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Abstract—The characterization of optimization problems over
continuous parameter spaces plays an important role in optimiza-
tion. A form of “fitness landscape” analysis is often carried out
to describe the problem space in terms of modality, smoothness
and variable separability. The outcomes of this analysis can then
be used as a measure of problem difficulty and to predict the
behaviour of a given algorithm. However, the metric value esti-
mates of the landscape characterization are dependent upon the
representation scheme adopted and the sampling method used.
Consequently, the development of a complete classification of
problem structure and complexity has proven to be challenging.
In this paper, we continue this line of research. We present a
methodology for the characterization of two dimensional nu-
merical optimization problems. In our approach, data extracted
during the search process is analyzed and the dependency of the
results to the nominated sampling method are corrected. We show
via computational simulations that the calculated metric values
using our approach are consistent with the results from random
experiments. As such, this study provides a first step towards the
on-line calculation of fitness landscape characterization metrics
and the development of empirical performance models of search
algorithms. Advances in these areas would provide answers to
the algorithm selection and portfolio configuration problems.

Index Terms—Data analysis, Heuristic algorithms, Information
entropy, Optimization, Search problems

I. INTRODUCTION

Search algorithms based on stochastic and heuristic rules
have been used to solve a wide range of optimization prob-
lems, particularly those problems where there is neither suf-
ficient knowledge about the objective function nor sufficient
time for intense investigation of the problem [1]–[3]. However,
an adequate explanation of why the algorithms were successful
when tackling the given optimization problems is lacking.
Subsequently, it is risky to assert that the algorithm under
study would work effectively on problems beyond those in
the test set. Indeed, it would be very optimistic to expect that
an algorithm would work reasonably well across a wide range
of problems unless some restrictions are placed [4]. Hence, it
is necessary to be careful when generalizing results based on
empirical tests.

Ideally, measures are required to quantify problem diffi-
culty and to help predict whether a search algorithm might
be successful on a given optimization problem. Landscape
characterization refers to the development of methods, which
provide metrics related to the attributes of an optimization
problem such as modality, smoothness and variable separabil-
ity and thus problem difficulty [5]. Landscape characterization

methods have been thoroughly investigated over the past
twenty years [6]–[22]. However, their use is not widespread
because it is easy to find counterexamples [5]. In addition,
characterization metrics typically require precise calculations
using larger volumes of data [23], the results of which are
dependent on the representation and the sampling method used
[24]. Nevertheless, if the only accessible information available
are freely chosen observations, an estimation of these metrics
would be useful when characterizing the problem difficulty.
We also have to acknowledge that a single measure would
not be useful to detect every single attribute of the “fitness
landscape”.

In this paper, we present a methodology for the characteriza-
tion of two dimensional numerical optimization problems. Our
methodology analyses data extracted during the search pro-
cess, hence it removes the necessity for a separated sampling
experiment. Importantly, our approach corrects the dependency
of the results from the parameters of the sampling algorithm.
The estimated metrics can be used to quantify the modality,
smoothness and variable scaling of the optimization problem.
We show via computational simulations that our approach
produces metric values that are consistent with the results
from random experiments. As such, this work represents a
first step towards the on-line calculation of these metrics and
the development of empirical performance models of search
algorithms. Advances in these areas would provide some
answers to the algorithm selection and portfolio configuration
problems.

The paper is organized as follows: In Section II we describe
the conceptual framework for landscape characterization and
analyze the reasons that make optimization problems hard. In
Section III we formulate our method for landscape characteri-
zation. In Section IV we describe the experiments carried out
and the obtained results. Finally, we discuss our results and
propose further work in Section V.

II. BACKGROUND

A. Black-box Numerical Optimization

Numerical optimization problems have a discrete domain
of feasible solutions when solved in a digital computational
machine. This means that both the search set, X ⊂Rn, and the
set of possible objective values, Y ⊂ R, although very large,
are finite. Let f be a function such that:
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f : X 7→ Y

Let xi ∈X be a point with a function value yi = f (xi) ∈ Y .
In this type of problem, the pairs (xi,yi) , i = 1, . . . , p are the
only accessible information and they can be chosen freely.
Without loosing generality, assume that the goal is to minimize
f . This means that we need to find one or more candidate
solutions xo ∈ X ,yo = f (xo), such that |yo− y∗| � δ , where
δ → 0 and x∗ ∈ Rn,y∗ = f (x∗) are the location of the global
optimum and its value, which may or may not be available
for representation in a digital computer. This restriction is
made because, most of the time, obtaining the global optimum
is neither feasible nor essential in practice [25]. It is also
appropriate to assume that any a priori information available
about the problem has been used in defining an appropriate
set of variables, feasibility ranges or representation [26].
Therefore, it is acknowledged that the expertise of the designer
in correctly specifying the problem cannot be replaced but
complemented.

There are many methods available to search for xo. Ideally,
the method selected does not suffer of premature convergence.
This means that, after a bounded number of function evalu-
ations, the method is not able to generate solutions outside
a small area under examination and the solution obtained is
unacceptable.

B. Search Landscapes

The search landscape is a commonly used metaphor to
describe how a search method solves a particular optimization
problem. In a two dimensional search space, it is possible
to make an analogy of the structure of the problem to a
surface composed of ridges, valleys and basins, each one of
them strongly related to its neighbors. In this surface the
local or global optimal points are located on the highest or
deepest areas [11]. Although most practical problems will
have a dimension several orders of magnitude larger than two,
this metaphor helps us to understand what is needed for a
successful search [27]. The choices made during the problem
specification strongly influence the structure and complexity
of the landscape [26].

A search landscape L for a function f can be defined as
the tuple L = (X , f ,d), where d denotes a distance measure
or metric. The existence of a distance allows the definition of
neighborhood, Nω (xi) ⊂ X , which is generated by applying
an operator ω to a vector xi in order to transform it to a vector
x j as follows:

x j ∈Nω (xi)⇔ dω (xi,x j)< r

where r → 0 is the radius of a hypersphere centered in xi.
This definition is fundamental for our understanding of the
landscape [26] as experience suggests that the type and size
of the neighborhood is crucial in the practical performance of
local search methods [14]. It is also noteworthy that the con-
cepts of distance and neighborhood become less meaningful

as n increases due to a loss of contrast between distances. This
effect is known as the curse of dimensionality [28].

A neighborhood definition allows us to refine the concepts
of local and global optima [27]. A local optima for a landscape
L is a vector xl ∈ X such that

∣∣y j− y∗
∣∣ > |yl− y∗| ,∀x j ∈

Nω (xl). The set of local optima can be denoted as Xl ⊂ X .
The global optima for a landscape L is a vector xo ∈ X such
that yo ≤ yl ,∀xl ∈Xl . The set of global optima can be denoted
as Xo⊆Xl . A unimodal landscape is the one such that |Xl |= 1,
while a multimodal landscape is the one such that |Xl |> 1. It
is not always the case that a multimodal problem poses more
difficulties than a unimodal landscape [29], [30].

A closely related concept to multimodality is the one of
smoothness, which refers to the amount of fluctuation in the
landscape and can be informally classified as rugged, smooth
or neutral. A rugged landscape exhibits large fluctuations
between points, presenting several local optima and steep
ascents and descents. A neutral landscape exhibits large flat
areas or plateaus, where changes in the input do not generate
significant changes in the output. These extremes make both
gradient and correlation information less useful and makes it
difficult to assert if one region is worth exploring. Non-smooth
landscapes are usually the result of weak causality. While there
is no viable method that can directly mitigate weak causality,
it is often the result of a bad specification of the optimization
problem [29].

Sometimes Xl defines a global structure, which can be
exploited to find xo. Therefore if the structure has fluctuations
or modality, the problem becomes difficult to solve [30]. It
is also possible to find problems who exhibit deceptiveness
— the global structure and gradient information leads the
algorithm away from the optima, rendering the optimization
algorithm less efficient than random search or exhaustive
enumeration [29].

Another definition derived from the landscape metaphor is
the basin of attraction [27]. If we consider that a local search
can be thought of as a function:

µ : X 7→ Xl

where xi is the initial point, µ (xi) is the local optimum that
it reaches. Then, the basin of attraction of xl can be defined
as the set B(xl) = {xi : µ (xi) = xl}. Hence, the search space
is split into areas each with its own basin [13]. The shape and
distribution of the basins are key attributes. A landscape with
homogeneous basins is one such that |B(xl)| ∝ 1

yl
,∀xl ∈ Xl ,

a desirable characteristic [30]. Also, a landscape can have a
deterministic configuration if its basins have the same size,
(i.e., |B(xl)| ≈ |X |/ |Xl | ,∀xl ∈Xl); or a random configuration
if its basins have different sizes [13].

Variable scaling also has an effect on the shape of the
basin of attraction. If a problem behaves differently in each
dimension, it might be necessary to perform small steps on
some dimensions and larger ones in others. Usually this is
due to anisotropic or non-spherical basins. A problem can be
even more difficult to solve if the variables are non-separable,



which means that the problem cannot be partitioned into
subproblems of lower dimensionality each of which is easier
to solve. Therefore, variations on the step size must be all
encompassing.

It is possible that the search landscape possesses different
properties at different locations, e.g. highly multimodal in
some regions, while flat and neutral in others. Such globally
inhomogeneous landscape would be difficult to characterize,
since global analysis would generate contradictory conclu-
sions. Hence, it is important that the developed methods are
statistically isotropic, which means that they do not depend
on the particular order of sampling nor the initial point where
the search was begun [11], [19].

A problem with landscape theory is that the existent models
cannot be used as framework when an algorithm uses multiple
operators, or even with different representations [26]. This
is due to the fact that every operator used defines its own
landscape, a view which is referred to as “one operator,
one landscape” [26], [31]. For example, genetic algorithms
with binary representation can define up to three different
landscapes: a mutation landscape, a crossover landscape and
a selection landscape. All of these landscapes have different
characteristics for different problems, and usually are studied
independently.

Overall, the landscape metaphor allows the description of
specific attributes of the search space, which are considered
influential in the performance of an optimization algorithm.
These attributes can be described qualitatively in cases where
the knowledge about the function is complete. To illustrate
this point we present the Comparing Continuous Optimization
(COCO) noiseless benchmark, which is a set of 24 scalable
functions [32] whose well known qualitative characteristics
are shown in Table I. But in cases where the only information
available are the pairs (xi,yi), it is necessary to develop a
set of techniques that can provide a numerical attribute. This
procedure is known as landscape characterization.

III. METHODOLOGY

In this section, we describe a new approach for landscape
characterization. The rationale behind our approach, is based
two key issues: Firstly, it is difficult to represent all the
attributes of a problem through a single measure. Secondly,
although accurate estimators might be impossible to obtain, a
sufficiently precise estimation might be enough to classify a
problem. Hence, if a set of measures can be extracted during or
after an algorithm run, and this set is related to a performance
metric of the algorithm, characterization would provide some
answers to the algorithm selection and tuning problems.

A first step in this endeavor is to modify currently existing
methods so scattered data can be used. However, it is important
to acknowledge that search algorithms are designed to explore
promising areas of X , which produces a large concentration of
observations in small regions of the space. Hence, if raw data
obtained during an algorithm run is used to extract any statistic
measures, the results would suffer of sampling bias. This is a
systematic error that causes some members of a population to

be underrepresented in a sample, making impossible to infer
the real characteristics of the population. We provide methods
for the removal of such bias, and also for calculating the
Information Content [11], [20], [21] and Basin of Attraction
[10], [13], [22] measures from scattered data.

A. Removing bias from datasets

To correct the error produced by the sampling bias a
weighted resample can be used. Let xi be an observation in a
sample from X of size p. Assume that each dimension of X
has been split into α sections forming a partition of αn bins.
Let ηu,u = 1, . . . ,αn be the number of elements in the bin u.
If xi is an element of the bin u, define ωi as the weight of the
point xi, which is calculated as follows:

ω(i) =
1

ηu

(
1− ηu

p

)
=

p−ηu

p ·ηu

Now, let wi be the empirical probability for xi to be selected
in the weighted resample, which is calculated by:

wi =
∑

i
j=1 ω j

∑
p
j=1 ω j

We select q observations from the original p using the
inverse transformation method [33]. Two issues arise by using
this method: first, it is possible that some elements have
repeats, and second, not all the data from the original p might
be selected in the resample. These issues are considered in the
next sections.

B. Information content measures for continuous optimization
landscapes

Information content is a demonstrated measure for rugged-
ness and multimodality of a function, but its implementation
requires a set of observations extracted during a random walk
with variable step size [20], [21]. The results show that the
selected step size influences the measures obtained. To solve
this limitation we devise the following procedure. Assume that
the sample of q observations is ordered in a sequence of points
following the rules:
• The first element of the sequence, x1, is randomly se-

lected.
• The next elements are selected following the rule:

xi = {x : x /∈ {x1, . . . ,xi−1} ,x = argmind (x,xi−1)}

where d (x,xi−1) = ‖x−xi−1‖.
From the ordered sample we can create a symbol sequence

Φ (ε) =
{

φ1, . . . ,φq−1
}

such that φi ∈
{

1̄,0,1
}

given by
φi (ε) =Ψ (i,ε) where:

Ψ (i,ε) =


1̄ if yi−yi−1

d(xi,xi−1)
< −ε

0 if
∣∣∣ yi−yi−1

d(xi,xi−1)

∣∣∣ ≤ ε

1 if yi−yi−1
d(xi,xi−1)

> ε

where ε ≥ 0 is a sensitivity parameter used to control the
degree of detail obtained. By including the euclidean distance



TABLE I
QUALITATIVE CLASSIFICATION OF THE COCO NOISELESS BENCHMARK FUNCTIONS, ACCORDING THE PROPERTIES OF MULTIMODALITY, GLOBAL

STRUCTURE, SEPARABILITY, HOMOGENEITY, BASIN SIZES, GLOBAL-LOCAL CONTRAST AND PLATEAUS [30].

Function Multimod. Gl.Struct Separable Homogeneity Basins Gl.Loc. Plateaus

1: Sphere none none yes high none none none
2: Ellipsoidal separable none none yes high none none none
3: Rastrigin separable high strong yes high low low none
4: Büche-Rastrigin high strong yes high medium low none
5: Linear Slope none none yes high none none none

6: Attractive Sector none none yes medium none none none
7: Step Ellipsoidal none none yes high none none small
8: Rosenbrock low none no medium low low none
9: Rosenbrock rotated low none no medium low low none

10: Ellipsoidal high conditioned none none no high none none none
11: Discus none none no high none none none
12: Bent Cigar none none no high none none none
13: Sharp Ridge none none no medium none none none
14: Different Powers none none no medium none none none

15: Rastrigin multimodal high strong no high low low none
16: Weierstrass high medium no high medium low none
17: Schaffer F7 high medium no medium medium high none
18: Schaffer F7 moderately ill-cond. high medium no medium medium high none
19: Griewank-Rosenbrock high strong no high low low none

20: Schwefel medium deceptive no high low low none
21: Gallagher 101 Peaks medium none no high medium low none
22: Gallagher 21 Peaks low none no high medium medium none
23: Katsuura high none no high low low none
24: Lunacek bi-Rastrigin high weak no high low low none

between xi and xi−1, the step size is taken into account in the
analysis. Now the information content, which characterizes the
ruggedness of the landscape is given by:

H (ε) =−∑
a6=b

Fab log6 Fab

where a,b∈
{

1̄,0,1
}

and Fab is the frequency of the substring
ab in the symbol string Φ (ε). The number of possible
substrings where a 6= b is 3!, hence the logarithm is taken with
base six so the information content is in the interval [0,1]. As
this is an entropy measure, 0 log6 0≡ 0 [20].

The partial information content characterizes the modality
of the landscape. If a new string Φ ′ (ε) is constructed from
Φ (ε) by removing all the 0’s and any repeated symbols. This
new string would have the form of “. . . 1̄11̄11̄ . . .”. Then, the
partial information content M (ε) is defined as:

M (ε) =
|Φ ′|
q−1

From this analysis, we define the following measures as
points of interest [20]: Maximum information content (1) and
Maximum information sensitivity (2) are intended to identify
unimodal from multimodal problems; Settling sensitivity (3) is
intended to identify variable scaling differences; Initial partial
information (4) and Half partial information sensitivity (5)
are intended to detect neutral areas. The measures also are
expected to provide redundancy between each other.

Hmax = max
ε
{H (ε)} (1)

εmax = max
ε
{ε : H (ε) = Hmax} (2)

εs = min
ε
{ε : H (ε)< 0.05} (3)

M0 = M (ε = 0) (4)

ε0.5 = max
ε
{ε : M (ε)> 0.5M0} (5)

Figure 1 shows some result of this analysis. The top figure
shows through markers the location of Hmax, εmax, εs, M0 and
ε0.5. The bottom figure shows the results from three different
functions from Table I: A unimodal-smooth function, f1, a
unimodal-neutral function, f7, and a multimodal function, f24.
The solid line represents the H (ε) curve and the dashed line
the M (ε) curve.

C. Basin of attraction measures

In this section, we use the concept of basin of attraction to
extract measures from data obtained during a search algorithm
run. We start with a sample of q points, which may or may
not contain repeated elements. The first step is to remove any
repeats from this dataset. Next, define a neighborhood struc-
ture using a mesh calculated through Delaunay triangulation.
The points which are only one jump distant in the mesh are
neighbors.

To start the algorithm, we select a random point in the mesh,
and follow the steepest descent heuristic over the grid. If the



Fig. 1. Result for the information content method. (Top) Curves for the
H (ε) and M (ε) for the f1 function from Table I. The × marks indicate the
location of Hmax, εmax, εs, M0 and ε0.5. (Bottom) Curves for three functions
from Table I with different qualitative characteristics.

Fig. 2. Contour plot of the Six-hump camel back function, the triangulation
mesh, the six effectively identified local optima and its basins of attraction.

point is a local minimum, we define the basin of attraction as
the set of points in the path followed to reach the local optima.
The procedure is repeated until all points have been visited
at least once. To avoid additional computational effort, if the
point currently under evaluation has been visited previously,
we add the current path to the basin of attraction of the
current point. Figure 2 shows the result of the algorithm for
the well known Six-hump Camel Back function. We use this
function for this example as its low modality and similar basin
sizes allow the generation of a clear graphic. The algorithm
identifies effectively the four local optima and two global
optima. It also generates an estimation of the basin sizes.

From this analysis we extract the following measures:
• Number of Local Optima (NLO), which is an approxima-

tion of |Xl | and identifies if the problem is unimodal or
multimodal.

• Basin Size Ratio (BSR), which is calculated by (6) and it
characterizes the existence of a dominant basin.

BSR =
maxxl |B(xl)|
minxl |B(xl)|

(6)

TABLE II
AVERAGE VALUES OF THE PEARSON χ2 GOODNESS OF FIT TEST. A ONE

INDICATES A UNIFORMLY DISTRIBUTED SAMPLE.

No. RS PSO CMA-ES
Biased Debiased Biased Debiased

Average 1.0000 0.1717 1.0000 0.1600 0.9946

• Maximum distance between basins (dmax), and Distance
between the global optimum and the local optimum with
the largest attraction basin (dopt), which detect deceptive
characteristics of the landscape.

IV. EXPERIMENTAL PROCEDURE AND RESULTS

To test the performance of our methods, we use the COCO
noiseless benchmark from Table I with n = 2 and three differ-
ent sampling methods: Random sampling (RS), (1+1)CMA-
ES [34], and the Particle Swarm Optimization (PSO) with
Trelea’s second parameter set [35]. RS is the comparison
algorithm, and the other two algorithms were selected based
only in their popularity. For each algorithm fifteen runs of 2000
function evaluations are made. If the algorithm converges to
an optimal point during its run before completing the allocated
evaluations, the algorithm is restarted at random to complete
its allocation.

The required parameters were set as follows: the number of
splits per dimension, α , was set at 50, the number of resamples
was set at 100, and the number of points per resample, q, was
set as 2000. For the Information content method, ε have values
of 0, and logarithmically increasing from 10−5 to 1015. The
number of different values tested for ε is 1000.

A. Resampling algorithm

To evaluate the performance of the resampling method, we
use the Pearson χ2 goodness of fit test [36] over sample of
2000 observations in partition with α = 5. The test is equal
to one if the sample is uniformly distributed and it is zero
otherwise. We carry out the experiment over the 100 samples
per function and averaged the total results. To evaluate the
efficiency of the method, we compare five different scenarios:
RS sampling, PSO without removing the bias, PSO removing
the bias, CMA-ES without removing the bias and CMA-ES
removing the bias. The results, shown in Table II, confirm that
applying our method produces a uniformly distributed sample.

To illustrate the effect of the resampling algorithm, we
present a histogram for 1000 points extracted from the PSO
dataset over the f1 function, from biased (Fig. 3(a)) and
debiased (Fig. 3(b)) datasets. It is noteworthy the difference
between the two distributions, where the biased dataset has
a high concentration of data in one sector. This sector is the
location of the global optima found during the experiments
with PSO.

Through these experiments, it is demonstrated that the
resampling algorithm performs adequately. As the diversity in
the dataset is higher, it is possible to obtain a uniform dataset.
This step is necessary if we are to obtain adequate landscape



(a) (b)

Fig. 3. Histogram for a sample (a) Using uniform selection (b) Using
weighted selection

Fig. 4. Information content curves for the RS, PSO Debiased (PSO-DB),
CMA-ES Debiased (CMA-DB), PSO Biased (PSO-B), and CMA-ES Biased
(CMA-B) methods for the f1 function

measures, as the bias has an effect on the results given by the
measuring algorithms.

B. Sampling bias reduction

The next step is to evaluate the effect of the sampling
bias in the measures. Figure 4 shows the result obtained
by performing the information content analysis over 100
resamples of 2000 points for the f1 function using RS, PSO
and CMA-ES, the latter two with biased and debiased datasets.
The f1 function provides illustration of a typical case. To
have a useful measure, the resulting data from the analysis
must not differ significantly from the RS experiment. If they
differ, it would be impossible to use the results in further
analysis stages. Through visual inspection of the figure it can
be noted that the biased resamples are noticeably distorted, and
the difference between the results obtained with the random
analysis are significant. While the results obtained with the
debiased resamples are close to the RS sampling. To quantify
this effect, let γa :F 7→R be a landscape measurement function
with sampling method a, γRS is landscape measurement with
random sampling. Then, e(γa) is the relative error of γa when
compared with γRS, which is calculated with (7).

e(γa) = 100 ·
∣∣∣∣γRS− γa

γRS

∣∣∣∣% (7)

The results e(γa) of this evaluation are shown in Table III,
where boldfaced values indicate a relative error equal or lesser
than 5%. The results show that the resampling effectivelly

reduces the difference between results, with exception of
M0. Larger error in the basin of attraction measures is not
as relevant, since they can be used in relative ranking. It
is noteworthy that the PSO algorithm produces less biased
results, when compared with (1+1)CMA-ES. This has a simple
explaination. Since PSO is a population algorithm, it samples
at different positions concurrently. Therefore, the distribution
of the observations is closer to uniform, which was also
demonstrated by the data from Table II.

C. Measure results and analysis

The measurements obtained through RS are shown in Table
IV. To interpret this table it is convenient to use the classi-
fication in Table I and the descriptions by Finck, et al. [37].
Functions f1 and f5 are similar according to their qualitative
characteristics and present close values for εmax, εs, M0, and
ε0.5. While f2 has the same qualitative characteristics, this
function has a large anisotropic basin of attraction that forms
a narrow valley, and it also possesses minor smooth local
irregularities. The existence of the anisotropic basin produces
differences between displacements in different dimensions.
This difference is expressed by higher values of εmax and εs.
Non smooth problems are usually represented by values of
Hmax higher than 0.7, although an exception is function f5.
In particular, Functions f16, f19, f23 and f24 which can be
considered almost noisy present the highest values of Hmax.
Function f7 is the only one that presents plateaus, which
is detected by low εmax and M0, and can be identified as
non smooth by Hmax. The existence of anisotropic basins of
attraction, such as those presented in functions f2, f6, f8 and
f9 is detected by a high value of ε0.5. Function f12, which has
the most anisotropic narrow basin of attraction has the highest
value of them all. Functions f8 and f9, f2 and f10, and f3 and
f15 are rotated versions of themselves, and as such they share
similar measurements values.

Unimodal functions with isotropic basin of attraction such
as f1, f5 and f14 are easily identified by the NLO measure.
Unimodal functions with anisotropic basins are identified as
having several local optima, such as f2, f19, f10 and f12. This
effect is a result of the meshing procedure, which divides
the unique basin into sections. However, since the number
of divisions is low, it is possible to avoid confusing this
type of problems with medium modality problems, such as
Functions f20 and f22, or highly multimodal problems such as
Functions f3, f4, f19 and f24. Function f7, which is the only
one with neutral areas, is identified as having several local
optima. Because the local search is unable to move after it
hits a neutral area, this is considered the end of the search.
Hence, this increases the number of local optima found.

Some clues about the distribution of the basin sizes can
be obtained by analyzing both NLO and BSR. If a space has
relatively uniform basins then BSR→ 1. If this ratio becomes
smaller, e.g. on f20, it is possible that the algorithm explores
one area of the search space, as its basin is more attractive
than others. If a highly multimodal problem presents a large



TABLE III
RELATIVE ABSOLUTE ERROR BETWEEN RS AGAINST PSO AND CMA-ES SAMPLING, FOR THE MEASURING TECHNIQUES DEVELOPED.

Algorithm Hmax log10 εmax log10 εs M0 log10 ε0.5 NLO BSR dmax dopt

PSO Bias 14.1% 59.7% 13.2% 12.3% 47.0% 372.4% 43.0% 18.5% 52.1%
Debias 3.4% 5.3% 2.6% 20.9% 4.3% 21.7% 23.8% 4.6% 26.0%

CMA-ES Bias 20.5% 221.4% 16.8% 24.1% 93.7% 1455.5% 48.1% 14.5% 37.7%
Debias 3.8% 4.5% 2.7% 20.5% 4.7% 20.8% 21.3% 5.8% 24.7%

TABLE IV
VALUES FOR THE INFORMATION CONTENT MEASURES FOR THE COCO BENCHMARK FUNCTIONS AND RANDOM SAMPLING

Fcn No. Hmax log10 εmax log10 εs M0 log10 ε0.5 NLO BSR dmax dopt

1 0.699 0.445 1.112 0.369 0.611 1.000 1.000 0.000 0.000
2 0.644 6.244 6.924 0.373 6.347 14.070 0.076 0.673 0.232
3 0.828 1.571 2.414 0.529 1.764 114.850 0.011 0.853 0.286
4 0.805 1.602 2.799 0.510 1.810 101.130 0.008 0.810 0.206
5 0.737 0.686 0.996 0.364 0.772 1.000 1.000 0.000 0.000
6 0.585 4.551 5.626 0.365 4.629 3.390 0.246 0.220 0.011
7 0.765 -5.000 3.206 0.234 2.322 429.010 0.018 0.966 0.091
8 0.577 2.695 4.847 0.378 3.352 19.610 0.019 0.474 0.090
9 0.584 2.726 4.941 0.369 3.255 16.070 0.018 0.407 0.111

10 0.633 6.236 7.202 0.371 6.375 14.670 0.053 0.688 0.192
11 0.617 6.297 7.216 0.370 6.427 14.860 0.034 0.701 0.256
12 0.492 5.704 10.619 0.371 8.141 14.140 0.034 0.667 0.190
13 0.741 2.121 2.483 0.370 2.219 14.410 0.065 0.698 0.157
14 0.599 -0.123 1.999 0.367 0.876 1.590 0.747 0.021 0.009
15 0.763 1.656 3.358 0.491 1.898 104.840 0.007 0.836 0.263
16 0.811 2.015 3.181 0.569 2.284 177.150 0.024 0.957 0.286
17 0.724 1.418 4.043 0.635 2.353 248.380 0.026 0.953 0.161
18 0.708 2.572 5.127 0.657 3.312 253.970 0.023 0.961 0.172
19 0.851 1.483 2.756 0.619 1.738 208.040 0.014 0.938 0.231
20 0.569 3.672 4.689 0.385 3.752 21.530 0.005 0.369 0.119
21 0.738 0.797 1.974 0.461 1.104 79.220 0.011 0.879 0.253
22 0.704 0.916 2.194 0.424 1.289 56.310 0.015 0.866 0.369
23 0.872 1.895 3.177 0.672 2.146 286.910 0.040 0.964 0.379
24 0.861 1.580 2.766 0.659 1.821 280.400 0.039 0.962 0.284

value of dopt then it is possible that the problem has some
deceiving characteristics.

The sampling bias imposed by the algorithms would change
significantly our conclusions. If we consider Hmax, and the
error imposed by the bias was incremental, this would mean
that smooth functions such as f1, f2 and f5, could be classified
as rugged. However, if the error was decremental, highly
rugged functions such as f23 and f24 would be classified as
smooth. The change in the position of εmax also would indicate
a possible anisotropic problem for function f1.

These results show that the method can be used to identify
effectively ruggedness and neutrality in the functions. The in-
spection of the structure of the function allows the correlation
between some values and the shape of the basin of attraction.

V. DISCUSSION AND FURTHER WORK

Developing a complete method to characterize a numerical
optimization problems is a complex task. A key element of
this endeavor is to acknowledge that a single measure cannot
encapsulate all characteristics that make a problem difficult.
Hence, it is necessary to develop alternative measures tailored
for specific characteristics. In this work, we have demonstrated
that it is possible to extract such measures, not only from

random data, but also from data extracted during an algorithm
run. Although it is necessary to pre-process the information
to avoid sampling bias, this eliminates the need for additional
experimentation.

In this paper, we have presented a new landscape char-
acterization method for numerical optimization problems as
a proof of concept. However, to create a complete charac-
terization method there are several issues to be addressed.
Firstly, we acknowledge that the COCO Benchmark does not
have sufficient types of problems. Specifically, there are not
sufficient problems with neutral areas. The methods developed
in this paper detect neutrality with a low M0, low εmax, and
high NLO for the Step Ellipsoidal function. At this point,
it is not possible to state definitely that all neutral problems
have the similar measurement values. The inclusion of more
test functions to the database would be ideal. Secondly, it
is necessary to scale the methods to higher dimensions as
practical problems have dimensionality much higher than two.
Some difficulties to be addressed for this purpose are the
selection of a structure for neighborhood definition and the
limited number available observations. Thirdly, it is necessary
to develop other measures that identify characteristics not
evaluated by this paper. Variable separability is one of those



characteristics which has major influence in the performance
of an algorithm. However, as the analysis methods become
more detailed, some measures might become redundant and
unnecessary to calculate. The pruning of those measures would
make the calculations more effective.

Finally, we expect to predict the performance of search
algorithms in a function given a set of characteristics. For
that it is possible to define a function h : C 7→ P , where C is
the space of characteristics of the problem and P is the space
of performance of the algorithm. A nonlinear estimator of this
function might be able to predict the possible performance of
an algorithm if the training examples are sufficient and the
input variables relevant. We will devote our further work to
explore all of these ideas.
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July 1997, pp. 65–72.

[9] S. Rochet, G. Venturini, M. Slimane, and E. El Kharoubi, “A critical and
empirical study of epistasis measures for predicting ga performances: A
summary,” in Third European Conference on Artificial Evolution, 1998,
pp. 275–285.

[10] J. Garnier and L. Kallel, “How to detect all attraction basins of a
function?” in Theoretical Aspects of Evolutionary Computation, ser. Nat.
Comput. Ser. Springer, 2000, pp. 343–365.

[11] V. Vassilev, T. Fogarty, and J. Miller, “Information characteristics and
the structure of landscapes,” Evol. Comput., vol. 8, no. 1, pp. 31–60,
2000.

[12] A. Eremeev and C. Reeves, “Non-parametric estimation of properties of
combinatorial landscapes,” in Applications of Evolutionary Computing,
ser. Lect. Notes Comput. Sc. Springer, 2002, vol. 2279, pp. 31–40.

[13] J. Garnier and L. Kallel, “Efficiency of local search with multiple local
optima,” SIAM J. Discrete Math., vol. 15, no. 1, pp. 122–141, 2002.

[14] A. Eremeev and C. Reeves, “On confidence intervals for the number
of local optima,” in Applications of Evolutionary Computing, ser. Lect.
Notes Comput. Sc. Springer, 2003, vol. 2611, pp. 115–115.

[15] P. Merz, “Advanced fitness landscape analysis and the performance of
memetic algorithms,” Evol. Comput., vol. 12, no. 3, pp. 303–325, 2004.

[16] C. Reeves and A. Eremeev, “Statistical analysis of local search land-
scapes,” J. Oper. Res. Soc., vol. 55, no. 7, pp. 687–693, 2004.

[17] W. Hordijk and S. Kauffman, “Correlation analysis of coupled fitness
landscapes,” Complexity, vol. 10, no. 6, pp. 41–49, 2005.

[18] B. Qu and B. Xu, “On epistasis for measure of genetic algorithm
hardness,” in Fuzzy Information Processing Society, 2006. NAFIPS 2006.
Annual meeting of the North American, june 2006, pp. 73 –76.

[19] H. Richter, “Coupled map lattices as spatio-temporal fitness functions:
Landscape measures and evolutionary optimization,” Phys. Nonlinear
Phenom., vol. 237, no. 2, pp. 167–186, 2008.

[20] K. Steer, A. Wirth, and S. Halgamuge, “Information theoretic classi-
fication of problems for metaheuristics,” in Proceedings of Simulated
Evolution and Learning 2008, ser. Lect. Notes Comput. Sc., vol. 5361.
Springer, 2008, pp. 319–328.

[21] K. Malan and A. Engelbrecht, “Quantifying ruggedness of continuous
landscapes using entropy,” in Proceedings of the 2009 IEEE Congress
on Evolutionary Computation (CEC2009), may 2009, pp. 1440 –1447.

[22] P. Caamaño, A. Prieto, J. Becerra, F. Bellas, and R. Duro, “Real-
valued multimodal fitness landscape characterization for evolution,” in
Neural Information Processing. Theory and Algorithms, ser. Lect. Notes
Comput. Sc., K. Wong, B. Mendis, and A. Bouzerdoum, Eds., vol. 6443.
Springer, 2010, pp. 567–574.

[23] J. He, C. Reeves, C. Witt, and X. Yao, “A note on problem difficulty
measures in black-box optimization: Classification, realizations and
predictability,” Evol. Comput., vol. 15, no. 4, pp. 435–443, 2007.

[24] G. Merkuryeva and V. Bolshakovs, “Structural analysis of benchmarking
fitness landscapes,” Scientific Journal of Riga Technical University.
Computer Sciences, vol. 42, pp. 81–86, 2010.

[25] N. Hansen, “Variable metrics in evolutionary computation,” Faculty
Habilitation. Laboratoire de Recherche en Informatique – Université
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