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Abstract
This article presents a method for the objective assessment of an algorithm’s strengths
and weaknesses. Instead of examining the performance of only one or more algorithms
on a benchmark set, or generating custom problems that maximize the performance
difference between two algorithms, our method quantifies both the nature of the test in-
stances and the algorithm performance. Our aim is to gather information about possible
phase transitions in performance, that is, the points in which a small change in problem
structure produces algorithm failure. The method is based on the accurate estimation
and characterization of the algorithm footprints, that is, the regions of instance space
in which good or exceptional performance is expected from an algorithm. A footprint
can be estimated for each algorithm and for the overall portfolio. Therefore, we select a
set of features to generate a common instance space, which we validate by constructing
a sufficiently accurate prediction model. We characterize the footprints by their area
and density. Our method identifies complementary performance between algorithms,
quantifies the common features of hard problems, and locates regions where a phase
transition may lie.

Keywords
Algorithm selection, black-box continuous optimization, exploratory landscape analy-
sis, footprint analysis, performance prediction.

1 Introduction

The goal in a continuous optimization problem is to maximize or minimize a func-
tion whose input and output variables are real numbers, subject to some constraints.
Often, these problems lack an algebraic expression, have noncalculable derivatives, ex-
hibit uncertainty or noise, or may involve time-consuming simulations or experiments.
Topologically, these problems may present local and global optima, large fluctuations in
output value between similar inputs, and interdependencies between input variables.
However, these problem features are unknown. All that is known is a black-box output
response to a given input. Therefore, sampling the inputs and obtaining the output
response is the only way to acquire information about the problem. This approach,
known as black-box optimization, does not consider the internal workings of the func-
tion. As such, there is no guarantee of finding the exact global optimum, although this is
often unnecessary in practice. More often, a target output is defined, which represents
a reasonable improvement over current practice.
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Having to solve these problems with limited resources and knowledge, as well as
their profuse nature in practical fields (Lozano et al., 2011), has led to an increased num-
ber of reported algorithms for continuous black-box optimization over the last decades.
This algorithmic diversity eclipses significant algorithmic innovations (Sörensen, 2015)
and fosters the recycling of ideas (Weyland, 2010; Črepinšek et al., 2012; De Corte and
Sörensen, 2013; Piotrowski et al., 2014). Thus, the algorithmic diversity compromises
our ability to master—or even be familiar with—all algorithms (Hough and Williams,
2006). This would be irrelevant if any algorithm performed well on any problem. Un-
fortunately, the No Free Lunch Theorems (NFLT) prove that, even though all algo-
rithms perform equally on average across the complete space of problems (Wolpert and
Macready, 1997), some algorithms are preferable to others on specific problems (Schu-
macher et al., 2001; Langdon and Poli, 2007; Auger and Teytaud, 2010). While NFLTs
were proven on deterministic algorithms and finite search domains, more recent work
has shown their applicability to randomized algorithms in very large domains, such as
those found in continuous optimization (Rowe et al., 2009; Lockett and Miikkulainen,
2016).

Selecting an appropriate algorithm for a given problem is at best cumbersome (Tang
et al., 2014), even with expert knowledge on search algorithms, and skills in algorithm
engineering and statistics (Blum et al., 2011). To facilitate this task, it is fundamental to
have an objective assessment of the performance of a diverse set of algorithms. That is,
we need to have knowledge of each algorithm’s strengths and weaknesses (Langdon
and Poli, 2007). However, our theoretical understanding of the performance of most al-
gorithms on real-world problems is still limited, even after significant advances (Auger
and Doerr, 2011). Therefore, the conventional approach to this issue is to analyze the
performance of one or more algorithms on a suite of benchmark problems (Langdon
and Poli, 2007). This approach is not issue-free given that no test suite can cover the
whole range of difficulties encountered in black-box optimization (Ros, 2009b). A lim-
ited test suite may result in small differences in performance between algorithms, which
obfuscates the source and nature of the differences (Langdon and Poli, 2007). Alterna-
tively, custom problems can be generated such that they maximize the performance
difference between two algorithms; hence, exaggerating their comparative strengths
and weaknesses (Langdon and Poli, 2007). However, these comparisons explain only
extreme cases, and tell us little about possible phase transitions in performance, that is,
the points in which a small change in problem structure elicits poor algorithm perfor-
mance. To deeply understand the link between problems and algorithms, an analysis of
experimental performance should be linked to an assessment of similarities and differ-
ences between problems, which can be achieved only by characterizing their structure
(Malan and Engelbrecht, 2014).

The extensive and successful work on algorithm selection for discrete and analytical
problems (Smith-Miles, 2009; Hutter et al., 2014; Smith-Miles et al., 2014; Kotthoff,
2014) demonstrates the power of linking problem characteristics to the performance
of algorithms. Most of this work is based on the framework by Rice (1976), which
identifies four interrelated spaces.1 First is the ill-defined problem space, F , which
contains all the relevant problems to be solved (i.e., continuous black-box functions to
be minimized in this article). Second is the algorithm space, A, which is composed of all

1We have modified Rice’s notation to use f as function. In the original paper, x is a problem, f (x)
is a feature vector, A is an algorithm, p (A, x) is a performance measure, P is the problem space, and F
is the feature/characteristics space.
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Figure 1: Algorithm selection framework by Smith-Miles et al. (2014), which extends
the original of Rice (1976), shown in the box. The nomenclature has been adjusted for
continuous optimization.

the algorithms applicable to the problems in F , regardless whether they are successful
or not. Third is the performance space, T , which is the set of feasible values of τ , a score
that measures the cost of using an algorithm α ∈ A to solve a problem f ∈ F . Fourth is
the feature space, �, which is defined by a set of measurable features that expose the
complexities of the problems; hence, � is the key element in the implementation of the
framework as it provides order to F . However, � is high-dimensional; hence, hard to
analyze. Therefore, Smith-Miles et al. (2014) extended Rice’s framework by projecting
the feature vector defining an instance into a two-dimensional vector, ι, in the instance
space, I ⊂ R

2, for visualization. Then, τ is employed to identify the regions of I in which
good or exceptional performance is expected from an algorithm. These regions, known
as algorithm footprints (Corne and Reynolds, 2010), not only illustrate the links between
problems and algorithms, but also provide information on the phase transitions. The
extended framework is depicted in Figure 1.

This article provides a method for the objective assessment of a black-box op-
timization algorithm’s strengths and weaknesses. Unlike related work on algorithm
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assessment and comparison (Hansen et al., 2011; El-Abd, 2012; Rios and Sahinidis,
2013; Liao et al., 2015), the method quantifies both the nature of the test instances and
the algorithm performance. The method is based on the accurate estimation and char-
acterization of each algorithm’s footprint—a region in the space of all possible instances
of the problem where an algorithm is expected to perform well based on inference from
empirical performance analysis. Therefore, the method is also useful to predict the like-
lihood of an algorithm being successful on a new problem, such as the work by Malan
and Engelbrecht (2014), although, it also provides a visual representation that general-
izes performance across areas of the problem space. The method follows an adaptation
of Rice’s framework originally proposed by Smith-Miles et al. (2014) for combinatorial
optimization problems, which we have refined for its use with continuous black-box
optimization problems. The framework has been successful in identifying complemen-
tary and individual strengths of several algorithms in other problem domains such as
traveling salesman problem (Smith-Miles and Tan, 2012) and graph coloring (Smith-
Miles et al., 2014). However, it has not been yet adopted and applied to continuous
black-box optimization.

To construct the feature space, �, we use Exploratory Landscape Analysis (ELA)
measures, as evidence suggests that they can be effective predictors of algorithm per-
formance (Mersmann et al., 2011; Bischl et al., 2012; Muñoz et al., 2012; Malan and
Engelbrecht, 2014). To estimate the footprints, we select a set of features to generate a
common instance space, which we validate by constructing sufficiently accurate pre-
diction models of algorithm performance across the instance space. Finally, we propose
a new method to construct and characterize the footprints, which we apply for each
algorithm and the overall portfolio of state-of-the-art algorithms. The results reveal
unique strengths and weaknesses, and demonstrate our methodology’s ability to quan-
tify common features of hard problems, and locate regions where a phase transition
may lie.

The remainder of this article is as follows: In Section 2, we introduce the meta-
data employed to generate a reliable representation of the problem space, and to mea-
sure the power of a continuous black-box optimization algorithm. We then train and
validate prediction models in the feature space in Section 3, and we construct the in-
stance space used to visualize the algorithm footprints in Section 4. In Section 5, we
measure the relative power of each algorithm to gain insights into the conditions under
which each algorithm has demonstrable strengths and weaknesses. Finally, we discuss
the main implications of the results and outline avenues for further research in Section 6.

2 Experimental Metadata

Before describing the experimental metadata, let us define our notation. Without losing
generality over maximization, we assume minimization throughout this article. The
goal in a black-box optimization problem is to minimize a cost function f : X → Y
where X ⊂ R

D is the input space, Y ⊂ R is the output space, and D ∈ N
∗ is the dimen-

sionality of the problem. A candidate solution x ∈ X is a D-dimensional vector, and
y ∈ Y is the candidate’s cost. A target cost value, yt ∈ Y , defines the upper bound of a
satisfactory minimization performance from an algorithm.

2.1 Black-Box Continuous Optimization Instances

As a representative subset of the problem space, F, we use the noiseless benchmark set
from the Comparing Continuous Optimizers (COCO) package (Hansen et al., 2014).
Problem instances are generated by scaling and transforming 24 basis functions, which
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are classified into five categories: Separable (f1 –f5), low or moderately conditioned
(f6 –f9), unimodal with high conditioning (f10 –f14), multimodal with adequate global
structure (f15 –f29), and multimodal with weak global structure (f20 –f24). Transforma-
tions include linear translations and rotations, and symmetry breaking through oscilla-
tions around the identity. Each instance is uniquely identified by an index. For each basis
function, we generate 15 transformed instances for each dimension D = {2, 5, 10, 20},
resulting in a total of 1440 problem instances. A detailed qualitative description of each
basis function is proposed by Mersmann et al. (2015).

2.2 Exploratory Landscape Analysis Measures

Exploratory landscape analysis (ELA) methods produce one or more measures related
to the features of a problem instance (Mersmann et al., 2011). There are several methods
developed for continuous optimization problems, most of which have been adapted
from combinatorial optimization (Pitzer and Affenzeller, 2012; Malan and Engelbrecht,
2013). For this work, we implemented the methods summarized in Table 1, as they
are quick and simple to calculate. Furthermore, these methods can share a sample
obtained through a Latin hypercube design (LHD), guaranteeing that the differences
observed between measures depend only on the instance, and not on sample size or
sampling method. For example, the convexity and local search methods described by
Mersmann et al. (2011) use independent sampling approaches; hence, they cannot share
a sample between them nor with the methods in Table 1. The convexity method takes
two candidates,

{
xi , xj

}
, and forms a linear combination with random weights, xk .

Then, the difference between yk and the convex combination of yi and yj is computed.
The result is the number of iterations out of 1000 in which the difference is less than
a threshold. Meanwhile, the local search method uses the Nelder–Mead algorithm,
starting from 50 random points. The solutions are hierarchically clustered in order to
identify the local optima of the function. The basin of attraction of a local optima, xl ,
that is, the subset from X from which a local search converges to xl , is approximated by
the number of algorithm runs that terminate at each xl . Both sampling approaches do
not guarantee the resulting sample is unbiased; hence, reusable. Besides ensuring a fair
comparison, sharing a LHD sample reduces the overall computational cost, as no new
candidates must be taken from the space.

We generate an input sample, X, for each considered dimension of each function
using LHD. The size of the sample is 1000 × D. The output sample, Y, is generated by
evaluating X on each instance from the COCO benchmark of a given dimension. As
D increases, the size of X is relatively smaller, affecting the ability of the features to
accurately summarize the properties of the instance. Since accurate features can only
be calculated by increasing the sample size exponentially (Jansen, 1999), a trade-off in
accuracy is made to calculate the features in polynomial time (He et al., 2007). This is an
unavoidable limitation due to the curse of dimensionality. Furthermore, each feature
was normalized employing the techniques described in Table 1.

2.3 Algorithms

We used the algorithms listed in Table 2 as a representative subset of the algorithm
space, A ⊂ A. The algorithms were automatically selected using ICARUS (Muñoz and
Kirley, 2016), a method that uses uncovered sets to identify complementary algorithms.
Also known as Landau or Fishburn sets, uncovered sets are used in voting systems
theory to identify the winners of an election (Penn, 2006). The selected algorithms were
tested using COCO at the Black-Box Optimization Benchmarking (BBOB) sessions at
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uñ

oz
,K

ir
le

y,
an

d
H

al
ga

m
ug

e,
20

15
)

ε S
Se

tt
lin

g
se

ns
it

iv
it

y
lo

g 10
,z

-s
co

re
M

0
In

it
ia

lp
ar

ti
al

in
fo

rm
at

io
n

z
-s

co
re

534 Evolutionary Computation Volume 25, Number 4



Performance Analysis of Continuous Black-Box Optimization

Ta
bl

e
2:

Su
m

m
ar

y
of

th
e

al
go

ri
th

m
s

em
pl

oy
ed

in
th

is
ar

ti
cl

e,
w

hi
ch

w
er

e
se

le
ct

ed
us

in
g

IC
A

R
U

S
(M

uñ
oz

an
d

K
ir

le
y,

20
16

)
an

d
th

e
pu

bl
ic

ly
av

ai
la

bl
e

re
su

lt
s

fr
om

th
e

B
B

O
B

se
ss

io
ns

at
th

e
20

09
an

d
20

10
G

E
C

C
O

C
on

fe
re

nc
es

.A
lg

or
it

hm
na

m
es

ar
e

as
us

ed
fo

r
th

e
d

at
as

et
d

es
cr

ip
ti

on
s

av
ai

la
bl

e
at

ht
tp

:/
/

co
co

.g
fo

rg
e.

in
ri

a.
fr

/
d

ok
u.

ph
p?

id
=

al
go

ri
th

m
s.

A
lg

or
it

hm
D

es
cr

ip
ti

on
R

ef
er

en
ce

B
FG

S
T

he
M

A
T

L
A

B
im

pl
em

en
ta

ti
on

(f
m
i
n
u
n
c

)o
ft

hi
s

qu
as

i-
N

ew
to

n
m

et
ho

d
,w

hi
ch

is
ra

nd
om

ly
re

st
ar

te
d

w
he

ne
ve

r
a

nu
m

er
ic

al
er

ro
r

oc
cu

rs
.T

he
H

es
si

an
m

at
ri

x
is

it
er

at
iv

el
y

ap
pr

ox
im

at
ed

us
in

g
fo

rw
ar

d
fin

it
e

d
if

fe
re

nc
es

,w
it

h
a

st
ep

si
ze

eq
ua

lt
o

th
e

sq
ua

re
ro

ot
of

th
e

m
ac

hi
ne

pr
ec

is
io

n.
O

th
er

th
an

th
e

d
ef

au
lt

pa
ra

m
et

er
s,

th
e

fu
nc

ti
on

an
d

st
ep

to
le

ra
nc

es
w

er
e

se
tt

o
10

−1
1

an
d

0
re

sp
ec

ti
ve

ly
.

(R
os

,2
00

9a
)

B
IP

O
P-

C
M

A
-E

S
A

m
ul

ti
st

ar
tC

M
A

-E
S

va
ri

an
tw

it
h

eq
ua

lb
ud

ge
ts

fo
r

tw
o

in
te

rl
ac

ed
re

st
ar

ts
tr

at
eg

ie
s.

A
ft

er
co

m
pl

et
in

g
a

fi
rs

tr
un

w
it

h
a

po
pu

la
ti

on
of

si
ze

λ
d

ef
=

4
+

� 3
+

ln
D

� ,
th

e
fi

rs
ts

tr
at

eg
y

d
ou

bl
es

th
e

po
pu

la
ti

on

si
ze

;w
hi

le
th

e
se

co
nd

on
e

ke
ep

s
a

sm
al

lp
op

ul
at

io
n

gi
ve

n
by

λ
s
=

⌊ λ
d

ef

( 1 2
λ
�

λ
d

ef

) U [0
,1

]2
⌋ ,w

he
re

λ
�

is
th

e
la

te
st

po
pu

la
ti

on
si

ze
fr

om
th

e
fi

rs
ts

tr
at

eg
y,

λ
,a

nd
U

[0
,
1 ]

is
an

in
d

ep
en

d
en

tu
ni

fo
rm

ly
d

is
tr

ib
ut

ed
ra

nd
om

nu
m

be
r.

T
he

re
fo

re
,λ

s
∈

[λ
d

ef
,
λ
/
2 ]

.A
ll

ot
he

r
pa

ra
m

et
er

s
ar

e
at

d
ef

au
lt

va
lu

es
.

(H
an

se
n,

20
09

)

L
Ss

te
p

A
n

ax
is

pa
ra

lle
ll

in
e

se
ar

ch
m

et
ho

d
ef

fe
ct

iv
e

on
ly

on
se

pa
ra

bl
e

fu
nc

ti
on

s.
To

fin
d

a
ne

w
so

lu
ti

on
,i

t
op

ti
m

iz
es

ov
er

ea
ch

va
ri

ab
le

in
d

ep
en

d
en

tl
y,

ke
ep

in
g

ev
er

y
ot

he
r

va
ri

ab
le

fi
xe

d
.T

he
ST

E
P

ve
rs

io
n

of
th

is
m

et
ho

d
us

es
in

te
rv

al
d

iv
is

io
n,

i.e
.,

it
st

ar
ts

fr
om

an
in

te
rv

al
co

rr
es

po
nd

in
g

to
th

e
up

pe
r

an
d

lo
w

er
bo

un
d

s
of

a
va

ri
ab

le
,w

hi
ch

is
d

iv
id

ed
by

ha
lf

at
ea

ch
it

er
at

io
n.

T
he

ne
xt

sa
m

pl
ed

in
te

rv
al

is
ba

se
d

on
it

s
“d

if
fi

cu
lt

y,
”

i.e
.,

by
it

s
be

lie
fo

fh
ow

ha
rd

it
w

ou
ld

be
to

im
pr

ov
e

th
e

be
st

-s
o-

fa
r

so
lu

ti
on

by
sa

m
pl

in
g

fr
om

th
e

re
sp

ec
ti

ve
in

te
rv

al
.T

he
m

ea
su

re
of

d
if

fi
cu

lt
y

is
th

e
co

ef
fi

ci
en

ta
fr

om
a

qu
ad

ra
ti

c
fu

nc
ti

on
f

(x
)
=

a
x

2
+

b
x

+
c
,w

hi
ch

m
us

tg
o

th
ro

ug
h

th
e

bo
th

in
te

rv
al

bo
un

d
ar

y
po

in
ts

.

(P
oš
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the 2009 and 2010 Genetic and Evolutionary Computation Conferences (GECCO). The
results are publicly available at the COCO website.2 The results are stored as raw data
files which contain the numerical output of an algorithm run on a given problem. A
thorough description of the files’ contents is made by Hansen et al. (2014). From the
files, we collected the number of function evaluations required to reach the provided yt

within 10−8 in at least one of 15 runs, as defined by the BBOB sessions’ rules (Hansen
et al., 2014). Each algorithm run had a budget of 104 × D function evaluations. On the
2009 session, three runs were carried out on each of the first five instances, whereas on
the 2010 session, one run was carried out on each of the first fifteen instances. Despite
this difference, the experiments are considered equivalent to averaging across random
restarts. In both scenarios, the computation of the average is somewhat dominated by
the most difficult starting points or instances, which reduces the number of effective
runs and increases the purely random variation in the results. Making several repetitions
over all instances is a valid method to counteract this variation.

2.4 Algorithm Performance Score

Although there are several performance measures reported in the literature (Bartz-
Beielstein, 2006; Malan and Engelbrecht, 2014), we use the expected running time, t̂ ,
as it is simple, interpretable, relevant to practice, and the measure of choice on most
benchmark comparisons (Suganthan et al., 2005; Hansen et al., 2014). It is defined as
the number of function evaluations required to reach yt within a target precision for
the first time over a number of runs. The result is normalized over the dimension, log-
transformed, and compared to a threshold. The resulting binary performance measure,
τ , describes whether an algorithm solves or does not solve the instance. An instance is
solvable and labeled with τ = 0 if the algorithm reaches yt in at least one run within
the budget. Otherwise it is unsolvable and labeled with τ = 1. An algorithm is the
best performing on an instance if it minimizes t̂ . Furthermore, we define an overall
performance measure for the portfolio, and we identify the best algorithm for each
instance. An instance is β-easy for the portfolio and labeled ‘0’ if at least 100 × β% of
the algorithms are able to solve it. Otherwise the instance is β-hard and labeled ‘1.’ For
this article, we define β = 0.5.

2.5 Summary of Experimental Metadata

To summarize, we collected the following metadata:

1. The problem subset F is composed of 1440 black-box continuous optimization
instances from the COCO benchmark set, with {2, 5, 10, 20} dimensions, as de-
scribed in Section 2.1.

2. The features space, �, is defined as the 18 ELA measures listed in Table 1.

3. An algorithm subset A comprises the five methods as described in Table 2.

4. The binary performance score τ , which labels an instance as solvable (0) or
unsolvable (1) by an algorithm, using the performance criteria described in
Section 2.4 as τ = 0 if t̂ < 104 × D, or 1 otherwise.

2http://coco.gforge.inria.fr/doku.php

536 Evolutionary Computation Volume 25, Number 4



Performance Analysis of Continuous Black-Box Optimization

3 Feature Selection and Performance Prediction

The ELA methods listed in Section 2.2 transform the sample data from the input and
output space, (X, Y), to a point in the feature space, �. While there is some good evidence
to support the relationship between the selected features and problem difficulty (Bischl
et al., 2012; Muñoz et al., 2012; Malan and Engelbrecht, 2014), it is likely that the number
of candidate features may be infinite. Nevertheless, not all of them may be necessary to
obtain an accurate performance prediction, nor to generate a viable instance space. For
example, some features may be colinear, providing marginal additional information.
Others may measure characteristics unrelated to the difficulties for a specific algorithm.
Therefore, we use a feature selection procedure to identify the subset of features that
allow us to make the most accurate predictions.

The first step in this procedure is to test for colinearities using Pearson correlation. A
feature is discarded if its correlation coefficient, rX,Y , is greater than 0.7 and its correlated
feature is computationally simpler. We also discard those features highly correlated with
the dimensionality of the problem, D. Therefore, these nine features were discarded:
FDC is colinear with R̄2

Q (rX,Y = 0.714), DISP1% is colinear with D (rX,Y = 0.752), R̄2
L

is colinear with R̄2
LI (rX,Y = 0.860), R̄2

QI is colinear with R̄2
Q (rX,Y = 0.871), min (βL) is

colinear with H (Y) (rX,Y = 0.865), max (βL) is colinear with H (Y) (rX,Y = 0.915), ξ (2)

is colinear with ξ (D) (rX,Y = 0.860), εS is colinear with H (Y) (rX,Y = 0.884), and M0 is
colinear with Hmax (rX,Y = 0.809).

The second step is to measure the classification test error of support vector machine
(SVM) models using as inputs a subset of at least three features. We fit three types of
models depending on their output variable. The first type uses the binary performance
measure, τ , as the output variable. Therefore, this model type predicts whether an
instance is solvable or not for a given algorithm. The second type uses as the output
variable an index representing the best algorithm for a given instance. Finally, the third
type predicts whether an instance is β-easy or β-hard for the portfolio. One model of
the first type for each algorithm in Table 2, and one model of the third type were fitted.
On the other hand, the second type requires a multiclass model which is implemented
using binary classifiers in a ranking by pairwise comparisons (Hüllermeier et al., 2008)
architecture. We used LIBSVM as implementation of the SVM classifiers (Chang and
Lin, 2011) and the procedure described below to fine-tune them and select the best
feature subset.

Since the instances generated in the COCO benchmark are based on transformations
of 24 basis functions, the instances may share similarities between each other, potentially
affecting accuracy of the error estimation. Furthermore, the SVM classification model
has two parameters, C and γ , which must be finely tuned. Therefore, we implement a
combination of the hold-one-problem-out (HOPO) and hold-one-instance-out (HOIO)
approaches proposed by Bischl et al. (2012) instead of a simple k-fold cross-validation
to estimate the error and fine tune the SVMs. For all dimensions under analysis, in-
stances 1 to 10 from each basis function correspond to the training set and instances 11
to 15 correspond to the test set. The training set is separated into six randomly parti-
tioned groups of four basis functions as follows: {1, 7, 13, 19}, {2, 8, 14, 20}, {3, 9, 15, 21},
{4, 10, 16, 22}, {5, 11, 17, 23}, {6, 12, 18, 24}. A tuning grid for C and γ is constructed
using a LHD of 30 points between -5 and 15, which then are used as powers of two.
For each point in the parameter grid, a SVM model is cross-validated across function
groups. To avoid over-fitting due to differences in the size of a class, a weight, ωi , is
given to each class equal to the percentage of instances not belonging to that class. The
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Table 3: Selected features by the two-stage procedure described in Section 3 for predict-
ing solvability.

R̄2
LI R̄2

Q CN ξ (D) ξ (1) Hmax γ (Y) κ (Y) H (Y)

BFGS
√ √ √ √ √ √ √

BIPOP-CMA-ES
√ √ √

LSstep
√ √ √ √ √

Nelder–Doerr
√ √ √

(1 + 1)CMA-ES
√ √ √ √ √

Portfolio
√ √ √ √ √ √

β-Hard
√ √ √

Table 4: Performance of the algorithm performance model on the test set, where %S

is the percentage of solvable instances and %Ŝ is the model forecast. The remaining
columns measure the performance of the model. In boldface are values above 90% for
ACC, SPC, TPR, NPV, and PPV, representing good model performance, and values
above 10% of FNR and FPR, representing poor model performance.

Algorithm %S %Ŝ ACC SPC FNR FPR TPR NPV PPV

BFGS 43.8% 43.8% 98.8% 98.6% 1.1% 1.4% 98.9% 98.6% 98.9%
BIPOP-CMA-ES 95.8% 95.6% 99.4% 99.6% 5.0% 0.4% 95.0% 99.8% 90.5%
LSstep 30.2% 31.0% 96.3% 95.2% 3.3% 4.8% 96.7% 92.6% 97.9%
Nelder–Doerr 59.4% 58.3% 93.1% 93.3% 7.2% 6.7% 92.8% 95.0% 90.5%
(1 + 1)CMA-ES 65.6% 62.5% 90.2% 90.2% 9.7% 9.8% 90.3% 94.7% 82.8%

procedure is repeated using all groups and all points in the tuning grid for a given
subset of at least three features. Therefore, one function from each class defined by
Hansen et al. (2014) has been removed from the training set. The mean cross-validation
error across all groups is used to determine the best parameters for the SVM for a given
subset of features. Then, a SVM is fitted using the complete training set and the best
parameters. The classification test error is then used to select the best subset of features.

The results of this step are presented in Table 3. Using the nine remaining features,
466 feature combinations of minimum three and maximum of nine features are possible.
We used exhaustive enumeration to select the features marked in Table 3 that provided
the best model. The table shows that there are different selected features for each model.

Table 4 shows the test performance of the first type of model, which forecasts
whether an instance is solvable or not for a given algorithm. In the table, %S is the
percentage of solvable instances and %Ŝ is the model forecast. Performance is quantified
by the model’s accuracy (ACC), specificity (SPC), false negative rate (FNR), false positive
rate (FPR), true positive rate (TPR), negative predictive value (NPV), and positive
predictive value (PPV). In boldface are values above 90% for ACC, SPC, TPR, NPV, and
PPV, representing good model performance, and values above 10% of FNR and FPR,
representing poor model performance. The results show that the prediction models
are effective in discriminating solvable and unsolvable instances, as they have similar
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Table 5: Performance of the algorithm selection model on the test set, where %B is the
percentage of instances for which an algorithm is best and %B̂ is the model forecast.
The remaining columns represent the confusion matrix of the model. In boldface are
those values in the diagonal above 90%, which represent excellent model performance,
and off the diagonal above 10%, which represent poor model performance.

BIPOP-
Algorithm %B %B̂ BFGS CMA-ES LSstep Nelder–Doerr (1 + 1)CMA-ES

BFGS 15.6% 15.8% 100.0% 0.0% 2.2% 0.0% 0.0%
BIPOP-CMA-ES 42.7% 42.3% 0.0% 99.0% 0.0% 0.0% 0.0%
LSstep 9.4% 9.4% 0.0% 0.0% 97.8% 0.8% 0.0%
Nelder–Doerr 25.0% 25.2% 0.0% 1.0% 0.0% 99.2% 0.0%
(1 + 1)CMA-ES 7.3% 7.3% 0.0% 0.0% 0.0% 0.0% 100.0%

Table 6: Performance of the portfolio hardness model with β = 0.5, where %C is the
percentage of instances on each class and %Ĉ is the model forecast. The remaining
columns contain the confusion matrix for the prediction models. In boldface are those
values in the diagonal above 90%, representing good model performance, and off the
diagonal above 10%, representing poor model performance.

%C %Ĉ β-easy β-hard

β-easy 59.4% 58.3% 93.3% 7.2%
β-hard 40.6% 41.7% 6.7% 92.8%

values of SPC and TPR. The least reliable of the models was fitted for (1 + 1)CMA-ES,
which has a tendency to misclassify unsolvable problems (NPV > PPV, PPV = 82.8%).
A similar problem is present in the BIPOP-CMA-ES model (FNR > FPR), due to the
severe class imbalance (%S = 95.8%).

Table 5 shows the test performance of the second type of model, which forecasts
the best algorithm for a given instance. In the table, %B is the percentage of instances
for which an algorithm is best and %B̂ is the model forecast. The remaining columns
indicate the best algorithm, while the rows indicate the model selection. In other words,
these columns represent the confusion matrix of the model. In boldface are those values
in the diagonal above 90%, which represent excellent model performance, and off the
diagonal above 10%, which represent poor model performance. The results show that
LSstep and (1 + 1)CMA-ES are specialized algorithms, as each one of them is the best
solver for less than 10% of the instances. As observed in Table 5, the model is highly
accurate with on-diagonal performance above 97.0%. Errors are occasionally made
by selecting Nelder–Doerr over BIPOP-CMA-ES (1.0%), BFGS over LSstep (2.2%) and
LSstep over Nelder–Doerr (0.8%). With these choices though, all the instances would
still be solved by the recommended algorithm.

Table 6 shows the test performance of the third type of model, which forecasts
whether an instance is β-easy or β-hard for the portfolio, with β = 0.5. In the table, %C

is the percentage of instances in each class and %Ĉ is the model forecast. The remaining
columns contain the confusion matrix. In boldface are those values in the diagonal
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Table 7: Selected features by the two-stage procedure described in Section 3. The se-
lected features for the common instance space were those that produced a stable two-
dimensional representation while minimizing the average test error.

R̄2
LI R̄2

Q CN ξ (D) ξ (1) Hmax γ (Y) κ (Y) H (Y)

BFGS
√ √ √ √ √

BIPOP-CMA-ES
√ √ √ √ √

LSstep
√ √ √

Nelder–Doerr
√ √ √

(1 + 1)CMA-ES
√ √ √

Portfolio
√ √ √

β-Hard
√ √ √

Common space
√ √ √ √ √

above 90%, representing good model performance, and off the diagonal above 10%,
representing poor model performance. The results show that the prediction model
retains accuracy above 90%.

To summarize, the nine selected ELA features have effectively enabled highly accu-
rate prediction of algorithm performance, identifying whether each algorithm can solve
an instance, which algorithm from the chosen portfolio solves each instance fastest, and
how the entire portfolio considers the difficulty of each instance. The relationship be-
tween the ELA features and the performance of algorithms necessary to tackle the
algorithm selection problem shown in Figure 1 has therefore been established.

4 Instance Space Generation through Dimension Reduction

We now shift our focus to using the ELA features to construct an instance space—
enabling each instance to be represented as a point in a metric space—which will
enable us to visualize the similarities and differences between test instances (functions).
The instance space will also enable us to characterize and quantify the region of the
space where we can expect good-performance of an algorithm. We call such a region
the algorithm footprint (Corne and Reynolds, 2010). For this purpose, a dimensionality
reduction method is required to project the m-dimensional feature space into R

2 for ease
of visualization. We use principal component analysis (PCA), which rotates the data to a
new coordinate system in R

m, with the axes defined by m new features which are linear
combinations of the original ones. The new axes are calculated as the eigenvectors
of the m × m covariance matrix. We then project the instances on the two principal
eigenvectors corresponding to the two largest eigenvalues of the covariance matrix.

Just as we did for the prediction models described in Section 3, we use a selection
process to identify which features generate a viable instance space, that is, the one that
allows the best separation between classes of instances. The procedure is mostly the
same as described in Section 3, with the difference that the subset of features is projected
onto two variables (coordinates along the top two PCA axes), which are then used as
inputs to the SVMs. The three types of models described here were also trained in the
two-dimensional instance space. The selected features for each model are presented
in Table 7. Each fitted model selected a different subset of features, which precludes
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a fair comparison between algorithms, as the projected instance space is not common.
Therefore, a sacrifice in individual model accuracy must be made in order to have a
common space for all algorithms, facilitating a fair comparison. Such common space
could be constructed by selecting the subset of features which minimizes the average
error across all the models, that is,

{
R̄2

Q, ξ (D), ξ (1)
}
. However, this subset resulted in too

many instances being mapped to the same point in the instance space, causing numerical
instability on subsequent analyses. With an increase on average error of 2.90%, the best
set of features that produced a stable instance space was

{
R̄2

LI , R̄
2
Q, ξ (D), ξ (1),H (Y)

}
.

Although the instance space could be constructed using all the features, this would
result in an increased error of 10.07%. The instance space, which explains 89.45% of the
variance in the data, is described by the equation:

[
PC1

PC2

]
=

[
0.1499 0.1513 0.1738 0.1444 0.9506

0.1167 0.2722 0.4599 0.7936 −0.2663

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

R̄2
LI

R̄2
Q

ξ (D)

ξ (1)

H (Y)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦




(1)

Figure 2 illustrates the common instance space, where each point represents an
instance, plotted separately by the qualitative groups described in Section 2.1 and by
dimensionality. In the instance space, problem dimensionality is inversely proportional
to the PC2 (rX,Y = −0.5923). Since ≈ 60% of the instances have PC2 < 0, with a mini-
mum being -1.1902, the instances are closer to each other as the dimension increases.
This demonstrates that the features lose capacity to discriminate between the functions
at higher dimensions as expected, given the sampling dependency on the feature cal-
culations. Besides, conditioning decreases with the PC1. This can be explained by the
strong correlation between PC1 and H (Y) (rX,Y = 0.9882), with the latter known to
relate to function conditioning (Muñoz, Kirley, and Halgamuge, 2015). Furthermore,
multimodal functions are located toward the lower-left side of the instance space, with
f22 and f21 constructing the tail of the space. We can observe a number of gaps in the
instance space, that might accommodate the generation of new test functions.

Figure 3 illustrates the value of each feature in Table 3 throughout the instance space,
with each one of them linearly scaled in the [0, 1] range. Moderate correlations are ob-
served between PC1 and R̄2

LI (rX,Y = 0.5037), R̄2
Q (rX,Y = 0.4842) and ξ (D) (rX,Y = 0.5265).

Moderate to high correlations are observed between PC2 and R̄2
Q (rX,Y = 0.4588), ξ (D)

(rX,Y = 0.7337), ξ (1) (rX,Y = 0.9176). These features are related with the problem separa-
bility (Seo and Moon, 2007), modality and scaling (Mersmann et al., 2011). Hence, they
confirm that smoother, unimodal problems likely to be separable and ill-conditioned,
will have positive PC1 and PC2. Unselected features have moderate to low correlation
with the projected coordinates. For example, Hmax —a feature related with modal-
ity (Muñoz, Kirley, and Halgamuge, 2015)—increases toward the lower-left side of
the space (PC1 : rX,Y = −0.3738, PC2 : rX,Y = −0.4048), where multimodal functions
are located. On the other hand, CN lacks of an obvious gradient on the instance space
(PC1 : rX,Y = −0.2690, PC2 : rX,Y = 0.1487).

Within this 2-D instance space, it is interesting to see if the location of an instance
enables algorithm performance to be predicted as well as when we used all nine features
to summarize an instance. We regenerate the models from Section 3, now using only
the 2-D coordinates as the input vector.
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Figure 2: Functions from the COCO benchmark set and their location in the common
instance space, with coordinates given by Equation (1).

Table 8 shows the test performance of the first type of model, which forecasts
whether an instance is solvable or not for a given algorithm. The columns and rows fol-
low the conventions of Table 4. The results show that the prediction models in Section 3
are more accurate than the ones built for visualization as expected, with the LSstep
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Figure 3: Feature distribution across the common instance space, with each one of them
linearly scaled in [0, 1] range.

and (1 + 1)CMA-ES models falling under 90% accuracy. Furthermore, the visualiza-
tion models perform less uniformly, presenting specific advantages and disadvantages.
For example, the BFGS and LSstep models are more accurate at detecting unsolv-
able problems (TPR > SPC), although they can be deemed as conservative (FPR > FNR,
BFGS:FPR = 12.4%, LSstep:FPR = 27.6%). On the contrary, the BIPOP-CMA-ES model is
optimistic (FNR � FPR, FNR = 55.0%), which means that the model oversimplifies the
results. As it was the case for prediction, the (1 + 1)CMA-ES model is the least reliable,
with a tendency to misclassify unsolvable problems (NPV > PPV, PPV = 70.3%). These
results indicate that the areas of the instance space in which a problem is solvable are
noncontiguous.

Table 9 shows the test performance of the second type of model, which forecasts
the best algorithm for a given instance. The rows and columns follow the conven-
tions of Table 5. The results show that the model has lost accuracy, with only BIPOP-
CMA-ES retaining on-diagonal performance above 90.0%. Errors are made by selecting
Nelder–Doerr over BFGS (10.7%), BIPOP-CMA-ES over LSstep (26.7%), and BFGS over
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Table 8: Performance of the algorithm performance model on the test set, where %S

is the percentage of solvable instances and %Ŝ is the model forecast. The remaining
columns measure the performance of the model. In boldface are values above 90% for
ACC, SPC, TPR, NPV, and PPV, representing good model performance, and values
above 10% of FNR and FPR, representing poor model performance.

Algorithm %S %Ŝ ACC SPC FNR FPR TPR NPV PPV

BFGS 43.8% 42.3% 90.6% 87.6% 7.0% 12.4% 93.0% 90.6% 90.6%
BIPOP-CMA-ES 95.8% 97.7% 97.3% 99.6% 55.0% 0.4% 45.0% 97.7% 81.8%
LSstep 30.2% 25.8% 87.7% 72.4% 5.7% 27.6% 94.3% 84.7% 88.8%
Nelder–Doerr 59.4% 62.9% 91.9% 96.1% 14.4% 3.9% 85.6% 90.7% 93.8%
(1 + 1)CMA-ES 65.6% 59.4% 82.1% 81.6% 17.0% 18.4% 83.0% 90.2% 70.3%

Table 9: Performance of the algorithm selection model on the test set, where %B is the
percentage of instances for which an algorithm is best and %B̂ is the model forecast.
The remaining columns represent the confusion matrix of the model. In boldface are
those values in the diagonal above 90%, which represent excellent model performance,
and off the diagonal above 10%, which represent poor model performance.

BIPOP-
Algorithm %B %B̂ BFGS CMA-ES LSstep Nelder–Doerr (1 + 1)CMA-ES

BFGS 15.6% 14.0% 77.3% 0.5% 0.0% 3.3% 11.4%
BIPOP-CMA-ES 42.7% 45.0% 5.3% 92.2% 26.7% 6.7% 8.6%
LSstep 9.4% 8.3% 0.0% 2.9% 66.7% 3.3% 0.0%
Nelder–Doerr 25.0% 25.8% 10.7% 3.9% 6.7% 86.7% 2.9%
(1 + 1)CMA-ES 7.3% 6.9% 6.7% 0.5% 0.0% 0.0% 77.1%

Table 10: Performance of the portfolio hardness model with β = 0.5, where %C is the
percentage of instances on each class and %Ĉ is the model forecast. The remaining
columns contain the confusion matrix for the visualization models. In boldface are
those values in the diagonal above 90%, representing good model performance, and off
the diagonal above 10%, representing poor model performance.

%C %Ĉ β-easy β-hard

β-easy 59.4% 62.9% 96.1% 14.4%
β-hard 40.6% 37.1% 3.9% 85.6%

(1 + 1)CMA-ES (11.4%). These errors would result on 2.4% of the instances to remain
unsolved through an incorrect choice of algorithms.

Table 10 shows the test performance of the third type of model, which forecasts
whether an instance is β-easy or β-hard for the portfolio, with β = 0.5. The rows and
columns and rows follow the conventions of Table 6. The results show that only β-easy
instances maintain accuracy above 95%, while 14.4% of β-hard instances are classified
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as β-easy. Of these falsely easy instances, 82.8% can only be solved by a single algorithm.
On the other hand, 72.7% of the falsely hard instances can be solved by three algorithms.
Clearly, a desire to visualize the algorithm performance in two-dimensions has cost
some accuracy. Nevertheless, since the accuracy across models is still above 80%, we
conclude that the instance space representation is reliable enough, and could no doubt
be improved with the addition of more features that better explain problem difficulty.
Visualization in 3-D would also lessen some damage caused by dimension reduction,
as the first three eigenvalues explain 96.6% of the variance, while the first two explain
89.4%.

5 Analysis of Algorithm Power

Using predictions by the models described in Section 4, we define two footprints for
each algorithm. The first one, called the solution footprint, indicates the area of the space
in which any instance is predicted to be solvable by the corresponding algorithm, even
if those instances are not in the training subset. The second one, called the absolute
footprint, indicates the area of the space in which the algorithm will be the best perform-
ing for any instance. To characterize a footprint, we measure its relative size, density
(number of instances inside the footprint area), and purity (the percentage of solvable
or best performing instances within the footprint), which provide us with an objec-
tive measurement of the relative strength of the algorithm across the instance space.
Furthermore, these measurements give us information on where within the instance
space the algorithm is strong. The accuracy of the footprints is tightly linked to the
predictive models fitted in Section 4; therefore, the results in Tables 8 to 10 serve as
a measure of confidence for each footprint (Smith-Miles et al., 2014), and should be
reported simultaneously.

Methods for calculation and analysis of algorithm footprints have been reported in
previous work. For example, Smith-Miles and Tan (2012) used the area of the convex hull
created by the points where good performance was observed. To find the convex hull, we
calculated a Delaunay triangulation, which was then pruned by removing the triangles
whose edges exceeded a threshold. This is a top-down approach for the footprint
calculation. Smith-Miles et al. (2014) generated unconnected triangles by finding the
nearest neighbors and maintaining a taboo list. The triangles were merged together if
the resulting region fulfilled the density and purity requirements, which can be thought
of as a bottom-up approach. There are limitations to both approaches. On the former,
there is insufficient evidence that the remaining triangles belong to the footprint. On
the latter, the random elements on the triangle construction lead to a number of them
being exceedingly large.

We combine the strengths of both approaches in Algorithm 1, aiming to mitigate
their limitations. In its first step, the algorithm measures the distances between two
instances, and marks one of them for elimination if the distance is less than a threshold,
δ. This is done to avoid numerical instability with the triangulation algorithm, which
is applied as the second step. As a third step, the algorithm finds the concave hull, by
removing any triangle with edges larger than another threshold, �. As a fourth and final
step, the algorithm calculates the density and purity of each triangle in the concave hull.
If a triangle does not fulfill the density and purity limits, it is removed from the hull.
The parameters for Algorithm 1 are the lower and upper distance thresholds, {δ,�}, set
to 1% and 25% of the maximum distance, respectively. The density threshold, ρ, is set
to 10, and the purity threshold, π , is set to 75%.
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When comparing two algorithms to decide which one is the best for a given area of
the instance space, contradictions may appear between absolute footprints calculated
with Algorithm 1. To eliminate such contradictions and increase the footprint’s purity,
we estimate the area lost by the “base” footprint if the contradicting sections are re-
moved. The method is described in Algorithm 2. Assuming that absolute footprints
with larger areas imply a higher algorithmic power, we remove the contradicting tri-
angles in the base footprint if their area is less than the total area of the contradicting
triangles in the “test” footprint. The density and purity of the resulting footprint are
measured to guarantee that they meet the limits. This algorithm may also be used to
clarify the edge between the solution footprint and the remaining instance space. In this
case, we treat the unsolved instances as belonging to a second algorithm.

Figure 4 illustrates the solution footprints, that is, the performance is defined as
the algorithm’s ability to solve a problem within a budget, as predicted by the models
validated in Section 4. Blue marks represent the solved problems and red marks the un-
solved ones. The known region of the instance space, that is, the concave hull defined by
all the instances, has a total area of 6.0835 units, with a density of 233.7 instances/unit.
If we focus on the BIPOP-CMA-ES footprint, illustrated in Figure 4b, we observe that
its unsolved region closely matches parts of LSstep’s solution region, illustrated in
Figure 4c. Comparing this results with Figure 2, we observe that those regions corre-
spond to {f3, f4}. This implies a certain level of complementariness between these two
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Figure 4: Solution footprints of (a) BFGS, (b) BIPOP-CMA-ES, (c) LSstep, (d) Nelder–
Doerr, and (e) (1 + 1)CMA-ES, as predicted by the models validated in Section 4.

algorithms. We also can notice that BIPOP-CMA-ES can solve problems roughly located
at PC1 ∈ [−2, 0] , PC2 ∈ [−1, 0]. According to Figure 2, this region mostly corresponds
to multimodal problems with adequate global structure, which no other algorithm in
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Figure 5: Portfolio footprints as predicted by the models validated in Section 4, where
(a) shows the absolute footprints for each algorithm, and (b) shows the solution footprint
for the portfolio based on the β-hardness criteria.

the portfolio is able to solve. This result matches our expectations, as BIPOP-CMA-ES
is designed to exploit strong global structures. The easiest problems seem to be located
on the top right region of the space, as most of the algorithms are able to solve them. By
comparing these results with Figure 2, we observe that the easier problems have D = 2,
while the harder ones have D = {10, 20}. The tail-like region located at PC1 ∈ [−6,−2],
which is mostly unsolvable to BFGS and LSstep, is composed of high dimensional,
multimodal problems with weak structure.

Figure 5a illustrates the absolute footprints as predicted by the model validated in
Section 4, with the color of the marks indicating the best algorithm. Figure 5b shows the
predicted solution footprint for the portfolio, based on the β-hardness criteria, with the
blue marks representing the β-easy problems and red marks the β-hard ones. Figure 5
confirms the observations made in Figure 4. For example, the β-hard regions for the
algorithm are those covered by BIPOP-CMA-ES and, to a lesser extent, LSstep. On the
other hand, the Nelder–Doerr algorithm covers most of the β-easy regions.

To quantify these observations, we calculate the area, a, density, d, and purity, p,
of the algorithm footprints. Table 11 shows the results based on the predictions of the
models validated in Section 4 and their difference with the results based on experimental
data. The normalized area and density, denoted with the subscript N , were calculated
using the values from the known region of the instance space as references, that is,
a = 6.0835 and d = 233.7463. In boldface are the differences that exceed 10%. Table 11
also shows the accuracy of the models in which the footprints are based, extracted from
Tables 8 to 10.

As observed in Figure 4, BIPOP-CMA-ES has the largest solution footprint (ACC =
90.6%, aN = 97.4%, dN = 98.3%, p = 99.4%) followed by Nelder–Doerr and (1 + 1)CMA-
ES, with densities between 80% and 90% and purities above 99%. Larger footprints
imply higher algorithmic power, while higher density provides larger sample sizes to
support the conclusion of good performance. On the other hand, LSstep has the smallest
and most dense solution footprint (ACC = 87.7%, aN = 3.5%, dN = 511.6%, p = 99.6%).
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Table 11: Analysis of algorithm power through the predicted accuracy, ACC, area, a,
density, d, and purity, p, of the solution and absolute footprints as predicted by the
models validated in Section 4, and their difference with the results based on experimen-
tal data. The area and density are normalized using the values from the known region
of the instance space as references, i.e., a = 6.0835 and d = 233.7463. In boldface are the
differences that exceed 10%.

Solution footprint Absolute footprint

Algorithm ACC aN dN p ACC aN dN p

BFGS 90.6% 44.1% 91.4% 99.5% 77.3% 2.7% 514.7% 99.0%
BIPOP-CMA-ES 97.3% 97.4% 98.3% 99.4% 92.2% 23.8% 176.0% 98.7%
LSstep 87.7% 3.5% 511.6% 99.6% 66.7% 3.5% 241.2% 100.0%

Predicted Nelder–Doerr 91.9% 62.8% 85.8% 99.3% 86.7% 36.7% 67.8% 97.2%
(1 + 1)CMA-ES 82.1% 60.1% 97.6% 99.8% 77.1% 0.8% 787.4% 100.0%

β-easy 96.1% 62.8% 85.8% 99.3%
β-hard 85.6% 22.5% 177.9% 94.6%

BFGS 3.3% 1.0% 0.6% 0.5% 109.6% 0.6%
BIPOP-CMA-ES 0.9% 0.8% 0.1% 4.8% 16.3% 1.5%
LSstep 7.1% 321.5% 1.3% 0.5% 47.5% 8.1%

Difference Nelder–Doerr 2.4% 0.6% 0.2% 5.1% 5.6% 6.9%
(1 + 1)CMA-ES 3.2% 0.6% 0.4% 0.3% 244.6% 2.4%

β-easy 2.4% 0.6% 0.2%
β-hard 1.7% 5.1% 0.1%

A small footprint implies specialization, while high density indicates strong similari-
ties between the covered instances. However, smaller footprints are harder to predict
accurately, due to the minority class distribution.

If we focus on the absolute footprints, Nelder–Doerr and BIPOP-CMA-ES cover
the largest area, with 36.7% and 23.8%, respectively, of the valid instance space cov-
ered. Nelder–Doerr has also the least dense footprint (ACC = 86.7%, dN = 67.8%). As
observed in Figures 2 and 4d, this algorithm is best for lower dimensional problems,
which happen to cover a larger area. The remaining algorithms have footprints that
cover less than 10% of the instance space. In particular (1 + 1)CMA-ES is the weakest
one (ACC = 77.1%, aN = 0.8%, dN = 787.4%, p = 100.0%), implying that it has strong
performance throughout the instance space, and is excellent for some problems located
at PC2 ∈ [−1,−0], most of which are multimodal with adequate global structure and
D = 10, according to Figure 2. In overall, its performance is unremarkable compared
with others but sufficient to make it a good off-the-shelf algorithm. In total, the abso-
lute footprints cover 67.5% of the space, while the remaining 32.5% is disputed as no
decision can be made due to contradictions and lack of information.

To round off the results, Table 11 also shows the area, density, and purity of the
β-easy and hard regions of the space. With ACC = 96.1%, aN = 62.8% and dN = 85.8%,
the β-easy region is the largest but also the least dense, which is explained by its coverage
of most low-dimensional problems according to Figure 2. Although its area is close to
that of the combined absolute footprints, it is worth noting that the β-easy region
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corresponds to the intersection of at least two solution footprints. Hence, these two
areas are not expected to be equal. On the other hand, the β-hard region covers 22.5%
of the space with dN = 177.9%, covering most of the higher dimensional problems. The
remaining 15.4% is disputed.

6 Conclusion

At the beginning of this article, we aimed to provide a method for the objective assess-
ment of the strengths and weaknesses of black-box continuous optimization algorithms,
considering both the nature of the test instances and a measure of performance. This
method is based on the accurate estimation and characterization of the algorithm foot-
prints, that is, the regions in the instance space in which the algorithm is the best or it
is expected to perform well. To estimate the footprints, we selected a set of features to
generate a common instance space. We validated the features by demonstrating their
ability to predict algorithm performance in Section 3. An instance space was generated
using the selected features in Section 4, enabling the strengths and weaknesses of each
algorithm to be visualized. Finally, we characterized the solution and absolute foot-
prints for each algorithm, and the β-easy regions for the overall portfolio in Section 5,
with β-easy understood as an instance for which at least 100 × β% of the algorithms
are able to provide a solution. We now discuss the implications of this work.

The strong links between some features resulted in nine of them being discarded
due to high correlation. Another four were removed as they increased the error of the
predictive models. All the retained features are invariant to translations on the output
space, Y , but none is invariant to translations on the input space, X , for all instances and
functions (Muñoz and Smith-Miles, 2015). This explains why two other features were
critical to generate a stable instance space, while producing models with accuracy above
80%. Although it has been shown that both single features and large feature sets can fail
as performance predictors (Malan and Engelbrecht, 2014), it is also true that problems
with similar features may result in different performance if we don’t measure sufficient
features that affect performance. By keeping these two features, we also retained some
information about the phase transitions, that is, the points in which a small change in
problem structure produces algorithm failure. There is no doubt that new and adequate
features could sharpen the phase transitions; however, we should aim to exploit the
data already collected as much as possible so we do not incur additional costs (Muñoz,
Sun, Kirley, and Halgamuge, 2015).

The footprint analysis revealed a complementary relationship between BIPOP-
CMA-ES, an excellent off-the-shelf algorithm with a large footprint, and LSstep, a spe-
cialized one with a footprint that covers the BIPOP-CMA-ES gaps. These two algorithms
covered most of the β-hard instances. To build a proficient portfolio, a third algorithm
could be selected between BFGS, Nelder–Doerr and (1 + 1)CMA-ES. Given the smaller
size of BFGS footprint, the similarities between (1 + 1)CMA-ES to BIPOP-CMA-ES, and
the speed in which Nelder–Doerr works on lower dimensions (Hansen et al., 2011) and
its larger footprint, we conclude that Nelder–Doerr offers the best complement.

As a consequence of the footprint analysis, we estimate that nearly 30% of the
known region of the instance space is disputed; that is, no single algorithm could
be considered the best. Furthermore, for nearly 15% of the known region there is no
consensus as of whether the problems are β-easy or hard. This may be rectified through
additional features, but we also need to consider the choice of test instances. Since the
bounds of the known region are determined by the instances in the problem subset,
F, the results suggest a lack of instances within the disputed areas, and outside the
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bounds of the known regions. For example, the tail-like region located at PC1 ∈ [−6,−2]
and PC2 ∈ [−1, 0] is mostly isolated from the rest of the instances. Currently, we lack
instances located in the empty space above or below this region; that is, PC1 ∈ [−6,−2]
and PC2 /∈ [−1, 0], and we ignore the structure that such instances may have. These
disputed regions are perhaps the most interesting areas of the instance space, as they
represent the phase transitions for each algorithm. Our next objective is to generate test
functions that fill the gaps between footprints and also push the bounds of the instance
space.

Our analysis is dependent on the quality of the meta-data described in Section 2.
For example, our future work focuses on generating a more comprehensive set of test
instances, which densely samples the instance space. We expect that these new test
instances will alter the overall performance of each algorithm, as it was observed for
graph coloring problems (Smith-Miles and Bowly, 2015). Moreover, it is possible that
new data modifies the correlations between features, or that algorithm performance is
better described by a different set of features. Although a new instance space must be
calculated in light of this new evidence, the methodology proposed in this article can
be quickly reapplied to updated meta-data.

Other current areas of inquiry are the analysis of the effects that sample size and
randomness have on the ELA measures. Broadening the scope of this work, we are
adapting these methods to other problems besides black-box continuous optimization,
for example, machine learning, time series modeling, and combinatorial optimization.
We are also working on building freely accessible web-tools that carry out the footprint
analysis automatically. Such tools will be at www.monash.edu/matilda in the future.
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