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Simplifying the Bacteria Foraging Optimization Algorithm
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Abstract— The Bacterial Foraging Optimization Algorithm is  been proposed [30]-[34]. Most of these works agree in that
a swarm intelligence technique which models the individual and  the algorithm uses several parameters, which deeply affect
group foraging policies of the E. Coli bacteria as a distributed g ragylt of the search. Then, the authors present a solution

optimization process. The algorithm is structurally complex due . . . . . o
to its nested loop architecture and includes several parameters to this problem by simplify the algorithm without sacrificing

whose selection deeply influences the result. This paper presents the p_erformance. o
some modifications to the original algorithm that simplifies This paper presents some modifications for the BFOA

the algorithm structure, and the inclusion of best member tg improve its computation speed and convergence, while

information into the search strategy, which improves the per- simplifving the algorithm structure. The paper is organized
formance. The results on several benchmarks show reasonable plitying g ) pap g

performance in most tests and a considerable improvement as follow. In Section Il we describe the original BFOA,

in some complex functions. Also, with the use of the T-Test and in Section Ill we report some works attempting to
we were able to confirm that the performance enhancement is solve the problems associated with BFOA. In Section 1V,

statistically significant. we present the proposed modification to the algorithm. To
examine its performance, we carry out a simulation study
L . using some common benchmark functions comparing the
Nature has been a source of inspiration for the desigionosed algorithm with the original and adaptive bacteria

of several algorithms. One main principle behind naturesiqqrithms. The results for these tests are shown in Section
inspired algorithms is the concept of efficiency, interpreteq Finally, in Section VI we present some conclusions.
as the capability of an individual to obtain a sufficient energy

source in the least amount of time [1]. This procedure called ~ !l. THE BACTERIA FORAGING OPTIMIZATION

foraging is crucial in natural selection, since the animals ALGORITHM

with poor foraging strategies are eliminated, and successful Suppose that we need to find the minimum of a function
ones tend to propagate. Hence, to survive, an animal orJg0),6 € RP, when we do not have a deterministic descrip-
group of animals must develop an optimal foraging policyion of J(8) or its gradient. This problem becomes a non
[2]. Some of the most successful foragers are bacteria likgadient optimization problem, where the ideas from bacteria
the E. Coli, which employs chemical sensing organs tfpraging can be used. Suppose tifats the position of the
detect the concentration of nutritive or noxious substancémcteria andJ(6) represents the environment conditions,
in its environment. The bacteria then moves through thgith J(68) < 0, J(8) = 0, and J(6) > O represents that
environment by a series of tumbles and runs, avoiding thtae bacteria location is a nutrient rich, neutral, or noxious
noxious substances and getting closer to food patch areas isrvironment, respectively. The chemotaxis is a foraging
process called chemotaxis. Besides, the bacteria can secretehavior where bacteria attempts to increase the nutrient
chemical agent that attracts its peers, resulting in an indirecbncentration, avoid noxious substances and search for ways
form of communication [3]. out of neutral media by random walk.

Inspired by the E. Coli foraging strategy, in 2000, K. Then, we can define a chemotactic ste@ms a tumble
Passino proposed the Bacteria Foraging Optimization Afellowed by a tumble or a run, a reproductive steps the
gorithm (BFOA), as a numerical optimization algorithmselection of the fittest in the population and its splitting, and
[4]. This algorithm, which can be classified as a Swarnan elimination-dispersal evehtas the selection of random
Intelligence (SI) technique, is not the only one to use thindividuals and its relocation on new random positions. Then,
chemotactical behavior as basis for an optimization proce(j,k,1)= 6 (j,k,1)|ji=1,2,...S are the positions of each
dure. Other work includes Bremermann in 1974 [SkilMr, member of theSbacteria population gtth chemotactic step,
et al.in 2002 [6], Vergassoleet al.in 2007 [7] and Nicolau, k-th reproductive step antith elimination and dispersion
et al. in 2008 [8]. Nevertheless, BFOA has attracted a logvent. Therd (i, j,k, ) is the location cost of theth bacteria
of attention from researchers, and several applications haggj,k,1) € RP, andN; is the bacteria’s life time in chemo-
been reported [9]-[19], other works that analyze each aéctic steps. The bacteria move following (1) whé&§) is
its components [20]-[29], and some hybrid algorithms havihe size of the step at the directidn(i). If in 6 (j +1,k,I),

the value ofJ(i, j+1,k,1) is less than ing (j,k,1), then a
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Algorithm 1: Bacteria Foraging Optimization Algorithm  profound knowledge of the interaction of all them. At the
moment, it is acknowledged that the most critical parameter
is the step sizeC, because of its strong influence in the

Initialize parameters;
Initialize the location of the population;

for | = 1 to Neg do algorithm stability anq convergence. Since the inceptipn
for k=1 to Nre do of BFQA, the st_ep size remained fixed number, but its
for j =1 to N do adaptation was implied. Dasgupta, et al. [29] show that
for i = 1to Sdo for the algorithm to converge it is necessary to modify its
Calculate value on the run. For that, there are several choices pessibl
J=30,j,k D) +Ic(8,P(j,k1)); Mishra [9] suggest using a Fuzzy Logic Controller (FLC) to
Generate a random directiah(i); adapt this parameter. Nevertheless this requires thertgnni
Jast = J; of a complete FLC, which implies the selection of several
Move using (1); more parameters. Other choices include using the individua
m=0: performance to adapt its step size. This method, presented
while m< Nsdo in [28], [29], proposes an analytical solution for the step
m=m+1: adaptation. If the cost function has its minimum value equal
Calculate a new to 0, the authors suggest that (3) is used, but if the minimum
J=30,j,k1)+Ic(8,P(j,k1)); is not equal to O, then (4) is used. These two equations
if Jlast> J then were developed assuming that the step size is small and the
‘ Move using (1); location of the bacterium is close to the optimal. It also use
else a new parameteA, with its proposed value oA = 1/16
L m=Ns which is only valid if the previous assumptions hold. Then
. L - it is necessary to select a value for this new parameter each
Split the best bacteria, eliminate the worst; time the algorithm is applied, for which there is not any
- . selection rules just systematic trial-and—error tunning.
Disperse at random some bacteria;

1

Cli)=—75— @)
During its movement, the bacteria communicate among 1
one another using chemical substances known as attractants C(i)= PR — 4)
and repellents, which deform the search space, making those T 00— Jhest

locations where more individuals are located more atracti  Other solutions to the problem of the step size was
but at the same time, avoids that bacteria get on top of ofgoposed by Korani in 2008 [34], where the random direction
another. To calculate this effect (2) is used, whewg is  was replaced by a particle swarm optimization (PSO) based
the magnitude of the attractant/repellen; andwe are the  moyement rule using (5) and (6), wheve is the inertia
width of the attractant and repellent respectively. weight, c; andc, are the acceleration coefficien®;, andR»
are two random numbers from an uniform distributi®pes;
s e ; (emfe.in)z g ; (emfeﬂn)z is the best known position of the particle a@jeg; is the
Joc(6,P) = Zlmar e m —_e me1 best known global position. While the idea to add a simpler
i= mean of information exchange that is thoroughly proven, the
)  proposal adds the following inconvenience. It ignores the u
After N chemotactic steps, a reproduction step is takef ¢ as a unit direction vector, and its multiplication &y
For the reproduction, the healthiest bacteria are splitthed could create a possible explosion of the bacteria in the same
others are eliminated, maintaining a constant populafible. way it occurs in PSO. The result is a PSO algorithm with
individuals to be reproduced are selected by using a healtkell-to—cell communication based in attractants/reptdle
metric which is the cumulative sum of the cost value on
each position visited by the bacterium. Aftég reproduction . .
steps, a dispersion and elimination event is made, whete ead® (1 +1) = W@(J) + C1R1 (Fest— 8) + CoR2 (Goest— 6) (5)
bacterium is subject to relocation with a probabilipgg.
After Ngq dispersion and elimination, the algorithm ends. : Y : :
The population sizeS is restricted to an even number, so Oi+1kh)=00.kD+CH)e(+1) ©
the population can be easily kept constant. The structure isThe reproduction and the elimination/dispersal mecha-
shown the Algorithm 1. nisms also produce noticeable effects. The reproduction
scheme is a major exploitation mechanism, because it elim-
inates the “worst performing” individuals and replacesnthe
Although some works have been carried out to identifyith copies of the “best performing.” Because of this, di-
the effect of each parameter of BFOA, still there is not aersity in the population is lost if the reproduction steps

I1l. RELATED WORKS ONBFOA PARAMETERS
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are very frequent. Besides, this mechanism heavily depends Ui— L
i—Li

on the health metric used, which is usually the sum of C(i,j+1) =R (8)
the cost of each position the bacteria have found. This can Vvn

have some deceiving results, since a bacterium stagnated in|\y,. PROPOSED CHANGES TABACTERIA FORAGING

a local minimum could have a better health measurement ALGORITHM

than a bacterium located nearby the global optimum. TheW ) implifv the alqorith hil S
elimination/dispersal event is a major exploration scheme ¢ ?'m tot S'T_E.'fy.t Ieda g?]rlt m Wl.f'.e mamt?mr:ng ||ts
since it takes any bacteria and relocates it in a new positioﬁOre elements. This include t € Simpll ication of the algo-
This event can disrupt in a deep way the search proceéi,hm archlteqture, the elimination qf t.hﬁs parameter, a
since we could take our best performing bacteria and located" adaptation rule for the step sigi), the use of an

it in an inadequate environment, losing the possibility &b g u?lfr?rn; d'sFr'g_Ut_'c?n :hefposm(_)n |_n|t|allzat|on, the |hr5|on_
a better result from that individual. of the best individual information in the movement equation

Other i is th lculati f the attractants/. | and the removal of the cell-to—cell communication.
erissue is the calcuiation ot e aftractan s.rep'esj €N The first issue to resolve is the algorithm structure. Since
The original formulation of this mechanism is time con-

. . it . th t of the dist the reproduction and the elimination/dispersal eventsiocc
suming, since 1t requires the measurement of the distanige . e chemotactic steps are exhausted, we can repkce th

between each individual. While the mechanism adds cony . . . .
S Lo . ops for iteration counters which trigger the event when a
munication between the individuals, it also adds three mor P 9

X . fumber of iterations have been made. In the original case,

parameters and a complex calculation to be obtained. In SO N N-— 4 N. — 100. New — 4. and N 4= 2, we could
H H H . S — 1 Cc — 1 e — 1 ea — ’

works, this mechanism is removed altogether, leaving tq%place the counter fd¥,e for an event every 500 iterations,

system without any cooperative information source. Also, | Neg for an event every 1000 iterations. Since we are

I seems gppropnate .to make stro'n.ger S|gpals when ,ﬂé‘ﬁminating the loops, the bacteria will either tumble onru
bacterium is located in a best position. To improve this

. . . once on each iteration. We also remove the step cousiter
Liu and P_assmo [2] suggested that (7) IS ”?edv to relate ”&?\d the bacteria can swim in one direction while it is a good
cost function to the cell-to—cell communication. The Oueradirection
cost functionJa (0) of the location is how a composition of i

the attractant/repellent functialyc and the environment cost The second issue is to develop an adaptation scheme for
. P o C (i) which could improve the search and convergence. First,
function J(0). Nevertheless it adds a new parameitrfor

. . . we must remember that the step size is multiplied by an

which there is no clear rule for tuning. L .
unit direction vector. We thoroughly tested several stepssi

using the test reported in Section V and we conclude that
C(i,0) = 0.01d, whered is the diagonal of the search space,
is an appropriated value. As adaptation technique, we use
a modification the 15-th rule extracted from the Evolution

One final problem that can be identified is that the gener&trategies (ES) [36]. We assume ti@ai, j+1) =C(i, )+
structure of the algorithm is quite complex. Since the evalus; (j) - R, whereg; is the mutation strength for the bacteria
ation relies on nested loop architecture, it is a little difit i, andR is a random number from a Gaussian distribution.
to know a priori how many function evaluations will be We carried out the test reported in Section V with different
carried out by the algorithm. If we assug= 4, N. =100, values for this parameter and we concluded tbg{0) =
Nre = 4, andNeg = 2, we could have up to 4000 function 0.0001d gives good results. For the adaptation of the step
evaluations per individual, but this number will depends osize we include a rule to control the sizea@f(j) depending
how many times does the bacteria move on a chemotactio the cost value found by the bacteria. If the cost value
step. We can conclude that, while the solutions proposed Iwas decreased or has sustained, tbgl)) = 0.800; (j — 1),
these authors are useful and give insight about the workirgherwisea; (j) = 1.200; (j —1). The chosen values for the
of the algorithm, they add new problems to be solved wheadaptation are based on the works of ES in the change of
implemented. Therefore, an integral solution is needed. mutation strength [36], since we can compare the movement
their 2009 work, Mezura-Montes and Hamdez-Ocfa [35] of the bacteria to the mutation in ES. The results show that
propose the elimination of the nested loop architecturég@ s they work in an acceptable way.
size selection based on (8), wheReis a scaling factorl; The next modification proposed is the use of a different
andL; are the upper and lower limits of the search spacenetric for the health measurement. For us it is more inter-
and n is the number of decision variables; a reproductioesting the bacteria that were able to descend more in the
and elimination/dispersal events for a single individuatle gradient, than those that got stagnated. For this, we replac
iteration, and a swarming mechanism based on the bdbe health measurement from the sum of the cost functions to
individual information. Nevertheless, still does not ddes the sum of the change between two step3, If a bacterium
a variable step size, which eventually would render thbas not moved, thedJ = 0, and if it has descended the
algorithm unstable. Therefore, we propose a solution whiajradient themAJ < 0.
tackles some of the issues mentioned, while simplify the From Korani's work [34], we suggest the use of the best
algorithm structure and the parameter use. known individual to guide the search. First, we assume that

Jar (6) = €935 (6,P(j, k1) @)
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TABLE |
PARAMETERS USED FOR THE BENCHMARK

Algorithm 2: Revised Bacteria Foraging Algorithm

Initialize parameters;
Initialize the location of the population by Hammersley Algorithm  Parameters

method; NBFO  S=50, Ne = 100, Neg = 500, peg = 0.25
Calculatediast = J(8); o g:odold, cr:zoooom , ,

: gbest BFOA =50,Ne =125,Ng =4, Nre = 2, Neg =
Obtfn’"n theg9™>, Peq = 0.25,C = 0.1, My = 0.1, Wy = 0.2 Wye = 10
for j=1 to epochsdo ABFOA  S=50, Nc = 125N = 4, Nre = 2, Neq = 2

for i=1 to Sdo Ped = 0.25,C; = 0.01d-C (i), A = max(J(1,1,1))

Move using (9); Mar = 0.1, Wyt = 0.2 Wre = 10

CalculateJ (6');
if Jast > J(0) then

Update position, cost and health; While it is necessary to obtain a better cell-to—cell com-
i (j)=0.80-0i (j—1); munication scheme, for the moment we discard the original

else one to reduce the number of parameters to be tuned. In
Keep previous position, cost and health; overall, the resulting structure is presented in the Aldponi
Generate a random directiah(i); 2.

aGi(j) =120-0 (j—-1);
| C(i,j+1)=C(i,j)+a(j)R
Update thegabest

if Reproduction Stethen
L Split the best bacteria, eliminate the worst;

V. BENCHMARK

To test the modifications to the algorithm, we carried
on a benchmark study using 18 well known test func-
tions. These are the Sphere (F{-/100, 100), Rosenbrock
(F2 / [-100, 100), Ackley (F3 /[-30, 30), Griewank

if Elimination/Dispersal Eventhen (F4 | [-600, 600), Rastrigin (F5 /[-5.12, 5.12]), Non—

| Disperse at random some bacteria; continuous Rastrigin (F6 [-5.12, 5.12]), Schewefel (F7
_ / [-500, 500), the rotated versions of functions three to
six (F8-F11), Schaffer (F12 |-100 100), and the six
Composition functions from [38] (F13-F18[+5, 5)), all
the bacteria will not move from its location if the next stepof them in 30 dimensions. We compare our results with the
will take it to a worst position, then the bacteria @lvays Original BFOA and the Adaptive BFOA [29], using (4). The
at their personal best. Then, to add the best known indiViduparameters used for each algorithm are shown in Table |,
information to the movement of the bacteria, we suggesthere NBFO is the proposed algorithm and fomMit and
replacing (1) by (9), wher¥ is calculated by (10) an@9°°st N4 represent the number of epochs necessary to perform
is the best position found so far by the swarm. Because tlaestep. Each algorithm was run 30 times, each with a total
bacteria are always at their personal best, then there iggoiof 50000 function evaluations. We calculate the minimum,
to be a bacterium that is located in the global best, then the mean, and the standard deviation for the data, which are
this case, when we calculate the unit vectorKoin (9), this  shown in Table II.
term becomeso. For this bacterium we replace this value The results show that there is an improvement over com-
with 0. plex functions over the original and adaptive algorithms, (F

F13, F14 and F17), and good results within an acceptable

Af) K (i) range of tolerance in other less complex fun_ct_ions (Fl,_ F3,

7 =+ — = F4, F8, F9, F12, F16 and F18). In the remaining functions
\/A (i)-4) \/K (|)-K(|)9 the results are disappointing. The proposed solution still

) presents some stagnation problems, since it does not achiev

) best, : P the global minimum with the given number of function
K(i) = 6%()) ~ 6'(J) (10) evaluations limit and catastrophically fails in some fuoics.

Finally, following some suggestions found for PSO [37], For an one—on-one performance comparison, we used the
we encountered that position initialization plays a majot-test with a 95% confidence range. The t—test allows the ver-
role in the algorithm results. The usual method for positioification of the statistical validity of the result and at teme
initialization is the use of an uniform random distribution time if the algorithm under test can be considered stadikyic
which creates noise filled initial positions. Thereforggular  better than the control algorithm. The t—test, considered t
pseudo random distributions are suggested for the irm#iali be a signal to noise ratio, calculates a difference between t
tion of PSO, which among the most popular are Haltortwo groups. If we haven = 30 for both groups, the lower
Hammersley, and Centroidal Voronoi Tessellations (CVT)imit for a 95% confidence range is@6055. According to
We carried out the test reported in Section V with each value it is possible to conclude about the performance
of these distribution algorithms and the best results wei the test algorithm, ift < —1.697261 the performance
obtained with the Hammersley distribution. is better than the control algorithm, #1.697261<t <

9i(i)—9i(i)+C(i,J)<
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TABLE I

MINIMUM AND MEAN VALUES, AND STANDARD DEVIATION FOR THE

BENCHMARK FUNCTION TEST FOR FUNCTIONS1TO F18

Min Mean Std

NBFO 0.00 10.06 6.29

F1 BFOA 0.00 0.00 0.00
ABFOA 0.00 0.00 0.00
NBFO 26.19 13308.75 24120.75

F2 BFOA 29.00 29.00 0.00
ABFOA 28.96 28.98 0.01
NBFO 0.02 2.13 0.68

F3 BFOA 0.00 0.00 0.00
ABFOA 0.00 0.00 0.00
NBFO 0.02 0.85 0.45

F4 BFOA 0.00 0.00 0.00
ABFOA 0.00 0.00 0.00
NBFO 79.69 224.86 42.44

F5 BFOA 0.00 0.00 0.00
ABFOA 0.00 0.00 0.00
NBFO 169.41 222.51 22.43

F6 BFOA 0.00 0.00 0.00
ABFOA 0.00 0.00 0.00
NBFO  -7452.32 -5349.66 886.35

F7 BFOA 414.42 415.20 0.45
ABFOA -5059.80 -3258.11  878.63
NBFO 0.04 2.25 0.65

F8 BFOA 0.00 0.00 0.00
ABFOA 0.00 0.00 0.00
NBFO 0.01 0.79 0.51

F9 BFOA 0.00 0.00 0.00
ABFOA 0.00 0.00 0.00
NBFO 140.33 223.84 31.84
F10 BFOA 0.00 0.00 0.00
ABFOA 0.00 0.00 0.00
NBFO 174.86 240.82 21.82
F11 BFOA 0.00 0.00 0.00
ABFOA 0.00 0.00 0.00
NBFO 0.49 0.50 0.00
F12 BFOA 0.00 0.00 0.00
ABFOA 0.00 0.00 0.00
NBFO 0.02 61.10 93.08
F13 BFOA 883.42 888.59 1.85
ABFOA 862.35 894.47 6.39
NBFO 114.13 399.67 60.03
F14 BFOA 900.00 900.00 0.00
ABFOA 739.51 892.69 30.86
NBFO 300.34 675.45 199.10
F15 BFOA 900.00 900.00 0.00
ABFOA 900.00 900.00 0.00
NBFO 900.00 923.31 41.34
F16 BFOA 900.00 900.00 0.00
ABFOA 900.00 900.00 0.00
NBFO 21.51 202.49 193.30
F17 BFOA 900.00 900.00 0.00
ABFOA 900.00 900.00 0.00
NBFO 900.01 900.37 0.20
F18 BFOA 900.00 900.00 0.00
ABFOA 900.00 900.00 0.00
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TABLE 11l
RESULTS OF THET-TEST. VALUES OFt FOR A 95% CONFIDENCE RANGE

BFOA  ABFOA BFOA  ABFOA
F1 8.77 8.77 F10 60.93 60.93
F2 3.02 3.02 F11 63.63 63.63

F3 17.15 17.15 F12 5283.92 5283.92
F4 10.32 10.32 F13 -9451 -94.46
F5 29.02 29.02 F14 -48.53 -41.69

F6 62.85 62.85 F15 -6.18 -6.18
F7 -115.25 -11.07 F16 2.96 2.96
F8 18.96 18.96 F17 -29.63 -29.63
F9 8.51 8.51 F18 9.46 9.46

1.697261 the performance is equal, and the performance is
lower if 1.697261<t. We boldfaced the better and equally
performing situations for the new algorithm.

VI. CONCLUSIONS

This paper has presented a modification for the Bacteria
Foraging Algorithm proposed by Passino [3], [4]. We aimed
to simplify the algorithm while maintaining its core elentgn
The most important modifications are the elimination of the
Ns parameter, the simplification of the algorithm architeetur
by removing the nested loops, a clear adaptation rule for
the step siz&€ (i), the use of an uniform distribution for the
position initialization, the inclusion of the best indivil
information in the movement equation, and the removal of
the cell-to—cell communication. The results obtained from
the benchmark tests suggest that a reasonable perforngance i
obtained under the same test conditions in most tests, with a
reduced complexity compared with the original and adaptive
bacteria algorithm, and in different type of benchmark func
tions. Still, the algorithm suffers of premature convemgen
and in several tests did not acquire the global minimum in
the function evaluation limit previously set. This still tsu
the bacteria algorithm in disadvantage against some other
proven metaheuristics, which achieve better reportedteesu
than those reported in this paper in several of the benchmark
functions tested [39]. A possible reason for this behasor i
the lack of “elasticity” of the step size.

Nevertheless, more work must be carried on. The first
issue is to develop a simple cell-to—cell communication
scheme. Even if there is work that supports its stability
and performance [23], it is a time consuming effort, which
adds several parameters, and for simplicity is commonly
removed from the general practice, as it was in this case.
The next issue to solve is how to simplify the reproduction
and elimination/dispersal mechanisms even further, sp the
do not depend on any parameters. In our case the number
of iterations is required for one of these events to happen.
Finally, it would be convenient to make stability and corver
gence tests for the proposed solution, which would show, if
the algorithm performs comparable to those reported in.[39]
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