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Abstract. Algorithm selection and configuration is a challenging problem in the
continuous optimization domain. An approach to tackle this problem is to de-
velop a model that links landscape analysis measures and algorithm parameters
to performance. This model can be then used to predict algorithm performance
when a new optimization problem is presented. In this paper, we investigate the
use of a machine learning framework to build such a model. We demonstrate
the effectiveness of our technique using CMA-ES as a representative algorithm
and a feed-forward backpropagation neural network as the learning strategy. Our
experimental results show that we can build sufficiently accurate predictions of
an algorithm’s expected performance. This information is used to rank the algo-
rithm parameter settings based on the current problem instance, hence increasing
the probability of selecting the best configuration for a new problem.

Keywords: Automatic analysis of algorithms, algorithm configuration, heuristic
methods, randomized algorithms, meta-learning models.

1 Introduction

One of the most interesting questions in search and optimization is: “Before we per-
form a run, can we estimate the likelihood that the algorithm a will be successful on
a given continuous optimization problem f ?” In most circumstances, it is very diffi-
cult to answer this question. It is a well-known fact that each search algorithm exploits
particular characteristics of the landscape [1]. As such, it is very optimistic to expect
that an algorithm would work reasonably well across a wide range of continuous opti-
mization problems unless some restrictions are in place [2]. However, it is possible to
use machine learning techniques to elucidate information related to the effects of algo-
rithm selection and/or parameter settings on similar problems; an approach known as
meta-learning.

Leyton-Brown and co-workers [3] describe an automated algorithm selection method
for boolean satisfiability problems. Their approach, based on methods proposed by Rice
[4], employs supervised learning to build a model that can predict algorithm runtime. By
comparing the estimated performance, it was possible to select the algorithm most likely
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to be suited to the task at hand. Related work was also reported in [1]. Smith-Miles
[5] describe a similar meta-learning framework that can be used to develop automated
algorithm selection and ranking models. More generally, Hoos [6] describes automated
techniques applicable for algorithm selection and configuration for NP-hard problems.

In this paper, we use the meta-learning framework outlined above to build a predic-
tion model of algorithm performance for continuous optimization problems. The model
inputs include information about f – such as the dimension, target value and landscape
features – and the parameter settings of a. The model output is the algorithm perfor-
mance measured by the number of required function evaluations to find a solution.
Information about a new problem fn can then be used by the model to estimate the
performance of a on fn. To illustrate the efficacy of this approach, we model instances
of the well-known Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) us-
ing a feed-forward backpropagation neural network (NN). The knowledge base used
for training the model is obtained by processing data from the Comparing Continuous
Optimization (COCO) set of benchmarks [7]. To validate the model, we use data from
the CEC2005 set of benchmarks [8].

The remainder of the paper is organized as follows. In Section 2, we discuss back-
ground material related to the meta-learning algorithm selection framework used in this
study. Section 3 describes the meta-learning model for continuous optimization prob-
lems in detail. Here, we describe the landscape features and the performance metric
used as inputs and outputs. Section 4 describes the experimental procedure based on al-
ternative CMA-ES parameter settings. Section 5 presents the results obtained from our
experiments. Finally, Section 6 discusses the results and states the conclusions. Avenues
for further work are also identified in this section.

2 Background

A continuous optimization problem is such that, given a cost function f that maps the
search set X ⊂ R

n to the objective set Y ⊂ R, we want to find one or more candidate
solutions xo ∈ X ,yo = f (xo), such that |yo − y�| � δ , where δ → 0 and x� ∈ R

n,y� =
f (x�) are the location of the global optimum and its value.

This type of problem is usually described through the search landscape metaphor [9].
A landscape L for a function f is defined as the tuple L= {X , f ,d}, where d denotes a
distance measure. The distance relates solutions among each other, hence it allows the
systematic search for xo in X . Ideally, we expect that our search produces an acceptable
solution after a bounded number of function evaluations. The opposite case is known as
premature convergence, when the search is unable to generate solutions outside a small
area under examination and the solution obtained is unacceptable.

As a direct consequence of the large number of existing optimization algorithms, it
is difficult to determine which algorithm is able to efficiently exploit the search land-
scape structure for a given problem [10]. Deciding which algorithm to use is referred
to as the “algorithm selection problem” by Rice [4]. In his seminal work, Rice defined
four different sets: The problem set, F , which contains functions that map X to Y; the
algorithm set, A, which contains algorithms capable of searching for xo in X ; the per-
formance set, P ⊂ R, which contains the feasible values of ρ ( f ,a), a measure for the
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cost of applying an algorithm a ∈ A in a problem f ; and the set of landscape features,
C ⊂ R

m, which is a set of attributes of the functions in F . These features are selected
in a way such that varying complexities are exposed, known structural properties are
captured, and any known advantages and limitations of the different algorithms can be
related to the features.

The algorithm selection problem investigated by Rice has been extended and eval-
uated in a variety of computational problem domains using a meta-learning frame-
work [1,3,5]. In this framework, algorithm selection is performed by exploring insights
gained from previous experiments. Here, a function g : C �→ P can be used to predict
the algorithm performance based on specific input features. If we know beforehand the
values of the features of a subset of functions from F and the values of ρ for an al-
gorithm in A; then, it is possible to use a learning strategy (such as linear regression)
to identify the function g. When a new problem is encountered, g (or the performance
model) can be used to predict the performance of the algorithm.

When working in the continuous optimization domain, careful attention must be
given to the design of model inputs and outputs. Inputs to the model g may include
the set of landscape features C, and parameters of the algorithm set, A. However, calcu-
lating the set of landscape features may well be a stumbling block, as this is a non-trivial
computation [11,12]. Previous work in the continuous optimization domain recognizes
the necessity to link landscape features and algorithm parameters to algorithm perfor-
mance [13–18]. Subsequently, an appropriate learning strategy must be employed to
generate model output ρ ( f ,a) based on a range of algorithm parameter values.

3 Prediction Model

Our model is an implementation of the meta-learning framework described above tai-
lored for continuous optimization problems. Here, we build a regression model. By
considering the landscape features and algorithm parameters as independent variables
and algorithm performance as the dependent variable, the model can be used to pre-
dict algorithm behavior for a given problem. A high-level overview of the model is
presented in Figure 1.

g(c,θ) ρ Performance measure

Hardness model

Landscape features

⎧⎪⎨
⎪⎩

c1
...

cp

Algorithm parameters

⎧⎪⎨
⎪⎩

θ1
...

θq

Inputs Outputs

Fig. 1. Structure of a meta-learning model for a continuous optimization algorithm
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3.1 Model Inputs

Landscape Features. Over the past few decades, when compared with the number of
novel algorithms, relatively limited attention has been given to the question of what at-
tributes a certain problem has, how to quantify them, and how the performance can be
related to such attributes [18]. This is because, among other reasons, it is not a single
attribute that defines the difficulty, but the interplay between different attributes [19].
Landscape analysis methods provide descriptive statistics related to algorithm perfor-
mance. However, designing suitable analysis methods for a given domain is not straight-
forward. In some cases, the effort in calculating exact values of these statistics is greater
than running a simple search algorithm [11,12]. Approximations can be efficiently cal-
culated, but the question remains if the loss of precision is too large to work with [20].
Besides, analyzing a whole landscape by using a single statistic is overly optimistic
[18, 21, 22]. These are limitations that must be acknowledged.

For this work, we selected the following features:

– Dispersion (DISP) [23] identifies features of the global structure. It is defined as the
pairwise distance between the q best points — usually q = 100 — from a sample
of size p, as shown in (1).

DISP =
1

q(q− 1)

q

∑
i=1

q

∑
j=1, j �=i

d (xi,x j) (1)

– Fitness distance correlation (FDC) [24] identifies the relationship between the po-
sition and the cost value, and has demonstrated capability to identify deceptive-
ness in the landscape. To calculate FDC, assume that from a sample of size p,
x̂o = argmin f (xi) , i = 1, . . . , p and ŷo = f (x̂o). Then, FDC is calculated using (2),
where d = ‖x̂o − xi|, ȳ and d̄ are the averages of the cost and the distance, and σ̂y

and σ̂d are the standard deviation of the cost and the distance.

FDC =
1

p− 1

p

∑
i=1

(
yi − ȳ

σ̂y

)(
di − d̄

σ̂d

)
(2)

– Multiple correlation coefficient (R2) identifies the relationship between n variables
using a linear model approximation. Let R2 be calculated using (3), where rxy is
the vector of cross-correlations between the predictor variables on X and the cri-
terion variable on Y and Rxx is the matrix of inter-correlations between predictor
variables.

R2 = r	xyR−1
xx rxy (3)

– Variable significance [25] estimates the amount of information that a subset of pre-
dictor variables provides for the criterion variable. Let V = {1, . . . ,n} be a set of
variables indexes, v ∈ V the index of one of such variables, and V ⊂ V be any com-
bination of such indexes. The significance of V is calculated by (4), where Î (XV ;Y)
is the estimated mutual information and Ĥ (Y) the estimated entropy of Y . Let ζ (k)

and σ (k)
ε be the average significance of order k and its standard deviation respec-

tively, where k = |V |.
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ζ (V ) =
Î (XV ;Y)

Ĥ (Y) (4)

ζ (k) =
1(n
k

) ∑
V⊂V ,|V |=k

ζ (V ) (5)

σ (k)
ζ =

√
1(n
k

) ∑
V⊂V ,|V |=k

(
ζ (V )− ζ (k)

)2
(6)

– Entropic epistasis [25] evaluates the contribution that a single variable has to the
fitness given the state of other variables. For a variable subset V the entropic epista-

sis is calculated by (7). Let ε(k) and σ (k)
ε be the average entropic epistasis of order

k and its standard deviation.

ε (V ) =
Î (XV ;Y)−∑v∈V Î (Xv;Y)

Î (XV ;Y) (7)

ε(k) =
1(n
k

) ∑
V⊂V ,|V |=k

ε (V ) (8)

σ (k)
ε =

√
1(n
k

) ∑
V⊂V ,|V |=k

(
ε (V )− ε(k)

)2 (9)

Algorithm Parameters. The “algorithm selection” problem in many cases is equiva-
lent to the “algorithm configuration” problem as it is possible to consider two instances
of the same algorithm as two completely different ones if they differ only in one param-
eter [26]. An experimentally driven meta-learning approach has been suggested for the
latter problem [12]. Thus, we adopt this approach in our model.

We use CMA-ES as the base algorithm for our investigation, and the following pa-
rameters as inputs for the model.

– Target precision (etarget) is the error between the best solution and the target so-
lution. As many practical problems do not have a target solution, a value can be
developed if we consider an improvement by certain user defined percentage over
the best known solution before the experimental run.

– Size of the population (λ ).
– Depending on the algorithm, it might be possible to have rules that define how the

individuals are generated or evaluated. Mirrored (M ∈ {0,1}) indicates whether the
offspring are generated in pairs, where one is 180◦ from the other. Serialized (S ∈
{0,1}) indicates if the offspring is evaluated sequentially. Hence, if an improving
offspring is found the others are not evaluated.
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3.2 Model Output

The performance ρ of the model is set to be the expected running time t̂ of the algorithm.
Here, t̂ provides an estimation of the average number of function evaluations required
by the algorithm a to reach ytarget for the first time [7]. The expected running time is
calculated as follows:

t̂( f ,a,ytarget) =
#FEs

(
ybest ≥ ytarget

)
#succ

(10)

where #FEs
(
ybest ≥ ytarget

)
is the number of function evaluations over all trials where

the best function value, ybest, was not smaller than the target function value, and #succ
is the number of runs where target precision was achieved. When not all trials are suc-
cessful, t̂ depends strongly on the termination criteria of the algorithm.

3.3 Regression Model

In this study, we use an NN to build the model. It is important to note that the meta-
learning framework is flexible and any appropriate learning strategy could be used.
While other regression methods might provide different — even superior — accuracy,
as a proof of concept the NN will suffice.1

To train this model, inputs include landscape features (from a collections of problem
instances of various complexities) and algorithm parameter values (corresponding to
alternative instantiations of the CMA-ES algorithm) as described in Section 3.1. The
model output value is log10 (t̂). Since the target precision etarget can take different values
for the same problem, a pattern for each etarget is created where the other input values
are kept constant.

The accuracy of the resulting model depends on several factors: the diversity in the
knowledge base used to train the model, the relevance of the features and their preci-
sion, and the training method used in the model. For our purpose, the accuracy of the
model would be evaluated on the capability to provide a realistic ranking of the different
configurations of the algorithm. While an accurate estimation of the expected running
time would be desirable, at this exploratory stage it is unlikely to be obtained.

4 Experiments

A comprehensive set of simulation experiments were performed to evaluate the efficacy
of the proposed meta-learning prediction model of algorithm performance for continu-
ous optimization problems.

A multi-layered feed-forward neural network (2 hidden layers; 10 neurons in each
layer) was used for the regression model. The training method employed was the Leven-
berg-Marquardt back-propagation algorithm. The inputs and outputs of the model were
normalized in the [−1,1] range. MATLAB version 2009b was used for implementation.

1 We leave the evaluation of alternative learning strategies to future work.
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Eight configurations of the CMA-ES algorithm were used for this experiment: stan-
dard, mirrored, serialized and mirrored-serialized with a single parent and either two or
four offspring.

To train the model, we use the functions from the COCO noiseless set [7] in {2,3,5,
10,20} dimensions. The features are calculated using fifteen runs of 103 · n function
evaluations using uniform random sampling (p = 15 · 103 · n). While it seems that a
large amount of data must be collected before the model can be used, we presume that
it is possible to use data from an algorithm run to calculate the features, hence avoiding
the need for an additional data extraction experiment. However, this hypothesis is not
tested in this work. The performance metric is calculated over fifteen runs for each of
the eight CMA-ES configurations with a target value of 10−8 and a maximum number
of function evaluations equal to 104 ·n.

To evaluate the effectiveness of our model in predicting the performance of a given
algorithm on new problems, we use a subset of the problems from the CEC2005 bench-
marks [8]. We limit the evaluation of our model to the noiseless functions and those
functions whose optimum is inside the initialization region. The functions were evalu-
ated on {2,3,5,10,20} dimensions. The collection of metric values for the CEC2005
problems followed the same procedure as for COCO benchmark functions.

5 Results

We examine the predictions made by our model using the CEC benchmarks. The model
is fed with landscape features that represent a benchmark problem (c), algorithm pa-
rameters that define the configuration (θ), and a desired target precision (etarget). Then,
the predicted t̂ for each configuration is ranked from the lowest to the highest at a fixed
etarget. Figures 2(a) and 2(b) show the resulting rankings for the 5-dimensional versions
of the Sphere function and the Hybrid composition function 1, respectively. The top
plots represent the actual ranking while the bottom plots represent the predicted rank-
ing. The abscissa are the log10

(
etarget

)
organized from lowest precision on the left to the

highest precision on the right. The ordinates are the ranking of a given configuration,
where the lowest is the worst performing and the highest is the best performing. Each
line on the plot represents a configuration.

We quantify the similarity between rankings using the following procedure. For a
fixed etarget, let ra be the ranking based on the actual performance of each configuration
and rp be the ranking produced by sorting the predictions generated by the model.
Let δp =

∣∣ra − rp
∣∣ be the difference between the two rankings. When this measure is

calculated for CEC benchmark data, the average δp over all scenarios — for each target
precision, dimension and benchmark function — is 12.69.

A baseline is required to asses the impact of the differences in rankings. Let rr be
a random ranking — the positions in the ranking of each configuration are randomly
generated — which is kept fixed for all the scenarios. Let δr be the difference between
the random to the actual ranking. We produce 100 different random rankings, each with
its own value of δr. The average value of the δr is 21.01, which is 39.59% higher than the
average δp. This indicates that by using the predicted ranking we improve our chances to
select the best algorithms early on the experiment. Table 1 lists the difference between δr
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(a) (b)

Fig. 2. Actual and predicted rankings for the different CMA-ES configurations on the 5D Sphere
function (a) and on the 5D first hybrid composition function (b) of the CEC2005 benchmark

Table 1. Average difference between the random and predicted rankings. A negative value indi-
cates a scenario where the random ranking is more accurate than the predicted ranking.

f 2D 3D 5D 10D 20D

1 7.42 8.85 14.28 7.81 4.59
2 8.11 8.17 13.14 8.37 4.41
3 10.33 5.89 11.37 8.58 10.73
4 12.28 5.55 10.74 14.06 -0.16
5 8.36 9.42 12.65 8.40 8.45
6 6.68 11.23 6.94 3.78 3.09
7 4.31 11.49 16.18 8.63 20.14
8 9.88 11.19 15.10 12.64 7.20
9 9.43 5.59 16.68 8.60 12.62

10 7.94 8.53 10.97 11.61 4.58
11 5.39 3.35 10.41 6.63 -3.22

f 2D 3D 5D 10D 20D

12 4.17 6.19 9.54 6.03 6.76
13 15.26 8.72 -2.54 -10.74 21.48
14 5.07 7.88 13.90 6.48 2.94
15 12.96 9.09 6.23 10.40 10.55
16 4.42 3.67 4.21 2.52 1.12
17 3.21 6.30 8.10 4.90 4.88
18 11.64 18.11 18.34 10.19 12.08
19 2.41 -5.44 3.20 4.19 1.34
20 -2.73 10.02 14.90 1.06 1.36
21 11.37 15.79 5.27 2.79 -5.13
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and δp for each benchmark function when averaged over etarget. With some exceptions on
f4, f11, f13, f19, f20 and f21, in most cases the dissimilarity between δp is lower than δr.
When this is not the case, the differences can be due to the precision of the model, which
can be improved by changing the learning strategy or preprocessing the input data.

6 Conclusion

In this paper, we used a meta-learning framework to build a model that captures the
relationship between problem cost function structure, algorithm parameters and a given
performance metric. The model is used to predict algorithm performance measured in
terms of the number of function evaluation required.

A NN was used as the underlying learning strategy. The network inputs included
a number of landscape characteristics (calculated using well-known statistical estima-
tors) and selected parameter settings. The network was trained, and subsequently tested,
using a suite of benchmark continuous optimization problems with varying character-
istics. The simulation results clearly demonstrate that the model was able to predict the
relative ranking values for given algorithm-parameter combinations effectively.

Model performance was measured by comparing predicted and actual rankings of
algorithm parameter settings on new problem instances. This implies that the ranking
can be verified if all the configurations are tested. In a practical situation this is often not
the case, as the experiments will be censored when an acceptable solution is reached.
Examining the effects of censoring on the rankings is one avenue of future work.

All landscape analysis was performed off-line — an initial experiment was carried
out to calculate landscape statistics that form part of the input of our model. In future
work, we will transfer such calculations to an on-line mode. The benefits of such an
approach are highlighted by reviewing Figures 2(a) and 2(b). Note that the best config-
uration is not the same at all target values. An on-line prediction mechanism coupled
with the ability to switch between configurations offers the potential for significant im-
provement in optimization performance.
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