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Abstract. The problem of algorithm selection, that is identifying the most effi-
cient algorithm for a given computational task, is non-trivial. Meta-learning tech-
niques have been used successfully for this problem in particular domains, including
pattern recognition and constraint satisfaction. However, there has been a paucity
of studies focused specifically on algorithm selection for continuous optimization
problems. This may be attributed to some extent to the difficulties associated with
quantifying problem “hardness” in terms of the underlying cost function. In this
paper, we provide a survey of the related literature in the continuous optimization
domain. We discuss alternative approaches for landscape analysis, algorithm mod-
eling and portfolio development. Finally, we propose a meta-learning framework for
the algorithm selection problem in the continuous optimization domain.

1 Introduction

A continuous optimization problem is such that, given a function f : Rn �→ R, we
want to find x� = argmin f (x). When solved in a computer, a search algorithm
samples from the very large but finite search set, X ⊂ R

n. Each observation xi ∈
X has an associated output value yi ∈ Y such that yi ≈ f (xi), where Y ⊂ R is
the objective set. The algorithm aims to find one or more candidate solutions xo ∈
X ,yo ≈ f (xo), such that |yo − y�| � δ , where y� = f (x�) and δ → 0. It is expected
that the algorithm produces a solution of acceptable quality after a bounded number
of function evaluations. The opposite is known as premature convergence.
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Premature convergence is related to the nature of the search algorithm, as each al-
gorithm exploits differently the information obtained by sampling f . Therefore, un-
less some restrictions are in place, it is optimistic to expect that an algorithm would
work well across a wide range of functions [78]. Due to the plethora of available al-
gorithms, it is non-trivial to know which one is able to exploit the information more
efficiently [29]. This is an instance of the well known algorithm selection problem.
In this paper we propose a framework based on meta-learning for the algorithm se-
lection problem. For this purpose, we review the literature about the different stages
of the new framework — namely landscape analysis, meta-learning models and al-
gorithm portfolios. Then, we outline the requirements for implementation of the
new framework.

The paper is organized as follow: Section 2 presents the algorithm selection
problem for continuous optimization, and the related parameter tuning problem.
Section 3 describes the characteristics that make an optimization problem difficult
and it reviews different methods for landscape analysis. Section 4 discusses how
machine learning techniques have been employed to solve the algorithm and param-
eter selection problems. Section 5 analyzes the related works in algorithm portfolio
design. Section 6 presents our meta-learning based framework for the algorithm
selection problem. Finally, Section 7 discusses avenues for further research.

2 Algorithm Selection

Rice [56] defined the algorithm selection framework as a loose methodology that re-
lates problems and solution methods through performance and problem characteris-
tics. This framework did not provide specific methods for implementation, which is
one of the reasons it has not been thoroughly explored. However, in the last decades,
meta-learning has been favored as implementation method with demonstrated suc-
cess in different problem domains [62]. Meta-learning exploits data obtained from
previous experiments by constructing models that can be used for prediction, using
machine learning techniques [28]. Figure 1 presents a summary of this implementa-
tion adapted to continuous optimization problems. In this figure, F is the very large,
amorphous, high dimensional and hard to define function set, for which f ∈ F . Let
A be the large and diverse algorithm set, and a ∈ A be one of the many algorithms
capable of searching for xo in X . The cost of running a in f can be measured by a
function ρ ( f ,a). Let P ⊂ R be the set of feasible values of ρ ( f ,a), called the per-
formance set. Then, the algorithm selection problem is to find ao = argminρ ( f ,a)
with f constant. It is noteworthy to point out that this problem cannot be solved
directly. Hence, let C ⊂ R

m be the set of function characteristics. This set includes
known attributes of f such as the dimension, but also measurements about the occur-
rence of certain structures known to pose difficulties for a [57, 73]. Characteristics
are important as they provide some order and coherence to the complicated problem
space by imposing a lower dimensional coordinate system [57]. Characteristics can
be calculated through user defined functions known as landscape analysis meth-
ods, c(x,y). These functions should be designed such that varying complexities are
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Fig. 1 Summary of the algorithm selection framework for the continuous optimization
domain

exposed, structural properties are captured, and advantages and limitations of the
different algorithms are related to them.

Let g : C �→ P be a function that forecasts the performance based on the charac-
teristics. Consider the existence of a subset of functions from F such that we know
the values of c(x,y) and ρ ( f ,a) for all a ∈ A. Then, it is possible to use a machine
learning technique to identify the function g. These empirical performance models
provide a way to forecast the performance of an algorithm when a new problem is
presented. The whole process can be automated if the results of several models are
compared through an objective procedure.

The algorithm selection framework does not consider the algorithm parameter, θ ,
which controls the way that the search is carried out. This parameter can potentially
adapt a to f if it is properly tuned, and it can appreciably change the overall perfor-
mance [8]. This implies that an optimal θ for one function might not be appropriate
for others [35, 50]. Choosing θ for a given a is a time-consuming and non-trivial
task, and considerable effort has gone into developing methods for parameter selec-
tion that can be categorized as parameter tuning and parameter control [16]. Tuning
keeps the parameters constant during the run, while control modifies them. Both ap-
proaches have advantages and disadvantages that have been thoroughly discussed in
the literature [16, 35, 50].

Meta-learning is compatible with both parameter tuning and control [62]. If two
instances of the same algorithm differ only in one parameter, we can consider them
as two completely different algorithms [57]. This approach was followed by Hut-
ter et al. [31, 30, 32] for tuning randomized algorithms in the context of boolean
satisfiability problems, and by Muñoz et al. [45] for tuning the Covariance Ma-
trix Adapted Evolutionary Strategy. Therefore, parameter selection can be seen as a
component of the algorithm selection problem. As such, assume that g is not only
dependent of the landscape characteristics c but also from θ . In fact, if we assume
that c and θ are representations of f and a respectively, then ρ ( f ,a) ≡ g(c,θ ).
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Even though meta-learning provides a clear avenue for implementation, every
problem domain has specific issues to be considered, e.g. characteristic quantifi-
cation, methods for selecting algorithms, and issues with uncertainties. One of the
most important issues is the characteristic quantification. It is important to have a
good understanding of what makes a continuous optimization difficult. For that pur-
pose, in the next section we will discuss the search landscape metaphor and different
methods used in landscape analysis of optimization problems.

3 Landscape Analysis

To understand what makes an optimization problem difficult, we employ the search
landscape metaphor. Consider a surface in a three dimensional space composed of
ridges, valleys and basins, such as the ones shown in Fig. 2. In this surface the high-
est or deepest areas represent the optimal points. The objective of the search is to
navigate the surface until such areas are found. This metaphor helps us to under-
stand what is needed for a successful search [53], and allows us to describe features
in the landscape that are influential, even though most practical problems will have a
dimension several orders of magnitude larger than two. These features — which are
defined on detail in [44] — can be described qualitatively in cases where the knowl-
edge about the function is complete. However, in cases where the only information
available are the pairs (xi,yi) these attributes are usually unknown. Therefore, a
landscape analysis technique is used to provide a measure that quantifies one or
several attributes.

A number of landscape analysis methods have appeared in the past two decades.
Table 1 presents a summary of some well-known landscape analysis methods and
their underlying concepts. The measures have been classified into two groups: global
and local. The former takes the whole sample to produce the measure while the
later calculates the average of evaluating a condition over each observation and its
neighborhood. Global measures have the advantage that samples extracted during
an experiment can be reused to calculate different measures. However, they do not
provide details about the locality of the landscape. Nevertheless, local measures can
become intractable when the sample is too large, as each observation has to be ana-
lyzed independently. Other disadvantage of local measures is that samples obtained
in one type of experiment are not reusable, e.g. time series measures require that
a random walk experiment, while the basin of attraction measures require a local
search experiment. Samples could be reusable if an intermediate processing step is
placed. In previous work [44] we have demonstrated a procedure to calculate local
measures from scattered data —extracted using random sampling— for two dimen-
sional problems. However, this approach is not scalable. This is due to the sensitivity
that local measures have to the neighborhood definition.

Other authors have identified limitations in the landscape analysis methods. Their
application requires a sufficient number of observations, which grows exponentially
as the dimension of the search space increases. This establishes a difference between



The Algorithm Selection Problem on the Continuous Optimization Domain 79

(a)

(b)

Fig. 2 Landscape for Gallagher’s Gaussian 21-hi Peaks function in two dimensions from
the Comparing Continuous Optimization Benchmark. Figure (a) show a three dimensional
rendering of the function, while Fig. (b) show a contour plot. This function is multimodal,
without global structure, non-separable, homogeneous with medium sized anisotropic basins
of attractions.
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Table 1 Summary of some well-known landscape analysis methods. Local measures calcu-
late the average of evaluating a condition over each observation and its neighborhood, while
global measures use the whole dataset to produce the measure.

Type Concept Measure References

Local

Time Series

Kolmogrov complexity [9]
Correlation length [64]
Information content of random walk [71, 72]
Random walk correlation function [76, 77]

Fitness clouds Negative slope coefficient [68, 69, 67, 70]

Evolvability
Fitness distributions [7]
Locality [21]
Fitness evolvability portraits [61]

Landmarking Basin of attraction distributions [22, 12, 17, 18, 54]

Markov Models Basin of attraction estimations [2]

Others

Phase transitions [1]
Ruggedness coefficient [3]
Information Landscapes [8]
Path diversity [10]
Motif difficulty [38]
Fourier transformations [59]

Global

Linear correlation
Fitness distance correlation [34]
Multiple correlation coefficient [41]

Epistasis

Epistasis variance [15]
Bit-wise epistasis [19]
Walsh Transformation [27]
Bit decidability [48]
Analysis of variance tables [55]
Epistasis correlation [58]
Entropic epistasis [60]

Other Dispersion [39]

theoretical results and empirical estimators, whose precision changes as the number
of observations increases to infinity [33]. Hence, a large amount of computation has
to be made to obtain precise estimators and theoretically they cannot be calculated
in polynomial time [26, 46, 66]. This also explains why statistical analysis can be
artificially “fooled” by giving a special weight to insufficiently sampled regions of
the landscape [66]. However, statistical measures are by nature approximate. The
real question is how much information is actually lost and if its possible to deal with
such losses. Also, providing a single global measure to analyze a whole landscape is
overly optimistic and several measures may be necessary [6, 46, 61]. There is, with-
out a doubt, another form of the no free lunch theorem [78] at work in this situation.
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Our interest is to obtain as much information possible for a reasonable expenditure
of effort. However, care must be taken into selecting methods that provide co-linear
measurements [75].

Note that even if the analysis is performed, the results could only be applicable
to the current representation [40]. To solve this issue, it has been suggested to use
the Metropolis algorithm to get an initial sample and extract the measures while the
optimization algorithm is running [47]. However, the bias imposed by the search
algorithm can produce deceiving results [44]. It is obvious that difficulty of a prob-
lem can only be measured relative to the algorithm used to solve it [27]. Hence,
it is necessary to relate the landscape features to the search cost. Otherwise, the
resulting measures fail to account for much, if any, of the variability on problem
difficulty [75]. However, meta-learning provides an avenue to solve various of these
difficulties.

We will continue the discussion on how landscape analysis fits into the general
framework in Sec. 6. Also, we can find examples on how landscape analysis has
been applied to create meta-learning models. The next section reviews this research
area.

4 Meta-learning Models for Optimization Algorithms

As we mentioned in Sec. 2, meta-learning uses data obtained from previous experi-
ments by constructing prediction models of the algorithm using a machine learning
technique. Table 2 presents a summary related of works to meta-learning in the con-
tinuous optimization domain. Unlike fitness prediction [11] — where a model of
the function is created, so only promising observations are actually evaluated —
machine learning is used as a mean to identify relationships among functions and
algorithms with the purpose of selecting algorithms, tuning parameters, or simply
understanding the algorithm behavior.

Francois and Lavergne [20] suggested that statistical analysis, in particular
regression, could be useful to identify trends in the algorithm behavior. Their ex-
periments concluded that performance is a random variable that follows a gamma
distribution. This affirmation was confirmed by Yeguas et al. [79]. Although in [20]
it is proposed to relate algorithm classes to performance, there is not a specific
methodology in how to determine such classes. This means that for each problem
a new model has to be trained. Hence, the resulting models could not be realisti-
cally used for parameter tuning. A similar conclusion can be drawn of the works by
Bartz-Beielstein et al. [4, 5].

Leyton-Brown et al. [36, 37] are one of the first to focus on the algorithm selec-
tion in the optimization domain. Their work using combinatorial problems demon-
strated the practical application of meta-learning, and how it can be successful in
actual applications. However, only deterministic algorithms were studied at this
stage. The work of Hutter et al. [31, 30, 32] demonstrated that randomized algo-
rithms also can be modeled following this approach. These works provide justifica-
tion to the exploration of meta-learning into the continuous optimization domain.
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Table 2 Summary of the application of meta-learning concepts in the optimization domain.
It is noteworthy the paucity of works dealing with algorithm selection using meta-learning
concepts for continuous optimization.

Problem Application Model type Reference

Algorithm Selection

Scheduling
Bayesian Classifier [13, 14]
Linear regression [42]

Program induction Linear regression [24]

Boolean satisfiability
Standard ridge regression [31, 30]
Random Forest [32]

Combinatorial auctions
Linear regression [36, 37]
Multivariate Adaptive Regres-
sion Splines

[36]

Parameter Selection
Continuous optimization

Generalized Linear Models [20]
Regression tree [4, 5]
Linear models [79]
Neural networks [45]

Program induction Linear models [24]

Boolean satisfiability Standard ridge regression [30]

A set of models would allow the user to maintain an empirical database of
problem-algorithm relationships in a compact format. The database would be useful
to select a single algorithm to run or a group of algorithms that can be run sequen-
tially or concurrently, with or without communication between each other. This type
of collection is known as algorithm portfolio [23], which we will discuss in the fol-
lowing section.

5 Algorithm Portfolios

The concept behind algorithm portfolios is simple [51]: “Instead of betting the en-
tire time budget in a single algorithm, how do we invest it in multiple algorithms?”
In other words, a portfolio aims to improve on the performance of the component
algorithms, in terms of expected computational cost and overall risk [23]. This con-
cept has been explored for more than ten years [23], and it is closely related to
the developments in memetic algorithms [43, 49], hyper-heuristics [25] and hybrid
algorithms [73]. In general, a portfolio contains besides the algorithm set, a pro-
cedure called selector, whose purpose is to decide which a is the best for a given
f [25, 28, 51, 52, 65, 73]. In some cases, the portfolio provides provides communi-
cation among algorithms through a migration scheme [51]. The portfolio approach
has demonstrated computational advantages over individual algorithms particularly
when high-variance methods are combined [23].
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The performance of a portfolio depends of both its composing algorithms and
the selector [49]. In fact, some portfolios are strictly preferable than others, as they
provide a lower risk and also a lower expected computational cost. However, in
some cases, these are conflicting objectives [23]. Hence, it is preferable to select
algorithms that are mutually complementary so a synergy can develop between
them [74]. Therefore, it is crucial to understand the relative strengths and weak-
nesses of the different algorithms in the portfolio for effective selection [63]. It has
been suggested that meta-learning systems infer which and why certain algorithms
work for specific classes of functions. As such, the information gained through
meta-learning allows to systematize the insights to combine algorithms purpose-
fully and even provide clues for new algorithm designs [28].

A final element to consider in portfolio development is the random nature of the
performance measure ρ ( f ,a). Since it is possible to have large variations of perfor-
mance over different instances of the same problem [25], the overall performance
is quite sensitive to the runtime distributions of the algorithms involved [23]. For-
tunately, for many randomized algorithms such distributions closely resemble stan-
dard parametric distributions [31], usually gamma as discussed in Sec. 4. Hence,
they can be described by certain sufficient statistics. By forecasting such statistics,
a prediction of the entire distribution for an unseen instance can be obtained [31].

6 An Extension of the Algorithm Selection Framework

So far we have discussed three main areas of research in the continuous optimiza-
tion domain: landscape analysis, algorithm modeling and portfolio design. We have
also pointed out how these areas are related to the algorithm selection problem and
meta-learning. Now, we propose the framework shown in Fig 3, which connects
these research areas together. This extended framework is composed by two feed-
back loops. The first of such loops is the analysis loop, which starts at the junction
α where the pairs (xi,yi) are fed into the landscape analysis stage. At this stage,
different analysis methods work in parallel to produce a vector of estimated charac-
teristics denoted as ĉ ∈ C. As we pointed out in Sec. 3, global measures have useful
computational advantages, particularly the possibility to reuse data from previous
experiments. However, there are two important factors to take into account: The
level of uncertainty associated with landscape analysis methods in general and the
inherent bias of the samples that have been extracted during the run. For the for-
mer, a possible avenue is to consider confidence intervals instead of a single value
as the result of the analysis. For the later, weighted resampling might provide cor-
rection over the bias. This solution was demonstrated in a previous work [44], with
promising results.

The vector ĉ is the input for a set of models, each one of them represents an
available algorithm. We do not favor any particular machine learning method to
model the algorithms, although it is desirable to have a method that recognizes the
uncertainty associated with the inputs, and provides a confidence interval for the
output. The result is the vector of performance predictions ρ̂ρρ ∈ Pm, where m is
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Fig. 3 Proposed extension of the algorithm selection framework. This new framework is
composed of two loops: the optimization loop, where the search for promising solutions is
carried out; and the analysis loop, where the selection for the best algorithm is made based
on the landscape analysis.

the number of available algorithms. The predictions in this vector will be accurate
depending on: the diversity in the knowledge base used to train the models, the
relevance of the features, and the inherent randomness of the performance function.
The results from this stage are used to create a ranking of the likelihood of each
algorithm to create a new, potentially useful solution. At this point, it is important to
consider the exploration/exploitation balance as well as the propagated uncertainty
due to the landscape analysis and performance prediction.

The second loop is the optimization loop. It starts from the junction α , where the
pairs (xi,yi) are fed into the algorithm portfolio. Besides producing new solutions to
be evaluated, the portfolio shares information among constituent algorithms with the
objective to improve the chances of producing useful solutions. For that purpose, it
must be considered if the algorithms use a type of reinforcement learning, i.e. CMA-
ES, or not, i.e. PSO. This is because data that is improperly supplied to the system
might disrupt significantly the learning process. The resulting new solutions, Xi+1,
are transmitted to the ranking and selection mechanism, where the decision is taken
into which one of them are fed into f .

In overall, the proposed framework provides different sources of information in
order to produce a more extensive and detailed search. It also stores expertise that
otherwise must be acquired by long, trial-and-error experiments. The framework
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still provides flexibility into the selection of each component, such as which land-
scape analysis method to use, what type of model to implement, and importantly,
which algorithms to select. It provides the opportunity of switching on and off algo-
rithms depending on the case and to run concurrently as many algorithms as desired,
unlike other portfolio approaches.

7 Discussion

In this paper we have discussed the relationship between landscape analysis, meta-
learning models and algorithm portfolios to the algorithm selection framework as
proposed by Rice [56]. We did so by reviewing the existing literature and proposing
an extended framework that can be used for the algorithm selection in the continu-
ous optimization domain. The proposed framework has several advantages: First, it
enhances the search by providing additional sources of information that can be used
to make decisions during the run. Second, it facilitates the storage of expertise that
otherwise must be acquired by trial-and-error experiments. Third, it provides flexi-
bility into the selection of each component, e.g. which landscape analysis method to
use, what type of model to implement, and importantly, which algorithms to place
in the portfolio. Finally, it provides the opportunity to run concurrently as many al-
gorithms as desired, and being able to switch on and off those that are suitable at the
time and place.

Our current work is focused in three areas of the framework. The first step is
to develop a deeper understanding of some of the analysis methods in Tbl. 1. Our
approach is to measure the uncertainty produced by the estimators through non-
parametric statistical tests. The second step is to develop the meta-learning models.
For this purpose, our approach is to use the confidence intervals of the landscape
analysis as input to a machine learning strategy. The third step is to produce a rank-
ing and selection mechanism. Our approach is to consider the uncertainty in the
output models as part of the decision process. Algorithms with low uncertainty and
high performance are deemed as the best choices, while algorithms with high un-
certainty and low performance are deemed as the worst choices. The results so far
are encouraging [44, 45].
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