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Mario A. Muñoz, Saman K. Halgamuge, Wilfredo Alfonso, and Eduardo F. Caicedo

Abstract— The Bacterial Foraging Optimization Algorithm is
a swarm intelligence technique which models the individual and
group foraging policies of the E. Coli bacteria as a distributed
optimization process. The algorithm is structurally complex due
to its nested loop architecture and includes several parameters
whose selection deeply influences the result. This paper presents
some modifications to the original algorithm that simplifies
the algorithm structure, and the inclusion of best member
information into the search strategy, which improves the per-
formance. The results on several benchmarks show reasonable
performance in most tests and a considerable improvement
in some complex functions. Also, with the use of the T–Test
we were able to confirm that the performance enhancement is
statistically significant.

I. I NTRODUCTION

Nature has been a source of inspiration for the design
of several algorithms. One main principle behind nature-
inspired algorithms is the concept of efficiency, interpreted
as the capability of an individual to obtain a sufficient energy
source in the least amount of time [1]. This procedure called
foraging is crucial in natural selection, since the animals
with poor foraging strategies are eliminated, and successful
ones tend to propagate. Hence, to survive, an animal or a
group of animals must develop an optimal foraging policy
[2]. Some of the most successful foragers are bacteria like
the E. Coli, which employs chemical sensing organs to
detect the concentration of nutritive or noxious substances
in its environment. The bacteria then moves through the
environment by a series of tumbles and runs, avoiding the
noxious substances and getting closer to food patch areas in a
process called chemotaxis. Besides, the bacteria can secrete a
chemical agent that attracts its peers, resulting in an indirect
form of communication [3].

Inspired by the E. Coli foraging strategy, in 2000, K.
Passino proposed the Bacteria Foraging Optimization Al-
gorithm (BFOA), as a numerical optimization algorithm
[4]. This algorithm, which can be classified as a Swarm
Intelligence (SI) technique, is not the only one to use the
chemotactical behavior as basis for an optimization proce-
dure. Other work includes Bremermann in 1974 [5], Müller,
et al. in 2002 [6], Vergassola,et al. in 2007 [7] and Nicolau,
et al. in 2008 [8]. Nevertheless, BFOA has attracted a lot
of attention from researchers, and several applications have
been reported [9]–[19], other works that analyze each of
its components [20]–[29], and some hybrid algorithms have
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been proposed [30]–[34]. Most of these works agree in that
the algorithm uses several parameters, which deeply affect
the result of the search. Then, the authors present a solution
to this problem by simplify the algorithm without sacrificing
the performance.

This paper presents some modifications for the BFOA
to improve its computation speed and convergence, while
simplifying the algorithm structure. The paper is organized
as follow. In Section II we describe the original BFOA,
and in Section III we report some works attempting to
solve the problems associated with BFOA. In Section IV,
we present the proposed modification to the algorithm. To
examine its performance, we carry out a simulation study
using some common benchmark functions comparing the
proposed algorithm with the original and adaptive bacteria
algorithms. The results for these tests are shown in Section
V. Finally, in Section VI we present some conclusions.

II. T HE BACTERIA FORAGING OPTIMIZATION

ALGORITHM

Suppose that we need to find the minimum of a function
J(θ) ,θ ∈Rp, when we do not have a deterministic descrip-
tion of J(θ) or its gradient. This problem becomes a non
gradient optimization problem, where the ideas from bacteria
foraging can be used. Suppose thatθ is the position of the
bacteria andJ(θ) represents the environment conditions,
with J(θ) < 0, J(θ) = 0, and J(θ) > 0 represents that
the bacteria location is a nutrient rich, neutral, or noxious
environment, respectively. The chemotaxis is a foraging
behavior where bacteria attempts to increase the nutrient
concentration, avoid noxious substances and search for ways
out of neutral media by random walk.

Then, we can define a chemotactic stepj as a tumble
followed by a tumble or a run, a reproductive stepk as the
selection of the fittest in the population and its splitting, and
an elimination-dispersal eventl as the selection of random
individuals and its relocation on new random positions. Then,
P( j,k, l) = θi ( j,k, l)‖i = 1,2, . . .S are the positions of each
member of theSbacteria population atj-th chemotactic step,
k-th reproductive step andl -th elimination and dispersion
event. ThenJ(i, j,k, l) is the location cost of thei-th bacteria
θi ( j,k, l) ∈ Rp, andNc is the bacteria’s life time in chemo-
tactic steps. The bacteria move following (1) whereC(i) is
the size of the step at the direction∆ (i). If in θi ( j +1,k, l),
the value ofJ(i, j +1,k, l) is less than inθi ( j,k, l), then a
new step is taken in the same direction until a maximum of
Ns, making this cycle a chemotactic step.

θi ( j +1,k, l) = θi ( j,k, l)+C(i) · ∆ (i)√
∆ T (i) ·∆ (i)

(1)
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Algorithm 1: Bacteria Foraging Optimization Algorithm

Initialize parameters;
Initialize the location of the population;
for l = 1 to Ned do

for k = 1 to Nre do
for j = 1 to Nc do

for i = 1 to S do
Calculate
J = J(i, j,k, l)+Jcc(θ ,P( j,k, l));
Generate a random direction∆ (i);
Jlast = J;
Move using (1);
m= 0;
while m< Ns do

m= m+1;
Calculate a new
J = J(i, j,k, l)+Jcc(θ ,P( j,k, l));
if Jlast> J then

Move using (1);
else

m= Ns

Split the best bacteria, eliminate the worst;

Disperse at random some bacteria;

During its movement, the bacteria communicate among
one another using chemical substances known as attractants
and repellents, which deform the search space, making those
locations where more individuals are located more attractive,
but at the same time, avoids that bacteria get on top of one
another. To calculate this effect (2) is used, wheremar is
the magnitude of the attractant/repellent,wat andwre are the
width of the attractant and repellent respectively.

Jcc(θ ,P) =
S

∑
i=1

mar

e
−wre

P
∑

m=1
(θm−θ i

m)2

−e
−wat

P
∑

m=1
(θm−θ i

m)2

(2)

After Nc chemotactic steps, a reproduction step is taken.
For the reproduction, the healthiest bacteria are split andthe
others are eliminated, maintaining a constant population.The
individuals to be reproduced are selected by using a health
metric which is the cumulative sum of the cost value on
each position visited by the bacterium. AfterNre reproduction
steps, a dispersion and elimination event is made, where each
bacterium is subject to relocation with a probabilityped.
After Ned dispersion and elimination, the algorithm ends.
The population sizeS is restricted to an even number, so
the population can be easily kept constant. The structure is
shown the Algorithm 1.

III. R ELATED WORKS ONBFOA PARAMETERS

Although some works have been carried out to identify
the effect of each parameter of BFOA, still there is not a

profound knowledge of the interaction of all them. At the
moment, it is acknowledged that the most critical parameter
is the step sizeC, because of its strong influence in the
algorithm stability and convergence. Since the inception
of BFOA, the step size remained fixed number, but its
adaptation was implied. Dasgupta, et al. [29] show that
for the algorithm to converge it is necessary to modify its
value on the run. For that, there are several choices possible.
Mishra [9] suggest using a Fuzzy Logic Controller (FLC) to
adapt this parameter. Nevertheless this requires the tunning
of a complete FLC, which implies the selection of several
more parameters. Other choices include using the individual
performance to adapt its step size. This method, presented
in [28], [29], proposes an analytical solution for the step
adaptation. If the cost function has its minimum value equal
to 0, the authors suggest that (3) is used, but if the minimum
is not equal to 0, then (4) is used. These two equations
were developed assuming that the step size is small and the
location of the bacterium is close to the optimal. It also use
a new parameterλ , with its proposed value ofλ = 1/16
which is only valid if the previous assumptions hold. Then
it is necessary to select a value for this new parameter each
time the algorithm is applied, for which there is not any
selection rules just systematic trial–and–error tunning.

C(i) =
1

1+ λ
|J(θ)|

(3)

C(i) =
1

1+ λ
|J(θ)−Jbest|

(4)

Other solutions to the problem of the step size was
proposed by Korani in 2008 [34], where the random direction
was replaced by a particle swarm optimization (PSO) based
movement rule using (5) and (6), wherew is the inertia
weight,c1 andc2 are the acceleration coefficients,R1 andR2

are two random numbers from an uniform distribution,Pbest

is the best known position of the particle andGbest is the
best known global position. While the idea to add a simpler
mean of information exchange that is thoroughly proven, the
proposal adds the following inconvenience. It ignores the use
of φ as a unit direction vector, and its multiplication byC
could create a possible explosion of the bacteria in the same
way it occurs in PSO. The result is a PSO algorithm with
cell–to–cell communication based in attractants/repellents.

φ ( j +1) = wφ ( j)+C1R1 (Pbest−θ)+C2R2 (Gbest−θ) (5)

θ ( j +1,k, l) = θ ( j,k, l)+C(i)φ ( j +1) (6)

The reproduction and the elimination/dispersal mecha-
nisms also produce noticeable effects. The reproduction
scheme is a major exploitation mechanism, because it elim-
inates the “worst performing” individuals and replaces them
with copies of the “best performing.” Because of this, di-
versity in the population is lost if the reproduction steps
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are very frequent. Besides, this mechanism heavily depends
on the health metric used, which is usually the sum of
the cost of each position the bacteria have found. This can
have some deceiving results, since a bacterium stagnated in
a local minimum could have a better health measurement
than a bacterium located nearby the global optimum. The
elimination/dispersal event is a major exploration scheme,
since it takes any bacteria and relocates it in a new position.
This event can disrupt in a deep way the search process,
since we could take our best performing bacteria and locate
it in an inadequate environment, losing the possibility to get
a better result from that individual.

Other issue is the calculation of the attractants/repellents.
The original formulation of this mechanism is time con-
suming, since it requires the measurement of the distance
between each individual. While the mechanism adds com-
munication between the individuals, it also adds three more
parameters and a complex calculation to be obtained. In some
works, this mechanism is removed altogether, leaving the
system without any cooperative information source. Also,
it seems appropriate to make stronger signals when the
bacterium is located in a best position. To improve this,
Liu and Passino [2] suggested that (7) is used, to relate the
cost function to the cell–to–cell communication. The overall
cost functionJar (θ) of the location is now a composition of
the attractant/repellent functionJcc and the environment cost
function J(θ). Nevertheless it adds a new parameterM, for
which there is no clear rule for tuning.

Jar (θ) = eM−J(θ)Jcc(θ ,P( j,k, l)) (7)

One final problem that can be identified is that the general
structure of the algorithm is quite complex. Since the evalu-
ation relies on nested loop architecture, it is a little difficult
to know a priori how many function evaluations will be
carried out by the algorithm. If we assumeNs = 4, Nc = 100,
Nre = 4, andNed = 2, we could have up to 4000 function
evaluations per individual, but this number will depends on
how many times does the bacteria move on a chemotactic
step. We can conclude that, while the solutions proposed by
these authors are useful and give insight about the working
of the algorithm, they add new problems to be solved when
implemented. Therefore, an integral solution is needed. In
their 2009 work, Mezura-Montes and Hernández-Ocãna [35]
propose the elimination of the nested loop architecture, a step
size selection based on (8), whereR is a scaling factor,Ui

and Li are the upper and lower limits of the search space,
and n is the number of decision variables; a reproduction
and elimination/dispersal events for a single individual each
iteration, and a swarming mechanism based on the best
individual information. Nevertheless, still does not consider
a variable step size, which eventually would render the
algorithm unstable. Therefore, we propose a solution which
tackles some of the issues mentioned, while simplify the
algorithm structure and the parameter use.

C(i, j +1) = R
Ui −Li√

n
(8)

IV. PROPOSED CHANGES TOBACTERIA FORAGING

ALGORITHM

We aim to simplify the algorithm while maintaining its
core elements. This include the simplification of the algo-
rithm architecture, the elimination of theNs parameter, a
clear adaptation rule for the step sizeC(i), the use of an
uniform distribution the position initialization, the inclusion
of the best individual information in the movement equation,
and the removal of the cell–to–cell communication.

The first issue to resolve is the algorithm structure. Since
the reproduction and the elimination/dispersal events occur
after the chemotactic steps are exhausted, we can replace the
loops for iteration counters which trigger the event when a
number of iterations have been made. In the original case,
when Ns = 4, Nc = 100, Nre = 4, and Ned = 2, we could
replace the counter forNre for an event every 500 iterations,
and Ned for an event every 1000 iterations. Since we are
eliminating the loops, the bacteria will either tumble or run
once on each iteration. We also remove the step counterNs

and the bacteria can swim in one direction while it is a good
direction.

The second issue is to develop an adaptation scheme for
C(i) which could improve the search and convergence. First,
we must remember that the step size is multiplied by an
unit direction vector. We thoroughly tested several step sizes
using the test reported in Section V and we conclude that
C(i,0) = 0.01d, whered is the diagonal of the search space,
is an appropriated value. As adaptation technique, we use
a modification the 1/5-th rule extracted from the Evolution
Strategies (ES) [36]. We assume thatC(i, j +1) = C(i, j)+
σi ( j) ·R, whereσi is the mutation strength for the bacteria
i, and R is a random number from a Gaussian distribution.
We carried out the test reported in Section V with different
values for this parameter and we concluded thatσi (0) =
0.0001d gives good results. For the adaptation of the step
size we include a rule to control the size ofσi ( j) depending
on the cost value found by the bacteria. If the cost value
has decreased or has sustained, thenσi ( j) = 0.80σi ( j−1),
otherwiseσi ( j) = 1.20σi ( j−1). The chosen values for the
adaptation are based on the works of ES in the change of
mutation strength [36], since we can compare the movement
of the bacteria to the mutation in ES. The results show that
they work in an acceptable way.

The next modification proposed is the use of a different
metric for the health measurement. For us it is more inter-
esting the bacteria that were able to descend more in the
gradient, than those that got stagnated. For this, we replace
the health measurement from the sum of the cost functions to
the sum of the change between two steps,∆J. If a bacterium
has not moved, then∆J = 0, and if it has descended the
gradient then∆J < 0.

From Korani’s work [34], we suggest the use of the best
known individual to guide the search. First, we assume that
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Algorithm 2: Revised Bacteria Foraging Algorithm

Initialize parameters;
Initialize the location of the population by Hammersley
method;
CalculateJlast = J(θ);
Obtain theθ gbest;
for j=1 to epochsdo

for i=1 to S do
Move using (9);
CalculateJ

(
θ i
)
;

if Jlast ≥ J(θ) then
Update position, cost and health;
σi ( j) = 0.80·σi ( j−1);

else
Keep previous position, cost and health;
Generate a random direction∆ (i);
σi ( j) = 1.20·σi ( j−1);

C(i, j +1) = C(i, j)+σi ( j) ·R;

Update theθ gbest;
if Reproduction Stepthen

Split the best bacteria, eliminate the worst;

if Elimination/Dispersal Eventthen
Disperse at random some bacteria;

the bacteria will not move from its location if the next step
will take it to a worst position, then the bacteria arealways
at their personal best. Then, to add the best known individual
information to the movement of the bacteria, we suggest
replacing (1) by (9), whereK is calculated by (10) andθ gbest

is the best position found so far by the swarm. Because the
bacteria are always at their personal best, then there is going
to be a bacterium that is located in the global best, then in
this case, when we calculate the unit vector forK in (9), this
term becomes∞. For this bacterium we replace this value
with 0.

θ i ( j) = θ i ( j)+C(i, j)

(
∆ (i)√

∆ T (i) ·∆ (i)
+

K (i)√
KT (i) ·K (i)

)
(9)

K (i) = θ gbest( j)−θ i ( j) (10)

Finally, following some suggestions found for PSO [37],
we encountered that position initialization plays a major
role in the algorithm results. The usual method for position
initialization is the use of an uniform random distribution,
which creates noise filled initial positions. Therefore, regular
pseudo random distributions are suggested for the initializa-
tion of PSO, which among the most popular are Halton,
Hammersley, and Centroidal Voronoi Tessellations (CVT).
We carried out the test reported in Section V with each
of these distribution algorithms and the best results were
obtained with the Hammersley distribution.

TABLE I

PARAMETERS USED FOR THE BENCHMARK

Algorithm Parameters

NBFO S= 50, Nre = 100, Ned = 500, ped = 0.25
C = 0.01d, σ = 0.0001d

BFOA S= 50, Nc = 125, Ns = 4, Nre = 2, Ned = 2
ped = 0.25, C = 0.1, mar = 0.1, wat = 0.2 wre = 10

ABFOA S= 50, Nc = 125, Ns = 4, Nre = 2, Ned = 2
ped = 0.25, Cr = 0.01d ·C(i), λ = max(J(1,1,1))
mar = 0.1, wat = 0.2 wre = 10

While it is necessary to obtain a better cell–to–cell com-
munication scheme, for the moment we discard the original
one to reduce the number of parameters to be tuned. In
overall, the resulting structure is presented in the Algorithm
2.

V. BENCHMARK

To test the modifications to the algorithm, we carried
on a benchmark study using 18 well known test func-
tions. These are the Sphere (F1 /[−100, 100]), Rosenbrock
(F2 / [−100, 100]), Ackley (F3 / [−30, 30]), Griewank
(F4 / [−600, 600]), Rastrigin (F5 / [−5.12, 5.12]), Non–
continuous Rastrigin (F6 /[−5.12, 5.12]), Schewefel (F7
/ [−500, 500]), the rotated versions of functions three to
six (F8–F11), Schaffer (F12 /[−100, 100]), and the six
Composition functions from [38] (F13–F18 /[−5, 5]), all
of them in 30 dimensions. We compare our results with the
Original BFOA and the Adaptive BFOA [29], using (4). The
parameters used for each algorithm are shown in Table I,
where NBFO is the proposed algorithm and for itNre and
Ned represent the number of epochs necessary to perform
a step. Each algorithm was run 30 times, each with a total
of 50000 function evaluations. We calculate the minimum,
the mean, and the standard deviation for the data, which are
shown in Table II.

The results show that there is an improvement over com-
plex functions over the original and adaptive algorithms (F7,
F13, F14 and F17), and good results within an acceptable
range of tolerance in other less complex functions (F1, F3,
F4, F8, F9, F12, F16 and F18). In the remaining functions
the results are disappointing. The proposed solution still
presents some stagnation problems, since it does not achieve
the global minimum with the given number of function
evaluations limit and catastrophically fails in some functions.

For an one–on–one performance comparison, we used the
t–test with a 95% confidence range. The t–test allows the ver-
ification of the statistical validity of the result and at thesame
time if the algorithm under test can be considered statistically
better than the control algorithm. The t–test, considered to
be a signal to noise ratio, calculates a difference between the
two groups. If we haven = 30 for both groups, the lower
limit for a 95% confidence range is 1.66055. According to
t value it is possible to conclude about the performance
of the test algorithm, ift ≤ −1.697261 the performance
is better than the control algorithm, if−1.697261< t <
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TABLE II

M INIMUM AND MEAN VALUES, AND STANDARD DEVIATION FOR THE

BENCHMARK FUNCTION TEST FOR FUNCTIONSF1 TO F18

Min Mean Std

F1
NBFO 0.00 10.06 6.29
BFOA 0.00 0.00 0.00

ABFOA 0.00 0.00 0.00

F2
NBFO 26.19 13308.75 24120.75
BFOA 29.00 29.00 0.00

ABFOA 28.96 28.98 0.01

F3
NBFO 0.02 2.13 0.68
BFOA 0.00 0.00 0.00

ABFOA 0.00 0.00 0.00

F4
NBFO 0.02 0.85 0.45
BFOA 0.00 0.00 0.00

ABFOA 0.00 0.00 0.00

F5
NBFO 79.69 224.86 42.44
BFOA 0.00 0.00 0.00

ABFOA 0.00 0.00 0.00

F6
NBFO 169.41 222.51 22.43
BFOA 0.00 0.00 0.00

ABFOA 0.00 0.00 0.00

F7
NBFO -7452.32 -5349.66 886.35
BFOA 414.42 415.20 0.45

ABFOA -5059.80 -3258.11 878.63

F8
NBFO 0.04 2.25 0.65
BFOA 0.00 0.00 0.00

ABFOA 0.00 0.00 0.00

F9
NBFO 0.01 0.79 0.51
BFOA 0.00 0.00 0.00

ABFOA 0.00 0.00 0.00

F10
NBFO 140.33 223.84 31.84
BFOA 0.00 0.00 0.00

ABFOA 0.00 0.00 0.00

F11
NBFO 174.86 240.82 21.82
BFOA 0.00 0.00 0.00

ABFOA 0.00 0.00 0.00

F12
NBFO 0.49 0.50 0.00
BFOA 0.00 0.00 0.00

ABFOA 0.00 0.00 0.00

F13
NBFO 0.02 61.10 93.08
BFOA 883.42 888.59 1.85

ABFOA 862.35 894.47 6.39

F14
NBFO 114.13 399.67 60.03
BFOA 900.00 900.00 0.00

ABFOA 739.51 892.69 30.86

F15
NBFO 300.34 675.45 199.10
BFOA 900.00 900.00 0.00

ABFOA 900.00 900.00 0.00

F16
NBFO 900.00 923.31 41.34
BFOA 900.00 900.00 0.00

ABFOA 900.00 900.00 0.00

F17
NBFO 21.51 202.49 193.30
BFOA 900.00 900.00 0.00

ABFOA 900.00 900.00 0.00

F18
NBFO 900.01 900.37 0.20
BFOA 900.00 900.00 0.00

ABFOA 900.00 900.00 0.00

TABLE III

RESULTS OF THET–TEST: VALUES OF t FOR A 95% CONFIDENCE RANGE

BFOA ABFOA BFOA ABFOA

F1 8.77 8.77 F10 60.93 60.93
F2 3.02 3.02 F11 63.63 63.63
F3 17.15 17.15 F12 5283.92 5283.92
F4 10.32 10.32 F13 -94.51 -94.46
F5 29.02 29.02 F14 -48.53 -41.69
F6 62.85 62.85 F15 -6.18 -6.18
F7 -115.25 -11.07 F16 2.96 2.96
F8 18.96 18.96 F17 -29.63 -29.63
F9 8.51 8.51 F18 9.46 9.46

1.697261 the performance is equal, and the performance is
lower if 1.697261≤ t. We boldfaced the better and equally
performing situations for the new algorithm.

VI. CONCLUSIONS

This paper has presented a modification for the Bacteria
Foraging Algorithm proposed by Passino [3], [4]. We aimed
to simplify the algorithm while maintaining its core elements.
The most important modifications are the elimination of the
Ns parameter, the simplification of the algorithm architecture
by removing the nested loops, a clear adaptation rule for
the step sizeC(i), the use of an uniform distribution for the
position initialization, the inclusion of the best individual
information in the movement equation, and the removal of
the cell–to–cell communication. The results obtained from
the benchmark tests suggest that a reasonable performance is
obtained under the same test conditions in most tests, with a
reduced complexity compared with the original and adaptive
bacteria algorithm, and in different type of benchmark func-
tions. Still, the algorithm suffers of premature convergence
and in several tests did not acquire the global minimum in
the function evaluation limit previously set. This still puts
the bacteria algorithm in disadvantage against some other
proven metaheuristics, which achieve better reported results
than those reported in this paper in several of the benchmark
functions tested [39]. A possible reason for this behavior is
the lack of “elasticity” of the step size.

Nevertheless, more work must be carried on. The first
issue is to develop a simple cell–to–cell communication
scheme. Even if there is work that supports its stability
and performance [23], it is a time consuming effort, which
adds several parameters, and for simplicity is commonly
removed from the general practice, as it was in this case.
The next issue to solve is how to simplify the reproduction
and elimination/dispersal mechanisms even further, so they
do not depend on any parameters. In our case the number
of iterations is required for one of these events to happen.
Finally, it would be convenient to make stability and conver-
gence tests for the proposed solution, which would show, if
the algorithm performs comparable to those reported in [39].
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