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ABSTRACT
While machine learning has evolved at a fast pace in the last decades,
the testing procedure of new methods may be not keeping pace.
It o�en relies on well-studied collections of classi�cation datasets
such as the UCI repository. However, a meta-analysis through
features has showed that most datasets from UCI are not su�ciently
challenging to expose unique weaknesses of algorithms. In this
paper we present a method to generate datasets with continuous,
binary and categorical a�ributes, through the ��ing of a Gaussian
Mixture Model and a set of generalized Bernoulli distributions. By
targeting empty areas of the instance space, this method has the
potential to generate datasets with more diverse feature values.

CCS CONCEPTS
•Computing methodologies → Model veri�cation and vali-
dation; Supervised learning by classi�cation; •Information sys-
tems→ Clustering and classi�cation;
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1 INTRODUCTION
Machine learning has evolved at a fast pace in the last decades,
thanks to cheaper computing power and steady advances in algo-
rithm development. However, the common testing procedure of
new methods may be not keeping pace, as it o�en relies on well
studied collections such as the UCI repository [22]. Without a
doubt, this repository has had enormous impact on research by
ensuring comparability of results. However, concerns have emer-
ged on the representativeness of the datasets in the repository and
the possibility of over-��ing the algorithms. In recent work [14],
we demonstrated the limitations of this set for re�ned algorithm
evaluation. In particular, a meta-analysis through features showed
that most datasets from UCI are very similar and not su�ciently
challenging to expose unique weaknesses of algorithms; hence,
the performance from fundamentally di�erent algorithms, such
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as Support Vector Machines (SVM) and Random Forests (RF), is
also similar. �erefore, there is an urgent need for new datasets
that: (i) may produce di�erent performance from existing algo-
rithms, such that their strengths and weaknesses can be be�er
understood; (ii) have features that will place them away from the
existing repository, or help push the boundaries of the currently
studied datasets; and (iii) represent modern challenges in machine
learning classi�cation.

Perhaps the most common way to arti�cially generate test da-
tasets is to select and sample an arbitrary probability distribution.
However, this approach lacks control as there is no guarantee that
the resulting dataset will have speci�c features. In [12], an alter-
native method is proposed, in which a “seed” dataset is adjusted
by evolving each observation. However, this approach resulted in
very li�le change in the features of the dataset. Furthermore, as
the number of observations increases, the evolution process beco-
mes quickly intractable. An alternative is provided in [20], where
new datasets are obtained by switching an independent a�ribute
with the class vector. Assuming q categorical a�ributes, it is pos-
sible to obtain q new derived datasets. However, this approach is
susceptible to missing target values, skewed class distributions, or
di�culties when the new class is completely uncorrelated to the
independent variables.

In [14], we presented a proof-of-concept for a method to gene-
rate classi�cation datasets based on the ��ing and sampling of a
Gaussian Mixture Model (GMM). To obtain a dataset with a target
feature vector, we minimized the error between the dataset featu-
res and the target, assuming a constant random seed. While this
method had a number of advantages, it produced datasets whose
a�ributes can only be Gaussian distributed real values, eliminating
the possibility of more complex a�ribute types. �erefore, in this
paper we present an extension of this method that includes the
possibility to generate binary and categorical a�ributes, through
the ��ing of generalized Bernoulli distributions (GBDs). �is new
functionality allowed us to generate datasets with a more diverse
feature values.

�e remainder of this paper is organized as follows. In Section 2,
we present details of the process employed to generate a two dimen-
sional instance space where the relative di�culty of the UCI datasets
and algorithm performances across the space can be visualized. �e
instance space also allow us to identify areas where the UCI is not
concentrated; hence, they are ideal candidates for the generation
of new datasets. In Section 3, we describe the technical details of
the new generator. In Section 4, we present a two-stage validation
procedure and its results: �rst, we a�empt to mimic a number of
existing datasets from UCI, then, we a�empt to �t datasets targeting
speci�c new areas of the instance space. We conclude the paper
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by presenting the open problems and some suggestions for further
research in Section 5.

2 GENERATING AN INSTANCE SPACE
�e instance space is a visual representation of a set of problems,
which was conceived as tool for the analysis of the strengths and
weaknesses of individual algorithms [17–19]. Fundamentally, it is
an extension of Rice’s algorithm selection framework [16], whose
aim is to predict which algorithm is likely to perform best in a
given problem. �e extended framework, which is illustrated in
Figure 1, relies on measurable features of the problem instances
that correlate with di�culty to make its predictions.

�e �rst step to construct the instance space is to select a set of
benchmark problems, for which their features and algorithm per-
formance are collected. In the particular case of machine learning,
the work in meta-learning has provided a signi�cant collection of
statistical features for classi�cation problems [1, 3, 6, 10]. Once the
meta-data has been collected, a custom dimensionality reduction al-
gorithm is employed to project the information in two dimensions,
such that both features and algorithm performance vary smoothly
and predictably across the space [14]. �is exposes trends in featu-
res and algorithm performance, and helps to partition the instance
space as pockets of strength and weaknesses, which can be used
to understand which features are being exploited or are causing
di�culties [17]. Objective measures are used to summarize each
algorithm’s relative power across the broadest instance space [17].
Moreover, the location of the existing benchmarks in the instance
space reveals much about their diversity and challenge. Finally,
a methodology is used to evolve new test instances by targeting
points in the empty areas of the instance space [18].

In our recent work [14], we constructed an instance space using
as benchmark instances 210 datasets from the University of Califor-
nia Irvine (UCI) [11], 19 datasets from the Knowledge Extraction
Evolutionary Learning (KEEL) repositories [2], and six datasets
from the Data Complexity library1: in total 235 datasets. Using
meta-analysis, we identi�ed a set of uncorrelated features that
are linearly related to algorithm performance, and measured cha-
racteristics of the dataset that are known or expected to make a
classi�cation task harder. For example, non-normality within clas-
ses, and redundant or (nearly) linearly dependent a�ributes. �ese
features are:

Maximum normalized entropy of the attributes, H (X)′max,
quanti�es the highest amount of information contained in
the data assuming independent a�ributes [13].

Normalized entropy of class attribute, H
′
c , it is a measure

of problem imbalance, which is maximal when all the clas-
ses are equally probable.

Mean mutual information of attributes and class, MCX ,
is a measure of the shared information between a�ribute
Xi and class C [13].

Error rate of the decision node, DNER , provides with an
indication of linear separability in the data [4]. A decision
node is a tree consisting only of its root node. �e split-
ting a�ribute and value in the root are selected so as to
maximize the information gain ratio [5].

1DCol - h�p://dcol.sourceforge.net/

x ∈ I ⊂ P
Problem
subset

f (x) ∈ F
Feature
space

y ∈ Y
Performance

space

α ∈ A
Algorithm

space

g (f (x)) ∈ R2

2-d Instance
space

z ∈ P
Problem

space

Footprints
in instance

space

Learn selection mapping
from features

α∗ = S (g (f (x)))

Dimension reduction
and visualization

α∗ = S (f (x))

Select α∗ to
minimize ‖y‖

y (α, x) apply algo-
rithm α to instance x

Feature selection f

Define algorithm
footprints ϕ (y (α, x))

Instance selection
or generation

Infer algorithm
performance
on all z ∈ P

Figure 1: Methodological framework, extending Rice’s Algo-
rithm Selection Problem shown within the dashed box

Standard deviation of the weighted distance, SD(ν ), is a
measure of the sparsity of the instances in a problem [21].
Small values of SD(ν ) indicate that instances are homo-
geneously distributed in the feature space, whereas large
values indicate non-homogeneous instances, e.g., present
clusters.

Maximum feature e�ciency, F3, measures the of linear
separability achievable when using the most discriminative
a�ribute.

Collective feature e�ciency, F4, extends the concept in
F3 to account for the discriminative ability of multiple
a�ributes in the dataset [15].

Training error of linear classi�er, (L2), is used to assess
linear separability of the classes in the training set [8].

Fraction of points on the class boundary, N1, estimates
the length of the class boundary and provides with a com-
plexity measure of the boundary between classes [15].
Small values of N 1 indicate that there are only a few points
along the boundary, whereas large N 1 values indicate that
the majority of points lay along the boundary.

Nonlinearity of the one-nearest neighbor classi�er, N 4,
estimates the nonlinearity of the class boundary using the
one-nearest neighbor classi�er and the concept of linear
interpolation [8, 9].

Next, we analyzed ten popular supervised learners represen-
ting a comprehensive range of learning mechanisms: Naive Bayes
(NB), Linear Discriminant (LDA), �adratic Discriminant (QDA),
Classi�cation and Regression Trees (CART), J48 decision tree (J48),
k-Nearest Neighbor (KNN), Support Vector Machines with linear,
polynomial and radial basis kernels (L-SVM, poly-SVM, and RB-
SVM respectively), and random forests (RF). Using the error rate,
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Figure 2: Sizes of the instances in terms of the number of (a) observations, (b) attributes, and (c) classes. All have been log10-
scaled.

ER, as performance measure, we calculated the projection that de�-
nes the instance space using the following custom dimensionality
reduction method [14]. Let F = [f1 f2 . . . fn ] ∈ Rm×n be the
feature data matrix Y = [y1 y2 . . . yn ] ∈ Rα×n be an algorithm
performance matrix , where m is the number of features, n is the
number of datasets, and α is the number of algorithms. �en, we
achieve an ideal projection of the instances into d dimensions if we
can �nd Ar ∈ Rd×m , Br ∈ Rm×d and Cr ∈ Rα×d that solves the
following optimization problem:

min ‖F − BrZ‖2F + ‖Y − CrZ‖2F
s.t. Z = Ar F (1)

(D) Ar ∈ Rd×m

Br ∈ Rm×d

Cr ∈ Rα×d

Let F ∈ R10×235 be a matrix whose rows correspond to the
features described above, and its columns correspond to the 235
datasets. Each feature was transformed as follows: F4 was scaled
to [−0.99999, 0.99999] and tanh−1-transformed,

{
H
′
C ,MCX ,DNer ,

SD(ν ), F3,L2,N 1} were root-squared. Let Y ∈ R10×235 be a matrix
whose rows correspond to root-squared error rate of the algorithms
listed above. Both features and error rates were normalized to
N (0, 1).

We solve numerically (D) using BIPOP-CMA-ES, a stochastic,
iterative, variable metric method with demonstrated e�ectiveness
in middle sized optimization problems [7]. To use this method, we
represent {Ar ,Br ,Cr } as a column vector by concatenating the
matrix columns. We run 30 times BIPOP-CMA-ES starting from
random positions, using the default parameters and a maximum of
105 evaluations of (D). Given that all runs converged to the same
error, we selected the best solution using a measure of topological
preservation: the Pearson Correlation between the distances in
the feature space,



fi − fj


, and the distances in the instance space,



zi − zj


 [23]. �e chosen projection from the 10-dimensional fea-

ture space to the 2-dimensional instance space is:

Z =



0.070 0.180
0.094 0.618
−0.277 −0.052

0.114 0.192
0.045 −0.100
−0.128 0.151
−0.045 0.077

0.184 0.017
0.449 0.223
0.132 −0.112



> 

H (X)′max
H
′
c

MCX
DNER
SD(ν )
F3
F4
L2
N 1
N 4



(2)

Figure 2 illustrates the instance space, where each point repre-
sents a dataset. We used color gradients to illustrate the relationship
between the axes and the number of (a) observations, (b) a�ributes,
and (c) classes. �e �gure shows that, for our selected 235 datasets,
the number of observations increases from top to bo�om, while
the number of classes from right to le�. �ere is no trend emerging
from the number of a�ributes; hence, it does not in�uence the per-
formance of the algorithms as much as the number of observations
or classes [14]. �e links between the problem size will become in-
�uential as we a�empt to generate new datasets in the next section.
Using the coe�cient of determination, R2, to measure the �t of the
instance space with the performance of each algorithm, we found
that the best �t is achieved for KNN

(
R2 = 0.805

)
, and the worse

for QDA
(
R2 = 0.367

)
. However, with a median R2 of 0.650, the

instance space describes a linear trend between most features and
algorithms. In fact, {NB,CART,J48,KNN,L-SVM,Poly-SVM,RMB-
SVM} share a trend, �nding easier the instances on the bo�om
le� side of the space, whereas {LDA,QDA,RF} tend to �nd easier
those in the bo�om center of the space. �is means that most of
the instances with a high number of observations and classes are
relatively easier for most algorithms [14]. �is may imply that the
larger datasets under examination are not as complex as previously
though, which is another limitation of the benchmark set.
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3 GENERATING DATASETS BY FITTING
DISTRIBUTIONS

�e instance space presented in Section 2 is used to identify po-
tential targets for the generation of new test instances [18]. In
our previous work [14], we approached this task by tuning and
sampling a Gaussian Mixture Model (GMM), using a �xed seed
to guarantee some level of repeatability. �en, the feature vector
from the sample, fS , was compared to the desired target vector
of features, fT , using the Mean Squared Error (MSE). To tune the
GMM, we also used BIPOP-CMA-ES. �e results in [14] were very
encouraging and this approach had a number of advantages: (i) it
is scalable by increasing the number of a�ributes, observations and
classes; (ii) it allows some �exibility; (iii) it enables control over the
covariance between a�ributes; (iv) it produces immediately a model
of the data distribution, which is a solution to the classi�cation and
clustering problem; and (v) the optimization problem is unconstrai-
ned. However, this approach produces datasets whose a�ributes are
Gaussian distributed real values, eliminating the possibility of more
complex a�ribute types. To address this limitation, we now include
a generalized Bernoulli distribution (GBD) to model binary and
categorical a�ributes to enable more realistic classi�cation datasets
to be generated.

As in [14], let us de�ne the GMM as having κ components on
д a�ributes; therefore, the probability of an observation x being
sampled from the GMM is given by:

pr (x) =
κ∑
k=1

ϕkN
(
µk ,Σk

)
where

{
ϕk ∈ R, µk ∈ Rд ,Σk ∈ Rд×д

}
are the weight, mean vector,

and covariance matrix of a д-variate normal distribution respecti-
vely. Since Σk must be a positive semi-de�nite matrix, we can
assume the existence of its Cholesky decomposition, i.e., an upper
triangular matrix Ak such that Σk = A>k Ak . Assume that some
a�ribute pairs are linearly independent; hence, they will have co-
variance zero. �erefore, we de�ne a constant upper triangular
boolean matrix Bk ∈ [0, 1]д×д , which indexes the non-zero ele-
ments of Ak , ak .

Now, let us de�ne a GBD per each binary and categorical a�ribute
with Λ ≥ 2 labels. �erefore, the probability of an observation x
being sampled from the distribution is given by:

pr
(
x |γ

)
=

Λ∏
λ=1

γ
δxλ
λ

where γ is a vector of Λ elements that represents the probability of
observing each label λ and

∑Λ
λ=1 γλ = 1, and δxλ is the Kronecker

delta. We control the number of labels per a�ribute by se�ing
the value of Λ, which is stored in a vector Λ of size q. We used
BIPOP-CMA-ES to tune both distributions simultaneously. To use
this method, we must represent all the distribution parameters,{
µ1, . . . , µκ , a1, . . . aκ ,ϕ,γ1, . . . ,γq

}
, as a vector θ . A dataset is

completely de�ned by se�ing the number of observations, p.
Algorithms 1 and 2 present the key procedures in the generation

approach. Algorithm 1 stores a random seed, initializes the para-
meters, creates the indexing matrices, Bk , de�nes the number of
labels per categorical variable, and generates the class vector, y. On

Input: �e number of observations, p , continuous a�ributes, д, gaussian
components, κ , categorical a�ributes, p , classes, K , the minimum and
maximum number of labels {Λmin, Λmax }, and the lower and upper
bounds for the means and covariances {a, b }.

Output: �e vector parameter, θ , the indexing matrices {B1, . . . , Bκ }, the
vector of labels numbers, Λ, the class a�ribute vector, y, and the
random seed, s .

1 s ← GetCurrentRandomSeed (); // Save the current random seed

// Initialize the parameters for the GMM

2 for k ← 1 to κ do
// Generate an array of real randoms between [a, b].

3 µk ← UniformRealRandom (1, д, a, b) ;
// Generate an array of binary randoms

4 Bk ← BinaryRandom (д, д) ;
5 Bk ← UpperTriangularMatrix (Bk ) ;
6 Ak ← UniformRealRandom (д, д, a, b) ;

// Calculate the Hadamard product to index Ak
7 Ak ← Ak ◦ Bk ;

// Find the non-zero elements of Ak
8 ak ← {a : a ∈ Ak , a , 0};
9 ϕk ← UniformRealRandom (1, 1, 0, 1)

10 end
// Initialize the parameters for the GBDs

11 for i ← 1 to p do
// Set the number of labels using a random integer

12 Λi ← UniformIntegerRandom (1, 1, Λmin, Λmax) ;
13 γ ← UniformRealRandom (1, Λi , 0, 1) ;
14 end

// Set all parameters as vector

15 θ ←
[
µ1, . . . , µκ , a1, . . . aκ , ϕ, γ1, . . . , γq

]> ;
// Generate y as a vector of p random integers between [1, K ]

16 y← UniformIntegerRandom (p, 1, 1, K ) ;

Algorithm 1: Procedure to initialize the parameters of the
generator, given the speci�ed dataset size.

Input: �e vector parameter, θ , the indexing matrices {B1, . . . , Bκ }, the
vector of labels numbers, Λ, the class a�ribute vector, y, and the random
seed, s .

Output: �e generated dataset, X , and its features, fS .
// Extract the data from the vector of parameters

1
[
µ1, . . . , µκ , a1, . . . aκ , ϕ, γ1, . . . , γq

]
← ExtractParameters (θ ) ;

// Reconstruct the covariance matrices

2 for k ← 1 to κ do
3 Ak ← ak (Bk ); // Reconstruct Ak by indexing ak
4 Σk ← A>kAk ; // Calculate Σk using Cholesky decomposition

5 end
6 ϕ ← ϕ � SumVector (ϕ); // Scale ϕ between [0, 1]

// Store the current random seed and then use the inputed random

seed

7 saux ← GetCurrentRandomSeed ();
8 SetRandomSeed (s);

// Sample the Gaussian Mixture Model

9 Xд ← SampleGaussianMixtureModel (µ1, . . . , µκ , Σ1, . . . Σκ , ϕ, p, д) ;
// Sample the generalized Bernoulli distributions

10 Xc ← []; // Set an empty matrix Xc
11 for i ← 1 to p do
12 γi ← γi � SumVector

(
γi

)
; // Scale γi between [0, 1]

13 xi ← SampleGenBernoulli
(
γi , Λi , p

)
;

14 Xc ← [Xc xi ]; // Concatenate the sampled vectors

15 end
16 SetRandomSeed (saux); // Restore the random seed

// Concatenate the attribute matrices and class vector

17 X←
[
Xд Xc y

]
;

18 fS ← CalculateFeatures (X); // Calculate the features

Algorithm 2: Procedure to generate a dataset, X, using the vec-
tor of parameters, θ , and calculate the features. �e � operator
represents element-wise division of a vector.
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the other hand, Algorithm 2 generates the dataset and calculates
the features described in Section 2. While this approach maintains
the advantages discussed above a�er extending to binary and ca-
tegorical a�ributes, the following issues remain: (a) the ��ing
problem is known to have local optima; and (b) it can be can be
computationally expensive for very large datasets, or inaccurate
for very small ones.

4 VALIDATION
For testing the generation approach, we carry out two di�erent
experiments. On the �rst one, the aim is to also test the suitabi-
lity of the instance space as representation. To do so, we create
datasets whose features mimic those of two UCI datasets: Iris and
Heart Switzerland with missing values removed (Heart). Iris is a
well known dataset with {p = 150,д = 4,K = 3}, whereas Heart is
a smaller dataset with {p = 43,д = 4,q = 7,K = 5} located at the
upper right area of the space, an mostly empty area in which the
tested algorithms performed poorly. �erefore, new datasets are
required to clarify the algorithm performance in this area. Figure 3
illustrates the location of Iris and Heart compared to the UCI set.
Unless stated otherwise, we set κ = 3K , Λmin = 2 and Λmax = 6.
For the Iris set, we run the following trials:

High-Continuous Targets are set in the 10-dimensional fe-
ature space, with {p = 150,д = 4,K = 3}.

Low Targets are set in the 2-dimensional instance space with
Continuous {p = 150,д = 4,K = 3}.
Categorical {p = 150,q = 4,K = 3}.
Mix 3/3 {p = 150,д = 4,q = 3,K = 3}.

�e purpose of the High-Continuous trial is to demonstrate
our ability to approximate target the actual feature vector, whereas
the purpose of the Low trials is to demonstrate or ability to approx-
imate the target with diverse a�ribute types in the instance space.
Given that Iris has only continuous a�ributes, the performance the
algorithms is expected to be di�erent for the categorical and mix
trials.

For the Heart set, we run the following trials with targets set in
the 2-dimensional instance space:

Low-Continuous {p = 43,д = 11,K = 5}.
Low-Categorical {p = 43,q = 11,K = 5}.
Low-Mixture 4/7 {p = 43,д = 4,q = 7,K = 5}.

All trials are repeated ten times with a so� bound of 105 function
evaluations, i.e., the number of times a dataset is generated and
tested, and a stopping criteria of MSE < 10−3. �e values of θ
are initialized by sampling from a uniform distribution between
[−10, 10] for the covariances, and between [0, 1] for the label pro-
babilities. �e results are presented in Table 1, where each column
represents the error rate, ER, of each algorithm. MSE is the mean
squared error from the target features, fT , to the dataset features,
fS . �e correlation between the ER of the target and the average
ER of the generated datasets is presented in ρ.

We can observe that ��ing Iris in the high dimensional feature
space produces the datasets with the highest correlation (ρ = 0.640),
with the largest di�erence in ER being for LDA with a 3.7%, and
the lowest being for KNN with 0.1%, and the average being 1.0%.
�is indicates that the datasets on average produce similar behavior
from the selected algorithms. �is can be a�ributed to the fact that

-3 -2 -1 0 1 2 3
z1

-3

-2

-1

0

1

2

3

z 2

UCI
Iris
Heart
LHD

Figure 3: Location of generation targets for both experi-
ments in comparison to the UCI sets.

the instance space loses some information by projecting the data
into 2-dimensions. Evidence of this can also be seen in the slightly
lower correlation (ρ = 0.569), and larger average di�erence of 1.5%.
However, when the a�ributes are of a di�erent type, the results can
have strong variations. For example, LDA and QDA produce higher
ER for the Categorical and Mixture trials, with QDA obtaining ERs
above 60.0%. �is can be explained by the low predictive ability
of the instance space for these two algorithms. �is result also
indicates that categorical variables strongly in�uence the perfor-
mance of LDA and QDA. On the other hand, the results for Heart
show correlations above 0.6. Moreover, all the algorithms struggle
with these datasets, with an average ER of 37.5%. Using categorical
variables improves the ability of the method to reduce MSE.

In the second experiment, we aim to generate instances located
elsewhere in the instance space. To do so, we set the target fea-
ture vectors using a latin hyper-cube design (LHD) sample in the
instance space, with bounds determined by the largest and smallest
values for Z. We �x the dataset size to {p = 150,д = 4,K = 3} or
{p = 43,д = 4,q = 7,K = 5}, which are the same size as Iris and
Heart datasets. �is restriction would limit our ability to achieve
MSE=0, due to the relationships observed in Figure 2 between
{p,д,q,K} and the instance location. However, this experiment
will give us an indication of the location bounds of the Iris- and
Heart- sized datasets in the space and their complexity. As before,
we set the value of κ = 3K , and initialize the values of the covarian-
ces by sampling a uniform distribution between [−10, 10]. All trials
are repeated ten times with a so� bound of 105 function evaluations.

Figure 4 demonstrates that there may be a boundary outside
of which Iris- and Heart-sized datasets can not be generated, ex-
plaining the higher average MSE of 1.3841 and 3.3966 respectively.
�is is in part due to the correlation (0.533) between the number of
classes, K , and the normalized entropy of class a�ribute, H ′c ; and
the correlation (0.656) between the number of observations, p, and
the standard deviation of the weighted distance, SD(ν ). �erefore,
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Table 1: Results from the �rst experiment type, where each row represents the average of ten trials, and the columns represent
the error rate, ER, of each algorithm. MSE is the mean squared error from the target features, fT , to the dataset features, fS .
�e correlation between the ER of the target and the average ER of the generated datasets is presented in ρ.

MSE ρ
ER

NB LDA QDA CART J48 KNN L-SVM poly-SVM RBF-SVM RF

Iris

High - Continuous 0.1668 0.640 2.7% 5.0% 1.6% 4.9% 4.2% 4.1% 3.5% 7.5% 3.7% 2.6%
Low - Continuous 0.0006 0.569 1.2% 3.0% 0.6% 2.8% 2.5% 1.2% 1.4% 4.4% 1.5% 1.5%
Low - Categorical 0.0006 -0.612 0.4% 42.4% 66.2% 0.1% 0.2% 1.5% 0.1% 2.5% 1.6% 0.0%
Low - 3/3 Mixture 0.0007 -0.490 2.8% 17.9% 66.0% 1.5% 1.8% 1.9% 0.9% 3.9% 3.0% 0.8%

Target 3.1% 1.3% 1.8% 4.0% 4.0% 4.0% 2.7% 5.8% 2.2% 3.1%

Heart

Low - Continuous 0.0006 0.624 30.8% 32.1% 78.2% 36.2% 33.0% 29.0% 31.0% 35.2% 32.1% 31.9%
Low - Categorical 0.0004 0.585 26.7% 46.8% 78.1% 29.1% 26.5% 32.9% 27.4% 31.9% 31.8% 28.7%
Low - 4/7 Mixture 0.0004 0.504 29.6% 68.4% 77.7% 31.0% 31.9% 30.6% 30.4% 28.3% 36.5% 31.1%

Target 48.5% 47.0% 71.7% 42.6% 40.3% 39.8% 41.1% 38.4% 39.7% 71.7%
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Figure 4: Location of UCI sets, the template problems, the LHD targets and the resulting datasets. Due to the correlation bet-
ween some features and the dataset size, there may be a bound outside of which similarly sized datasets can not be generated.

unless {p,д,q,K} are modi�ed, it would not be possible to cross
these boundaries. �is result also implies that in order for our ge-
nerator to have the best chance of reaching the empty spaces of
the instance space, we need to set the dataset size to be equal to
that of the closest dataset.

5 CONCLUSIONS
In this paper, we have presented a method to generate datasets with
continuous, binary and categorical a�ributes, through the ��ing
of a Gaussian Mixture Model and a set of generalized Bernoulli
distributions. By targeting empty areas of the instance space, this
method could generate datasets with a more diverse feature value.
However, there are a some of limitations that must be addressed
before the system is complete. For example, (a) the ��ing problem

is known to have local optima; and (b) it can be can be computa-
tionally expensive for very large datasets, or inaccurate for very
small ones. �ese issues may be solved by �nding a more e�cient
representation of a dataset. Of course, once we have generated a
large number of new datasets with di�erent features and located
in unique parts of the instance space, we must verify that they en-
hance our ability to understand unique strengths and weaknesses
of algorithms. It may also be necessary to reevaluate the features
that describe the instance space, once all the data is collected.

On the other hand, there are theoretical and computational issues
that limit our ability to extensively explore and �ll the gaps in the
instance space at this time. For example, the precise theoretical
bounds of the instance space are unknown. Further research on the
upper and lower bounds on the features and their dependencies
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would allow us to de�ne the targets more accurately than what was
presented in this paper.
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