworks (Hansen et al., 2014; Liang
et al., 2014); and experimental design methods should be used to develop computa-
tional tests (Hooker, 1994), including the generation and selection of a representative
set of benchmark instances. However, this latter task is full of challenges. For example,
randomly generated instances are insufficient as they lack diversity and rarely resem-
ble real-world ones (Hooker, 1995). Furthermore, limited diversity only highlights small
differences in performance between algorithms, making it difficult to discern the source
and nature of the differences (Langdon and Poli, 2007). In the long term, new algorithms
may be over-fitted to the benchmark set (Hooker, 1995), as the current publication cul-
ture seems to encourage the presentation of algorithms that outperform previous ap-
proaches, rather than reporting any weaknesses that might be revealed on other test
instances (Smith-Miles and Bowly, 2015). Alternatively, custom instances can be gen-
erated such that they maximize the performance difference between two algorithms;
hence, exaggerating their comparative strengths and weaknesses (Langdon and Poli,
2007). This approach gives us a precise picture of when an algorithm will significantly
outperform another; however, this approach cannot generate instances where the dif-
ference of algorithm performances is not maximal. Moreover, using algorithm perfor-
mance as a fitness function to generate harder instances may lead to computationally
intractable running times of the generation process (van Hemert, 2006). Therefore, it is
desirable to have a method that provides a finer control on the instance structure, while
maintaining reasonable computational requirements.
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Even if we currently have a representative instance set, it may be difficult to rec-
ognize it as such because the space of relevant instances is unknown (Hooker, 1995).
However, the extensive work on algorithm selection in recent years (Smith-Miles, 2009;
Hutter et al., 2014; Smith-Miles et al., 2014) provides a framework to construct a model
of this space; hence, a path to evaluate the representativeness of a set, or to construct a
new one if necessary. The key element in the framework is the assessment of the similar-
ities and differences between instances, which is achieved by calculating features that
discriminate algorithms by performance or reflect properties of real-world instances
(Smith-Miles and Bowly, 2015); hence, the features provide order to the previously ill-
defined space of relevant instances. Exploring this space will likely result in atypical
instances; that is, they do not resemble any current real-world problems (Hooker, 1995),
nor they retain analytic properties that makes convergence analysis possible. This ex-
perimental approach complements theory-based ones, while it also gives us an op-
portunity to future-proof our methods to new challenges arising, as it expands our
knowledge of the broadest possible instance space, and the performance of algorithms
across it.

This article is the second in a series that develops a methodology for the objective
assessment of the strengths and weaknesses of continuous BBO algorithms, based on
the algorithm selection framework (Rice, 1976) and design of experiments techniques.
In the first article (Muñoz and Smith-Miles, 2017), we estimated and tested a set of fea-
tures shown to be good predictors of algorithm performance. Then, we built a model
of the space of instances based on these features, and used it to identify the algorithm
footprints—the regions in which good or exceptional performance is expected—for a
group of five algorithms. The methods proposed allowed the visualization of com-
plementary performance between algorithms, quantified the common features of hard
problems, and identified the regions where a phase transition may lie. More impor-
tantly, the article showed that the benchmark instances employed are clustered in cer-
tain areas of the space; hence, they may not be representative of the broadest possible
set of test instances. This lack of diversity severely restricts the insights we can gain
into unique algorithm strengths and weaknesses. In this article, we extend the method-
ology to generate new test instances based on target locations in both the feature and
instance spaces; hence, achieving a finer control in the instance structure. We illustrate
the method using two- and ten-dimensional functions, but it generalizes to other dimen-
sions as well. Using three state-of-the-art algorithms, we demonstrate that the newly
evolved test instances are not only more diverse than existing benchmark functions,
but some are also more challenging, albeit atypical.

The article continues as follows: Section 2 describes the algorithm selection frame-
work, and the existing benchmark test instances considered and features employed to
create a BBO instance space. Section 3 presents our method to fill this instance space with
diverse instances evolved via genetic programming, and its results. Section 4 contrasts
our method with other instance generation approaches and compares the performance
of three algorithms on the new instances and the existing test set. We show that, while
not being our explicit aim, the method is able to generate instances that elicit unique
performance characteristics from the algorithms. Finally, Section 5 discusses the impli-
cations of this work and outlines avenues for further research.

2 Creating a BBO Instance Space

This section summarizes the methodology described in Muñoz and Smith-Miles (2017)
used to construct and validate an instance space. The results presented in this article
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now include a larger set of benchmark test instances and more features. Aside from
these differences, we refer the reader to Muñoz and Smith-Miles (2017) for additional
methodological details omitted from this summary.

2.1 The Algorithm Selection Framework

The algorithm selection framework (Rice, 1976) links problem characteristics to algo-
rithm performance, by defining four spaces.1 First is the ill-defined problem space, F ,
which contains all the relevant problems (functions) to be solved (minimized). Second
is the algorithm space, A, which is composed of all the algorithms applicable to the
problems in F , regardless of whether they are successful or not. Third is the perfor-
mance space, T , which is the set of feasible values of τ , a score that measures the cost
of using an algorithm α ∈ A to solve a problem f ∈ F . Fourth is the feature space, �,
which is defined by a set of measurable features that expose the complexities of the
problem instances; hence, � is the key element in the implementation of the frame-
work as it provides order to F . However, � is high dimensional; hence, hard to an-
alyze. Therefore, Smith-Miles et al. (2014) extend the framework by projecting � into
a two-dimensional instance space, I ⊂ R

2, for ease of visualization. Then, τ is em-
ployed to identify the regions of I in which good or exceptional performance is ex-
pected from an algorithm. These regions, known as algorithm footprints (Smith-Miles
et al., 2014), not only illustrate the links between problems and algorithms, but also
provide information on the phase transitions. The extended framework is depicted in
Figure 1.

For this article, and without loss of generality for maximization, the problems in
F are continuous black-box functions to be minimized, specifically f : X → Y , where
X ⊂ R

D is the input space, Y ⊂ R is the output space, and D ∈ N
∗ is the dimensionality

of the problem. A candidate solution x ∈ X is a D-dimensional vector, and y ∈ Y is the
candidate’s objective or cost value. A target cost value, yt ∈ Y , defines the upper bound
of a satisfactory minimization performance from an algorithm. The expected running
time, t̂ , measures the number of function evaluations required to reach yt within a target
precision, et , for the first time over a number of runs. The result is normalized over the
dimension and log10-transformed. When some runs are unsuccessful, t̂ depends on the
termination criteria of the algorithm. An algorithm is the best performing on an instance
if it minimizes t̂ compared to other algorithms.

2.2 Test Instances

We use the noiseless benchmark set from the Comparing Continuous Optimizers
(COCO) software (Hansen et al., 2014) as a baseline subset of F . This is a well-studied
set composed of 24 basis functions defined within X = [−5, 5]D divided into five cate-
gories: Separable (f1 –f5), low or moderately conditioned (f6 –f9), unimodal with high
conditioning (f10 –f14), multimodal with adequate global structure (f15 –f19), and mul-
timodal with weak global structure (f20 –f24). Qualitative descriptions of each basis
function are available in Mersmann et al. (2015).

The COCO software generates new instances by scaling and transforming these ba-
sis functions. Transformations include linear translations and rotations, and symmetry

1We use the notation by Muñoz and Smith-Miles (2017), where f is a function. In Rice (1976), x is a
problem, f (x) is a feature vector, A is an algorithm, p (A, x) is a performance measure, P is the problem
space, and F is the feature/characteristics space.
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Figure 1: Extended algorithm selection framework by Smith-Miles et al. (2014). The
nomenclature has been adjusted for continuous optimization.

breaking through oscillations about the identity. For example, let f (x) = ‖R(x − xo)‖2 +
yt be one of the basis functions, where R is an orthogonal rotation matrix, and xo and
yt cause translational shifts on the input and output space respectively. A function
instance is generated by providing values for R, xo, and yt . To allow replicable ex-
periments, the COCO software uniquely identifies each instance using an index. We
generated instances [1, . . . , 30] for D = {2, 3, 5, 8, 10, 20, 40, 60, 100}, resulting in 6480
problem instances, from which we generate a preliminary instance space.

2.3 Exploratory Landscape Analysis Features

Exploratory Landscape Analysis (ELA), also known as Fitness Landscape Analysis, is
an umbrella term for sample-based methods that produce one or more features related
to the characteristics of the cost function (Mersmann et al., 2011). For this work we em-
ployed 33 ELA features listed in Table 1, which have shown to be good predictors of
algorithm performance (Bischl et al., 2012; Muñoz and Smith-Miles, 2017). To calculate
each of them, we generate an input sample, X, of size D × 103 candidates using Latin
hypercube design (LHD). We deem this sample size to be sufficient considering the
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Table 2: Average silhouette value for each feature cluster obtained using correlation as
the dissimilarity measure for k-means clustering.

1.000 CN

0.907 H (Y ) βmin βmax εmax

0.534 R2
Q R2

L R2
LI R2

QI EQ10 EQ25 EL50 EQ50 FDC

0.525 LQ25 LQ10 DISP1% Hmax M0

0.514 γ (Y ) κ (Y )
0.385 ξ (1) ξ (2) ξ (N )

0.149 EL25 EL10 LQ50

0.146 PKS σ (1) σ (2) ET10 ET25 ET50

evidence by Kerschke et al. (2016). The output sample, Y, is generated by evaluating X
on each instance from the COCO benchmark. By sharing X across instances, we guaran-
tee that the differences observed in the features are not due to sample size or sampling
method. Moreover, sharing X reduces the overall computational cost, as no new can-
didates must be taken from the space. All features were scaled to zero mean and unit
standard deviation.

Nevertheless, computing 33 features repeatedly during the instance generation pro-
cess described in Section 3 could be time-consuming. Therefore, we employed feature
selection to reduce this set to a more manageable one. Using the data from the 6480
COCO instances, we define a dissimilarity matrix as 1 − ∣∣ρ (

λi, λj

)∣∣, where ρ is the Pear-
son correlation between features λi and λj . Then, we use this dissimilarity matrix as in-
put to a k-means clustering algorithm, such that similar features are clustered together.
To determine the number of clusters, k = 8, we use silhouette analysis. The results are
shown in Table 2. We leverage our knowledge of the features to select the most suitable
ones. For example, CN and R2

Q can be computed from the same model, while EL25 is
required to calculate LQ25. Moreover, H (Y ) has proven to be an effective predictor of
ill-conditioning (Muñoz, Kirley et al., 2015). The resulting feature vector used to sum-
marize each instance is λ = [

R2
Q CN H (Y ) ξ (1) γ (Y ) EL25 LQ25 PKS

]T
.

To provide evidence that this subset is accurate in its representation of algorithm
performance and problem difficulty, we fitted a classification model to predict whether
an algorithm can reach the optimum within a target precision of 10−8 with a to-
tal budget of D × 106 function evaluations. The performance of three state-of-the-art
algorithms is modeled: BIPOP-CMA-ES (Hansen, 2009), BFGS (Broyden, 1970; Ros,
2009), and Nelder-Mead with Resize and Halfruns (Doerr et al., 2009). We use Ran-
dom Forests with 100 trees as the classification model, with an out-of-the-bag error of
{2.92%, 3.61%, 3.13%} for each algorithm. These results give us confidence that the sub-
set of features is accurate.

2.4 A Preliminary BBO Instance Space

We estimate a preliminary model for the instance space, by projecting into two dimen-
sions the feature vector λ resulting from the COCO benchmark. We use Principal Com-
ponent Analysis (PCA) to project, and select the two most significant components to
generate ι ∈ I, a two-dimensional point in the instance space. These two principal com-
ponents retain 51% of the variance in the data, and define the two axes of the instance
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Figure 2: Two-dimensional instance space resulting from projecting the COCO data set
using PCA. Instances are colored by (a) dimension, and (b) basis function.

space as linear combinations of the features with coefficients given by Equation (1).

ι =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.28454 0.61038
0.20991 0.16267

−0.31959 −0.02927
−0.46389 0.26739
−0.30095 −0.43889

0.02979 0.53365
0.53101 0.01772

−0.42920 −0.22560

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R2
Q

CN

H (Y )
ξ (1)

γ (Y )
EL25
LQ25
PKS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

The two-dimensional projection is presented in Figure 2, where in general, the di-
mensionality of the problem increases from left to right. Moreover, the basis functions
follow a pattern from top right to bottom left. That is, separable functions (f1 –f5) are
located in the upper left part of the space, whereas multimodal with weak global struc-
ture functions (f20 –f24) are located in the lower right. More importantly, Figure 2 shows
limits to the COCO set, and questions whether these functions are sufficiently diverse
given the large space to the bounds of �. Therefore, we will explore this new territory
in the instance space, with the aim of understanding the diversity described by the fea-
tures, and produce a more comprehensive set of test instances.

It is worth acknowledging that the COCO benchmark is not necessarily represen-
tative of a broader population of optimization problems. Hence, this preliminary space
may be overfitted to it. Moreover, our choice of features might also need to be up-
dated after introducing additional instances, such that we can explain the performance
on them. Therefore, the process to generate an instance space can be summarized as
follows:

1. Select an instance subset deemed representative of the broad space.

2. Select a feature set and assess its ability to accurately predict performance.

3. Generate an instance space and evaluate the diversity of the instances.

Evolutionary Computation Volume 28, Number 3 387



M.A. Muñoz and K. Smith-Miles

4. If the instances are inadequate, discard those that are easy for all algorithms and
generate challenging new instances, and then return to Step 2; otherwise, stop.

Of course, this instance space is dependent on the choice of instances, algorithms,
and selected features. Hence, we do not claim that the resulting space is definitive.
Nevertheless, it affords an opportunity to gain insights into algorithm strengths and
weaknesses, and to identify areas where diversity of benchmarks could be increased
to support this quest. The instance space generation is therefore an iterative process,
which would end when the most informative subset of features and instances is ob-
tained (Muñoz et al., 2018).

3 Generating New Test Instances Through Genetic Programming

To generate new instances, we use Genetic Programming (GP), a biologically inspired
method that evolves computer programs to perform a task. Each program is represented
by a binary tree whose leaves are variables or constants, and its nodes are operations
such as addition and multiplication. For this article, the task is to generate a program
that represents a function, such that when the input sample, X, is evaluated, the po-
sition of its feature vector in the instance space is equal to that of a user-defined tar-
get. This task is similar to a symbolic regression problem, in which the parameters and
structure of the model are adjusted automatically, unlike a traditional regression anal-
ysis, in which the user must specify the structure of the mathematical model, for ex-
ample, linear or quadratic. We use GPTIPS v2.0 (Searson et al., 2010), a MATLAB im-
plementation of GP designed for symbolic regression, and defined the fitness function
J = ‖vT − vG‖ + 2DT −DG , where vT and DT are the feature vector and the dimensional-
ity of the target function, and vG and DG are the feature vector and the dimensionality of
the generated function. Therefore, the GP routine is allowed to create functions without
using all the available variables as allowed by Langdon and Poli (2007), but penalized
for it.

The GP routine is run 10 times of 100 generations each using a population of size
400, with a maximum tree depth of 10. Lexicographic tournament selection is employed
with ten individuals per tournament, while the best 10% of the population is kept as an
elite set. The probability of a mutation, crossover and direct transfer were set to 30%,
60%, and 10%, respectively. We set as stopping criteria a fitness value of 10−3. Con-
stants are generated from a uniform distribution in the [−100, 100] range. The vocabu-
lary of operations used by the GP routine is

{×,+,−, x2, sin, cos, tanh, e−x, ex, �x	}. We
generate two- and ten-dimensional functions, following three strategies to select target
points. The first is to validate the method by testing if existing benchmark functions
can be recreated, while the second and third enable new test functions to be created in
previously unexplored regions of the instance space. Given that the features represent
the algorithm performance, our expectation is that by exploring these regions, we can
obtain instances with different algorithm performance.

Strategy 1 (S1) We attempt to generate an instance with a similar feature vector as one
of the instances from the COCO benchmarks. We randomly select five instances
from each basis function, resulting in 120 targets. To account for any random vari-
ation, we attempt this experiment five times for the two-dimensional functions
but only once for the ten-dimensional functions, due to computational limitations.
This results in 600 two-dimensional and 120 ten-dimensional functions. The objec-
tive of this strategy is to test whether the feature vector gives us the finer control
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Figure 3: Location of the targets (+) and the generated instances (·) for S1. The location
of all COCO instances is provided by the gray background dots. (a) shows the two-
dimensional functions, while (b) shows the ten-dimensional functions.

we seek over the instance structure, while pinpointing possible limitations in our
approach.

Strategy 2 (S2) We use a LHD sample of 102 target points across the eight-
dimensional feature space, �. The bounds of the LHD are defined by the max-
imum and the minimum feature values from the COCO benchmarks for the
given dimensionality. As in S1, we repeat this experiment five times for the two-
dimensional functions, resulting in 500 two-dimensional and 100 ten-dimensional
functions. The objective of this strategy is to explore new feature combinations,
and the structure of the instances that reside in areas of the space not currently
covered by COCO.

Strategy 3 (S3) We use a LHD sample of 102 target points across the two-dimensional
instance space, I. The bounds of the LHD are defined between [−10, 10]2, which
are larger than the known bounds shown in Figure 2. The two-dimensional pro-
jection allows some flexibility in the feature combinations. Therefore, this strategy
allows us to test the limits of the instance space, while observing the appearance
of functions with feature values beyond the known bounds. Unlike the previous
strategies, we repeat this experiment once for both dimensions, resulting in 100
two-dimensional and 100 ten-dimensional functions. Targets are shared for both
dimensions.

3.1 Strategy 1: Recreating an Existing Function

Figure 3 illustrates the location of the targets (shown as cross marks) and the gen-
erated instances (shown as plus marks) for S1. The two-dimensional functions are
presented in Figure 3a, with median RMSE per feature, RMSE = 0.0390 and Interquar-
tile Range, IQR = 0.0305; while ten-dimensional functions are presented in Figure 3b,
with RMSE = 0.0847 and IQR = 0.1217. These results demonstrate that the GP is able
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Figure 4: Generated instances following S1. For each of three existing functions (in
rows), the leftmost column shows the target instance, the central column shows the
generated instance with the lowest error, and the rightmost column shows the gener-
ated instance with the highest error. (a) to (c) show the results for f1,25, an instance from
sphere function; (d) to (f) show the results for f11,3, an instance from the Discus function;
and (g) to (i) show the results for f16,3, an instance from the Weierstrass function.

to find functions with similar feature vectors as the COCO benchmarks in these two
dimensionalities.

Figure 4 shows surface plots from three of the 120 randomly selected two-
dimensional target instances and the GPs best and worst attempts to evolve functions
with similar feature vectors. The leftmost column shows the target instances from the
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COCO benchmark set:
{
f1,25, f11,3, f16,3

}
; the central and rightmost column shows the

generated instances with the lowest and highest error to target from the five attempts
respectively. The shading color represents the objective or cost values, which have been
log-normalized to the [0, 10] range, with dark blue representing minimal cost and yel-
low representing maximal cost.

Figure 4a shows f1,25, an instance from the sphere function lying at ι =
[−1.2330 1.0549] in I presented in Figure 2. Because of its symmetry, two instances
from the sphere function will have the same features if their global minimum are lo-
cated at reciprocal locations; that is, x

1 = ∣∣x
2

∣∣ (Muñoz and Smith-Miles, 2015), as it is
the case for the generated instance with the lowest error, illustrated in Figure 4b. On
the other hand, the instance with the highest error, illustrated in Figure 4c, is no longer
a pure sphere; however, it has an optimum close to the target. Figure 4d shows f11,3,
an instance from the discus function lying at ι = [−1.9480 −0.8734] in I. We are able
to replicate the poor conditioning of the function, although other structures have ap-
peared. In both generated instances, illustrated in Figures 4e and 4f, respectively, the
valley presents as slight bent. Diversions from the target area will result in instances
with characteristics of other functions (Muñoz and Smith-Miles, 2015). Figure 4g shows
f16,3, an instance from the Weierstrass function, which is highly multimodal with a peri-
odic structure lying at ι = [0.3365 −2.2125] in I. Both generated instances, illustrated in
Figures 4h and 4i, attempt to replicate the multimodal structure, with different levels of
success. Visual inspection indicates that the best trial closely resembles the target, while
the worst has characteristics not observable in the original target function, which may
affect algorithm performance. Finally, the following equations show the expressions for
the best trials. Equation (2) corresponds to Figure 4b, Equation (3) to Figure 4e, and
Equation (4) to Figure 4h. These equations demonstrate that the GP: (a) displaces the
global optimum by adding linear terms; (b) introduces coefficients different from one;
(c) produces interaction terms between variables; and (d) generates periodic structures
through trigonometric terms.

y = x2
1 + x2

2 − 2x1 − 3x2 − 183.2 − cos
(

sin
(
ex2

2 − e−e−x2
4 ))

− e− cos2 x1 − e−esin(sin x2 )
(2)

y = (
1031.0x1 + 439.1x2 − sin

(
x2

2

) + e−x2 + 17.91ex2

+ 3x1x2 − x2ex2 − 19.91x2
2 + 502.0

)2
(3)

y = ((
cos

(
e7.497−cos x1

) + tanh (tanh (cos (x1 − x2)))
)

(
ecos(tanh(cos x1 )) + 7.578

)
− 2.672

)2
. (4)

3.2 Strategy 2: Generating Functions with Novel Feature Combinations

Knowing that we can recreate existing functions, which means that we have finer con-
trol over the instance structure, we now proceed to generate new functions that are
located in unexplored regions of the feature (8D) and instance (2D) spaces. Figure 5
illustrates the location of the targets and the generated instances for S2, where tar-
get points are selected in the 8D feature space and then projected to 2D using the
same projection as Equation (1). Figure 5a shows the two-dimensional functions, with
RMSE = 0.1414 and IQR = 0.1134, while Figure 5b shows the ten-dimensional func-
tions, with RMSE = 0.2360 and IQR = 0.1718. The larger errors than S1 indicate that
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Figure 5: Location of the targets (+) and the generated instances (·) for S2. The location
of all COCO instances is provided by the gray background dots. (a) shows the two-
dimensional functions, while (b) shows the ten-dimensional functions.

some feature combinations are harder to reach. It is not clear if this is due to computa-
tional limitations of the GP implementation, or because the target function locations fall
outside the theoretical bounds of what might be possible. It is clear however that the
target points selected using S2 do not push the boundaries of the existing benchmarks
very far. Hence, we will use S3 to find instances at the bounds of the instance space.

Figure 6 shows contour plot surfaces from a selection of nine of the 500 gener-
ated instances using S2. These instances are: fS2,53 located at ι = [−2.8077 −1.1642],
an ill-conditioned function, with local optima located in a bent valley; fS2,55 located
at ι = [−1.5798 −0.6928], which has two symmetric valleys within a ill-conditioned
funnel and a neutral structure at the edge; fS2,126 located at ι = [−1.5752 −0.4412],
which has a multimodal grid structure within a sinusoidal valley; fS2,135 located at
ι = [−1.0916 −0.4387], which has a large neutral area and a large multimodal area;
fS2,215 located at ι = [−0.6462 −1.9377], a multimodal function with periodic struc-
ture; fS2,256 located at ι = [−2.0375 −0.3621], which has a single optimum shaped as
a triangle bend; fS2,300 located at ι = [0.2867 −3.3695], a mostly flat instance with an
optimum located at a narrow valley; fS2,364 located at ι = [−1.9374 −0.5165], which
has a ridge separating a higher cost area from the global optima; and fS2,443 located
at ι = [−1.4225 −1.4472], which has a unimodal structure, with a large valley leading
to the optima at the edge. While some of these instances share high-level characteris-
tics with COCO, i.e.,

{
fS2,53, fS2,256, fS2,443

}
are unimodal, ill-conditioned, with strong

global structure (Mersmann et al., 2015), they are not equal. This is because high-level
characteristics are ambiguous; that is, there are degrees of modality, conditioning, and
global structure, which influence algorithm performance.

3.3 Strategy 3: Pushing the Boundaries of the Instance Space

Figure 7 illustrates the location of the targets and the generated instances for S3. Fig-
ure 7a shows the two-dimensional functions, with RMSE = 0.0038 and IQR = 0.1710,
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Figure 6: Generated instances following S2. These fall close to the COCO instances in
the instance space, but are not colocated with any, thus sharing similar high-level char-
acteristics that are expressed in unique ways.

while Figure 7b shows the ten-dimensional functions, with RMSE = 0.0770 and IQR =
0.1892. Unlike Strategies 1 and 2, the errors are significantly lower. This is due to the tar-
gets being defined in I, where an infinite number of feature combinations can produce
such locations. Therefore, the GP needs to find only one that it is sufficiently good.

Figure 8 shows surface plots from three of the 100 two-dimensional generated in-
stances, drawn from the convex hull boundary of the 100 locations. Therefore, these
instances are some extremes reached by the GP. These instances are: fS3,10 located at
the top right, ι = [9.7466 4.3967], which has two large neutral areas separated by an
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Figure 7: Location of the targets (+) and the generated instances (·) for S3. The location
of all COCO instances is provided by the gray background dots. (a) shows the two-
dimensional functions, while (b) shows the ten-dimensional functions.

Figure 8: A selection of generated instances following S3, drawn from the convex hull
boundary of the 100 locations. The figure demonstrates that at the extremes, one or
more features dominate the generation process, leading to mostly neutral functions and
without observable structure.

irregular cliff; fS3,12 located at bottom right, ι = [9.9698 −7.6042], which has one
neutral area and one highly rugged area; and fS3,40 located at the bottom left, ι =
[−9.5859 −5.5881], a mostly neutral function with some periodic peaks. These results
demonstrate that at the extremes, one or more features dominate the generation process,
leading to functions where neutrality dominates. Therefore, it is worthwhile to examine
the instances located between the convex hull boundary and the COCO benchmarks,
such that we could identify regions where new instances with more diverse character-
istics may lie.
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Figure 9: A selection of generated instances following S3, drawn from locations where
no COCO instances are available. These functions are close to the convex hull boundary,
which indicates that there is a large space between the COCO benchmarks and these
functions that could be explored for new challenging instances.

Figure 9 shows surface plots from six of the 100 two-dimensional generated in-
stances, drawn from locations where no COCO instances are available. These instances
are: fS3,23 located at ι = [8.1595 −7.4299], which has two highly multimodal areas
in different directions; fS3,34 located at ι = [−9.1426 −3.3966], which has three pro-
nounced ridges; fS3,36 located at ι = [6.4388 −6.4693], three deep basins of attraction;
fS3,56 located at ι = [−0.9244 0.8668], which is symmetrically multimodal; fS3,66 located
at ι = [9.3112 −6.7882], which has periodic optima distributed in a grid structure; and
fS3,72 located at ι = [−5.3305 −2.0755], which, besides a grid structure, has a periodical
ruggedness. These functions are not at the convex hull boundary as those in Figure 8,
which indicates that there is a large space between the COCO benchmarks and these
functions that could be explored for new challenging instances.

4 Analysis

In this section, we analyze the instances generated. First, we compare our results with
random generation, from clustering problems (Gallagher, 2016), and evolved using the
performance differential of two algorithms as the GP fitness function (Langdon and
Poli, 2007) in Section 4.1. Then, we evaluate the probability distribution of performance
for BIPOP-CMA-ES, BFGS, and Nelder-Mead in Section 4.2. Finally, we explore whether
there are instances that uniquely easy or hard in Section 4.3.
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Figure 10: Location of the generated instances using feature targets (ELA), against three
other instance generation approaches: random (RAND), derived from clustering prob-
lems (CLUST), and instances evolved using the performance differential of two algo-
rithms (PERF).

4.1 Comparison with Other Generation Approaches

Figure 10 shows the location of our generated instances with all of our strategies, against
three other instance generation approaches: randomly generated instances from the first
generation of the GP, instances derived from clustering problems (Gallagher, 2016) as a
type of real-world BBO problem, and instances evolved using the performance differ-
ential of two algorithms as the fitness function (Langdon and Poli, 2007). The clustering
instances were obtained by setting the number of clusters in the [2, . . . , 10] range, with
the following 18 UCI datasets: (a) Abalone, (b) Balance Scale, (c) Banknote authenti-
cation, (d) Blood transfusion, (e) E-Coli, (f) Energy efficiency, (g) German towns, (h)
Haberman’s survival, (i) Istanbul stock exchange, (j) Iris, (k) Pima Indians’ diabetes,
(l) Ruspini, (m) Seeds, (n) Stone flakes, (o) User Knowledge Modeling (Test), (p) User
Knowledge Modeling (Train), (q) Vertebral column, (r) Wholesale customers data, and
(s) Yeast.

Figure 10 demonstrates that random instances span a wider area of the instance
space compared to COCO benchmarks; however, this method lacks the control offered
through measuring characteristics, and cannot achieve the same reach as the evolved
instances. Clustering instances have several advantages as a source of BBO test in-
stances: they are easily scalable, there is certain control over the global optimum, and
they have a clear real-world application. They do not appear to exhibit very different
features from the current COCO benchmarks though. Finally, instances that have been
evolved to accentuate performance differences using the method of Langdon and
Poli (2007) are mostly concentrated in the upper-central areas of the current COCO
benchmarks and do not give us the reach across the whole instance space we seek, to
understand strengths and weaknesses of algorithms in the broadest sense. It is clear
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Figure 11: Probability of success for BIPOP-CMA-ES, BFGS and Nelder-Mead on the
COCO benchmark set and the generated instances of (a) two dimensions and (b) ten
dimensions.

that our proposed approach to evolving diverse test instances across a given instance
space (even if the features that define the space are updated in subsequent iterations of
the method) is most effective.

4.2 Probability Distribution of Algorithm Performance

We now evaluate the probability distribution of performance for three state-of-the-art
algorithms: BIPOP-CMA-ES, BFGS, and Nelder-Mead on the functions generated in
Section 3. The results on the COCO benchmarks indicate that these three algorithms are
some of the best performing, and their search mechanisms are significantly different
from each other (Hansen et al., 2011).

Unlike the COCO benchmark, we do not know the optimum of the generated func-
tions. Therefore, we cannot specify a target solution, yt , nor calculate the expected run-
ning time, t̂ . Given that, we set up the following experiment to obtain an estimate. We
run all three algorithms with default parameters, bounds to [−5, 5], set an optimal target
value of −∞, a total budget of D × 106 function evaluations. We allow all algorithms to
randomly restart until the budget is exhausted. During the run, we record all the fitness
values and define the best one found by any of the three algorithms as the “experimen-
tal” optimum. We then set target precisions, et , equal to

[
10−3 10−4 10−5 10−6 10−7 10−8

]
.

If an algorithm is capable of finding the experimental optimum within a given precision,
then the algorithm is successful on that instance. To make a fair comparison, we also
run these three algorithms with the same experimental conditions on the 1440 COCO
instances, that is, indexes [1, . . . , 30] at D = {2, 10}.

Figure 11 shows the probability of success for each of these algorithms. The hor-
izontal axis represents the log-scaled number of function evaluations divided by the
dimension, whereas the vertical axis represents the probability of success within the
given budget. Figure 11a shows the results for the two-dimensional functions, while
Figure 11b shows the results for the ten-dimensional functions. The results show that,
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Table 3: Instances from each strategy group that elicit unique performance characteris-
tics from the three algorithms under analysis.

BIPOP-CMA-ES BFGS NELDER

D Easy Hard Easy Hard Easy Hard

COCO 2 0 (0%) 9 (1%) 3 (0%) 79 (11%) 1 (0%) 1 (0%)
10 0 (0%) 6 (1%) 20 (3%) 0 (0%) 0 (0%) 14 (2%)

S1 2 1 (0%) 5 (1%) 0 (0%) 150 (25%) 1 (0%) 1 (0%)
10 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (1%)

S2 2 4 (1%) 5 (1%) 0 (0%) 97 (19%) 0 (0%) 4 (1%)
10 1 (1%) 1 (1%) 0 (0%) 2 (2%) 0 (0%) 1 (1%)

S3 2 0 (0%) 0 (0%) 1 (1%) 19 (19%) 0 (0%) 8 (8%)
10 10 (10%) 0 (0%) 0 (0%) 7 (7%) 0 (0%) 14 (14%)

Total Generated 16 11 1 275 1 29

in general, there is a lower probability of success for the newly generated instances,
and so they are more challenging. The only exception is for BIPOP-CMA-ES for the S3
ten-dimensional instances, which tend to be solved faster than similar COCO functions.

4.3 Instances with Unique Performance Characteristics

To gather further insight into the performance results, we explore whether there are
instances that uniquely easy or hard. Given that there is always an algorithm that finds
the experimental optimum within the full budget of D × 106, we need strict definitions
of what constitutes uniquely easy or hard:

Uniquely easy is an instance that the tested algorithm can reach the tightest preci-
sion of 10−8 within an average budget of less than D × 103, while all comparison
algorithms would take an average budget at least one order of magnitude larger.

Uniquely hard is an instance that all comparison algorithms can reach the loosest
precision of 10−3 within an average budget less than D × 103, while the tested
algorithm would take an average budget at least one order of magnitude larger.

Table 3 shows the number of instances from each strategy group that are uniquely
easy or hard. From a total of 333 generated instances with unique performance char-
acteristics, 275 of them are uniquely hard for BFGS. This does not come as a surprise,
as BFGS tends to exploit gradients, which the GP is not explicitly told to generate. For
example, the COCO instances marked as easy for BFGS all correspond to the Sphere
function, f1. The location of all of these instances in the space is illustrated in Figure 12,
where we observe that several hard instances correspond to S3. While not being an ex-
plicit objective of our method, this result show that exploring areas outside the bounds
given by COCO can yield instances that improve our understanding of the strengths
and weaknesses of each algorithm.

Figure 13 shows some of these instances. Figure 13a shows a uniquely easy instance
for BIPOP-CMA-ES, located at ι = [1.1970 1.3683] on the central area of the space. This
instance has structure that leads to the upper area, which is mostly neutral and low cost.
Figure 13b shows a uniquely easy instance for BFGS, located at ι = [5.8986 −6.0352] on
the lower-right corner of the space. This instance is dominated by an oscillation on x1.
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Figure 12: Location of the generated instances that are uniquely (a) easy or (b) hard.

Figure 13: A selection of instances with unique algorithm performance characteristics.
The top row are uniquely easy instances, whereas the bottom row are uniquely hard.
The leftmost column correspond to BIPOP-CMA-ES, the center column to BFGS, and
the rightmost to Nelder-Mead.
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However, half of the space leads to the global optimum located in a channel in the cen-
tral area of the instance. Figure 13c shows a uniquely easy instance for Nelder-Mead,
located at ι = [−0.9221 −1.1338] on the central area of the space. This instance, albeit
multimodal, has a clear structure that leads to the global optimum. Figure 13d is a
uniquely hard instance for BIPOP-CMA-ES, located at ι = [−0.7360 −2.6003] at the
lower-left edge of the COCO set. This instance is multimodal with a global structure
that creates several funnels that drive away from the global optimum. Figure 13e is a
uniquely hard instance for BFGS, located at ι = [−6.3863 −1.0538] at the central-left
area of the space. This instance has neutral and deceptive areas, along with abrupt
changes that will make the calculation of a gradient not possible. Finally, Figure 13f is
a uniquely hard instance for Nelder-Mead, located at ι = [8.7052 −4.7961] at the upper
right corner of the space. This instance has a large neutral area crossed by a channel. As
a collective, these instances indicate that we need to discard those that are not uniquely
easy and return to the feature selection stage of the method.

5 Conclusion

In this article, we have proposed a method for generating diverse instances with con-
trollable characteristics for continuous BBO, as defined by a target vector of Exploratory
Landscape Analysis (ELA) features. To illustrate the effectiveness of our method, we
constructed sets of two- and ten-dimensional test instances. We employed three strate-
gies to generate our instance sets. In the first strategy, the target was an existing test
instance from the COCO benchmark used to validate our ability to recreate a known
benchmark function. In the second and third strategies, the targets are selected through
a Latin hypercube design (LHD) to encourage an evolved set of instances that span the
feature and instance space. The results presented in Section 3 showed that we can fill
areas of both spaces previously unexplored. We validated the new instances by testing
the performance of BIPOP-CMA-ES, BFGS, and Nelder-Mead on them, and comparing
the results to those achieved on the COCO benchmark set in Section 4. We showed that
the new test instances have properties that can make them more challenging. We now
discuss the implications of this work.

New and more diverse instances are necessary ingredients to provide tools for creat-
ing better experiments, drawing solid conclusions, formulating new hypotheses to test,
and proposing better theories about algorithm performance. The method presented not
only allows us to achieve such outcomes, but also we can catalog the instances through
their features, and make predictive models of algorithm performance. Derivations of
these instances can be easily obtained. For example, rotations and translations could be
generated using the same methodology employed by COCO (Hansen et al., 2014).

While two-dimensional functions can be visually inspected and their characteris-
tics potentially labeled (Mersmann et al., 2015), along with ten dimensions, they are
not considered as challenging (Hansen et al., 2011). Therefore, exploring other dimen-
sions is a necessary future step. A more flexible generation routine that allows vec-
tor operations, such as Cartesian GP (Miller, 2011), could facilitate the construction of
higher-dimensional problems, while losing some control on the ways variables could
interact. However, this is limited by the computational cost of generating the instances.
The compiled MATLAB code required approximately two hours of computing time in
a 3.2-GHz, 16-core, and 32-GB machine, to generate a two-dimensional instance, and
approximately 12 hours to generate a ten-dimensional one. The bulk of the compu-
tation was spent on calculating the features, whose code was heavily optimized us-
ing C/C++ libraries such as OpenCV and MIXMOD, and vectorized MATLAB code.
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Fine-tuning the routine parameters may yield functions with less bloat, as observed in
Equations (2) to (4), which could potentially reduce computational time. Alternatively, a
two-dimensional function can be scaled arbitrarily using a linear combination (Langdon
and Poli, 2007), or a chained expansion as commonly employed on the N-Dimensional
Rosenbrock function.

The results also suggest that the eight features selected may limit the diversity of the
instances generated. For example, at one extreme of R2

Q we tend to find rather simple
functions, as this feature describes a perfectly quadratic function. Testing the genera-
tion routine using the complete feature set from Table 1 did not improve substantially
the results, while greatly increased the computational cost. This is because the full set
contains highly correlated features that seem to give little information to the GP rou-
tine. Given the computational cost, we suggest using only unstructured ELA methods
(Muñoz, Sun et al., 2015), that is, those that use the same experimental design to extract
a sample; hence, they minimize the cost overhead due to the analysis. Some methods
worth to explore are those based on Cell-Mapping and Nearest-Better Clustering (Ker-
schke et al., 2014, 2015). However, we also recognize the limited nature of ELA meth-
ods, as they are in essence biased to our understanding of what makes a problem hard.
Therefore, a completely new way to describe a function may be necessary. For example,
a potentially useful way to characterize the difference between the instances may be the
Kullback-Leibler (KL) divergence of the cost distributions. This is an area of great po-
tential and new features can be proposed and validated using the framework presented
here.

Our approach to generate targets also influences our ability to generate new in-
stances. By targeting the eight-dimensional feature space we were able to create more
complex structures, but it was substantially more difficult to reach the targets. On the
other hand, using the two-dimensional instance space, it was much easier to reach the
target. However, the two-dimensional projection using principal component analysis
(PCA) retains less information from the feature space given that we selected the fea-
tures using correlation. Therefore, we lost significant control over the properties of the
instance. Including the algorithm performance in the mapping as in Muñoz et al. (2018)
could improve the results. However, this method would also be affected by the low
correlation of the features due to its linear nature. Moreover, collecting the complete
performance data could add significant computational work.

Finally, it should be acknowledged that using (a) the root mean-squared error as
cost function, and (b) Latin hypercube sampling to target the space, assumes that the
geometry of the space is Euclidean and its density is uniform. This results in notions of
scale and correlation of the features entering the notion of diversity. Moreover, empty
spaces in the space may be unreachable, and targeting them is unlikely to bear good re-
sults. While care has been taken to minimize these effects, using a more robust measure
of distance such as KL divergence may solve these issues.

Broadening the scope of this work, we are adapting these methods to other
problems besides black-box continuous optimization, for example, machine learning
(Muñoz et al., 2018), time series modeling (Kang et al., 2017), and combinatorial opti-
mization (Smith-Miles et al., 2014; Smith-Miles and Bowly, 2015). The main differences
between BBO and other problem domains is the set of features required to describe the
problem instance, and the method used to construct them. We have recently created an
on-line tool (MATILDA—Melbourne Algorithm Test Instance Library with Data Ana-
lytics, matilda.unimelb.edu.au) to enable automated instance space analysis of a large
collection of well-studied problems from optimization and machine learning. All the
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instances and results from this article can be downloaded from MATILDA. Researchers
can also upload other problems and generate instance spaces, assess the adequacy of
benchmark test instances, analyze algorithm performance, and perform automated al-
gorithm selection. We look forward to growing the collection of library problems avail-
able on MATILDA in the coming years as the instance space analysis methodology be-
comes more widely adopted.

Acknowledgments

Both authors were with School of Mathematical Sciences, Monash University, Clayton,
VIC 3800, Australia, while conducting the experimental part of this work. Funding was
provided by the Australian Research Council through the Australian Laureate Fellow-
ship FL140100012. We also thank Dr. Toan Nguyen, who implemented optimized ver-
sions of the metafeatures routines, and Philip Chan, who set up access to additional
computational resources for the ten-dimensional function generations.

References

Bischl, B., Mersmann, O., Trautmann, H., and Preuß, M. (2012). Algorithm selection based on
exploratory landscape analysis and cost-sensitive learning. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO), pp. 313–320.

Broyden, C. (1970). The convergence of a class of double-rank minimization algorithms, 1. General
considerations. IMA Journal of Applied Mathematics, 6(1):76–90.
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