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This paper presents an artificial beehive algorithm for optimization in continuous search spaces
based on a model aimed at individual bee behavior. The algorithm defines a set of behavioral rules
for each agent to determine what kind of actions must be carried out. Also, the algorithm proposed
includes some adaptations not considered in the biological model to increase the performance in
the search for better solutions. To compare the performance of the algorithm with other swarm-
based Techniques, we conducted statistical analyses by using the so-called t test. This comparison
is done with several common benchmark functions. C© 2009 Wiley Periodicals, Inc.

1. INTRODUCTION

A continuous optimization algorithm is a numerical method to find a value
θi ∈ Rn, where Rn is an n-dimensional search space such that it minimizes or
maximizes a function J (θ). This is achieved by systematically choosing values for
the variable θ possibly with some constraints. The variable θ can be a scalar or
vector of continuous or discrete values. While θ is called a feasible solution, J (θ)
is called an objective function. A feasible solution that minimizes or maximizes the
objective function is called an optimal solution.

Generally, when the feasible region or the objective function of the problem
does not present convexity, there may be several local minima and maxima and only
one global minimum or maximum of the objective function. Several algorithms that
have been proposed to solve nonconvex problems, including the majority of com-
mercially available solvers, cannot distinguish between local optimal solutions and
global optimal solutions. Global optimization is the branch of applied mathematics
and numerical analysis concerned with the development of deterministic algorithms

∗Author to whom all correspondence should be addressed: e-mail: andremun@univalle.
edu.co.

†e-mail: jalopez@uao.edu.co.
‡e-mail: ecaicedo@univalle.edu.co.

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, VOL. 24, 1080–1093 (2009)
C© 2009 Wiley Periodicals, Inc. Published online in Wiley InterScience

(www.interscience.wiley.com). • DOI 10.1002/int.20376



ARTIFICIAL BEEHIVE ALGORITHM FOR CONTINUOUS OPTIMIZATION 1081

capable of guaranteeing convergence in finite time to the actual optimal solution of
a nonconvex problem.1

Given the difficulty in obtaining optimal solutions with some methods or the
failure to guarantee convergence, researchers seek to find new methods to solve opti-
mization problems. One field addressing several applications is the social modeling
of simple-being communities, which present, as a whole, complex intelligence far
superior to that exhibited by each individual. This has allowed the development of a
branch in computational intelligence called swarm intelligence (SI), being applied
for the solution of several optimization problems such as vehicle routing, control
system design, network routing, image processing, and other fields.2−8

This paper presents an algorithm based on the honeybee foraging behavior. The
algorithm was developed using the individual oriented (IO) model presented by de
Vries and Biesmeijer9 as the behavioral rule. Also, we tested the performance of the
algorithm against a group of SI algorithms for continuous optimization in a statistical
study based on several common benchmark functions. The paper is organized as
follows: Section 2 presents a brief background in SI and bee algorithms. Section 3
describes the functional characteristics of the artificial beehive algorithm (ABHA).
Section 4 presents an experiment to evaluate the performance of the algorithm
proposed. Finally, Section 5 presents conclusions to this work.

2. SWARM INTELLIGENCE AND BEE ALGORITHMS

To solve complex optimization problems, researchers have used constructive,
local search, and population-based methods.10 Population-based methods are now
very popular since they provide good solutions by using constructive methods to
generate an initial set of solutions and a local search method to improve them. Also,
said methods can combine good solutions into new ones, thus enhancing them,
because it is thought that good solutions share components with optimal solutions.

These methods, also known as evolutionary computation (EC) algorithms,
are iterative techniques that, through a set of clearly specified rules, modify their
group of solutions alternating between self-adaptation stages, implying changes
in the individual, and cooperation stages, in which there is information exchange
between individuals. EC is now a broad research area in which two tendencies can
be recognized: evolutionary algorithms (EAs), based on the biological evolution and
survival-of-the-fittest concepts,10 and SI.

SI techniques are based on the study of collective behavior in decentralized,
self-organized systems. Beni and Wang introduced the expression “swarm intelli-
gence” in 1989, in the context of cellular robotic systems.11 SI systems are typically
made up of a population of simple agents interacting locally among each other and
with their environment. Although there is normally no centralized control structure
dictating how individual agents should behave, local interactions among such agents
often lead to the emergence of global behavior. Examples of systems such as these
can be found in nature, including ant colonies, bird flocks, animal herds, bacteria
molds, and fish schools. The main characteristics of a swarm are as follows12:
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• It is distributed and no central control or data source exist.
• It has no explicit model of the environment.
• The agents can perceive and produce changes in their environment.

Different natural systems have inspired several approaches in SI, some of
which include the following: particle swarm optimization (PSO),13−15 based on
the movement of bird flocks and fish schools; bacteria swarm foraging optimiza-
tion (BSFO),16−18 which models the chemotactic behavior of Escherichia coli; and
ant colony optimization,19−21 which is inspired on the foraging behavior of ants.
These methods are widely used in the solution of continuous and combinatorial
optimization problems.22−26

Honeybees have also attracted the attention of SI researchers because they fol-
low a series of rules that determine, among several food sources, the most profitable
and allocate a series of agents to exploit it. Besides, they use direct communication
methods based on dances. There are several algorithms based on bee behavior such
as the artificial bee colony,27 the bee colony optimization,28 the bees algorithm,29

and the bee nectar search optimization.30 Some applications of these algorithms
are the traveling salesman problem,31 neural network training,32 fuzzy controller
tuning,33 support vector machine optimization,34 manufacturing cell formation,35

multiobjective optimization,36 and temperature regulation over a surface.37

3. ARTIFICIAL BEEHIVE ALGORITHM

The beehive algorithm proposed is based on the IO model presented by de
Vries and Biesmeijer.9 In this model, each bee is represented as an individual whose
behavior is regulated by a behavior-control structure. At each moment, the behavior
of one bee is determined by the internal and external information available to it and
its motivational state, according to a set of specific rules. The set of rules is identical
for each bee, but since the perceptible environment differs for bees with a different
spatial location, the behavior also differs. Bees can show different behaviors as well,
given differences in their foraging experience and/or their motivational state.

The algorithm proposed defines a set of individual characteristics that represent
internal and external information:

• The current position of the individual, θ (t), which represents its solution point.
• The current cost value, J (θ (t)), and the past cost value, J (θ (t − 1)).
• The abandon tendency, pab, between 0 and 1, which represents individual’s desire to forget

its food source information. It is initialized in 0 and incremented in fixed steps defined by
the value of ρ.

• The homing motivation, ph, between 0 and 1, which represents individual’s desire to
continue searching for a food source. It is initialized in 0 and incremented in fixed steps
defined by the value of C.

• The bee state that represents the actions the bee will follow next. We defined four states.
The first is the novice state, where the bee is in the “nest” (an abstract position represented
only by the state of the bee, where the information is exchanged) and does not have
information about a source. In this state, the bee can begin a random search or follow a
dance if it is available. To represent this state, θ value is set at Not a Number (NaN). The

International Journal of Intelligent Systems DOI 10.1002/int



ARTIFICIAL BEEHIVE ALGORITHM FOR CONTINUOUS OPTIMIZATION 1083

second is the experimented state, where the bee is in the “nest” and has information about
a food source. Information about the source is valid if its profit is high and its abandon
tendency is low. Valid information can be transmitted to other individuals through a dance
represented by a selection probability psi calculated by Equation 1, where i indicates one
of the j individuals with available dances. The agent uses a lottery based selection to
define which dance should follow. If the bee does not have valid information, it can begin
a random search or follow a dance.

psi = −
(

1

max(Jj ) − min(Jj )

)
(Ji − max(Ji)) (1)

The third state is the search state, where the bee, after leaving the nest, looks for a better
foraging source than the current. The bee changes its position using Equation 2, where
SS(i) is the step size at the direction ψ(t), and it is initiated as 1.0% of the search space
dimensions and decreased by the step-reduction parameter SR. The direction is maintained
while it minimizes or maximizes the cost value, otherwise it is changed. This search is
performed until the step counter is exhausted.

θi(t + 1) = θi(t) + SS(i)ψ(t) (2)

The fourth is the food source state. After exhausting the search counter, the bee determines
whether its source is valid or not by storing the cost value of the source. If the algorithm
is performing a minimization and this value is less than a threshold, the source has
enough food to be informed; otherwise, this information is not valuable. If the algorithm
is performing maximization, the source value must be higher than the threshold. The
threshold value, equal to the mean cost of all the available dances, is recalculated at each
iteration. This is analogous to the exhaustion of the food source.

• The set of probabilities, a group of random values, used to calculate some choices of
the population. These are the probability to begin a random search, psrs, the probability
to listen to a dance, prul, and the probability to receive contaminated information form
a dance, pe. When information is contaminated, the value of an informed source is
modified by a random vector similar to that presented in Equation 2, replacing SS by
σ , which represents the maximum information error. These probabilities are compared
with fixed values that are parameters of the algorithm and are prs for beginning a random
search and pe for including information error. These parameters control some of the
exploitation/exploration characteristics of the algorithm.

With these characteristics, we can now present the full algorithm. The pseudo
code is presented in Table I.

4. EXPERIMENTS AND RESULTS

We conducted a simulation study by using a suite of 10 benchmark functions
and 5 SI algorithms for continuous optimization to test the algorithm proposed:
PSO,14 the inertia weight particle swarm optimization,38 the PSO with Trelea’s first
parameter set, and the PSO with Trelea’s second parameter set,39 the constriction
factor particle swarm optimization,40 and BSFO.16−18 The parameters used for each
algorithm are shown in Table II, where d is the diagonal of the search space.
The test was carried out for 100 runs of 1000 epochs. The number of agents for all
algorithms in each of the runs was constant and equal to 50 agents. All the benchmark
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Table I. Artificial beehive algorithm.

Initiate the population
FOR n = 1 UNTIL epochs ELSE

Calculate the probabilities Increase abandon
IF Experimented AND Information is valid END

Increase Abandon IF begin a random search
Leave the nest Place the bees in a random position

END Leave the nest
IF Dances are not available END

IF begin a random search END
Place the bees in a random position Calculate the current cost
Leave the nest IF Can search

END IF direction is valid
IF Abandon the source Increase the position

Forget the source ELSE
Stay in the nest Change the direction

END Increase the position
ELSE END

Calculate dance duration ELSE
IF follows a dance Determine if the source is valid

Select a random dance END
Add noise to the information Update the threshold
Leave the nest Update the memory

END

Table II. Algorithm’s parameters for the simulation study.

No. Name Parameters

1 BSFO ped = 0.10, pre = 0.20, Ci = 0.05d, Ns = 10
2 PSO mv = 0.01d, c1 = c2 = 2.000
3 IWPSO mv = 0.01d, w = 0.600, c1 = c2 = 2.000
4 T1PSO mv = 0.01d, w = 0.600, c1 = c2 = 1.700
5 T2PSO mv = 0.01d, w = 0.729, c1 = c2 = 1.494
6 CFPSO mv = 0.01d, c = 0.7298, c1 = 2.8000, c2 = 1.3000
7 ABHA prs = 0.5, pe = 0.8, s = 0.2, r = C = 0.1, SR = 0.95

Abbreviations: BSFO, bacteria swarm foraging optimization; PSO, particle swarm optimization; IWPSO,
inertia weight particle swarm optimization; T1PSO, PSO with Trelea’s first parameter set; T2PSO, PSO with
Trelea’s second parameter set; CFPSO, constriction factor particle swarm optimization; ABHA, artificial
beehive algorithm.

functions used are nonlinear, and they are commonly used in optimization algorithm
benchmarks. These are the Six-Hump Camel Back (SCB), PFUNC,18 MATLAB
Peaks, DeJong’s F1, Grienwank, Rastrigin, Ackley, DeJong’s F2, Schaffer’s F6, and
Schewefel functions.41 The number of dimensions, range, and minimum value are
shown in Table III.

We selected these functions because they are related to real-world problems,
where there are unimodal and multimodal functions with correlated or uncorrelated
variables. The DeJong F1 function contains no local optima and provides a smooth
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Table III. Benchmark functions parameters.

No. Name Dimension Range Jmin

1 SCB 2 [−2, 2; −1, 1] −1.0316
2 PFUNC 2 [0, 30]2 −3.9867
3 Peaks 2 [−3, 3]2 −6.5511
4 DeJong’s F1 30 [−100, 100]n 0.0000
5 Grienwank 30 [−100, 600]n 0.0000
6 Rastrigin 30 [−5.12, 5.12]n 0.0000
7 Ackley 30 [−32, 32]n 0.0000
8 DeJong’s F2 2 [−100, 100]2 0.0000
9 Schaffer’s F6 2 [−100, 100]2 0.0000
10 Schewefel 30 [−500, 500]n −12569.5

gradient toward a broad global optimum. The Grienwank function introduces inter-
dependency among the variables. The Rastrigin function has lattice-shaped semiop-
timum solutions around the global optima, and there is no correlation among design
variables. The Ackley function is also multimodal at low resolution. The search
space defined by the De Jong F2 function is unimodal and has correlation among
its design variables. The Schewefel function has a semioptimum solution far from
the global optima where many search algorithms are trapped. Moreover, the global
optimum exists near the bounds of the domain. There is no correlation among its
design variables.41

We compared the different algorithms by conducting a statistical study using
the minimal and mean objective values, as well as the standard deviation. For
visualization, we used a box and whisker plot for each of the algorithms in each test
to better view the results obtained. This plot allows the comparison between several
distributions. Its components include the following: the box, which encloses 50%
of the data and it is made up of lines at the lower, median, and upper quartile values;
the whiskers, which are the lines extending from each end of the box that show the
extent of 99.3% of the data; and the outliers, represented by crosses, which show
data with values beyond the ends of the whiskers and represent 0.07% of the data.
If there are no data outside the whisker, a dot is placed at the bottom whisker.

Figures 1 to 3 show each the results for the SCB, PFUN, and Peaks functions.
The results obtained for these functions are very similar and show that all of the
algorithms achieve the global minima with a very little spreading. For the SCB
function, the ABHA achieves a result close to the PSO variations and a better one
than that obtained by the BSFO algorithm. For the PFUNC function, the existence
of outliers for the PSO algorithms, which give them a higher spreading, can be
noticed. In the case of the Peaks function, only the PSO algorithm has outliers.

Figure 4 shows the result for the DeJong F1 function. Although this function is
very simple, the difficulty lies in its large search space and a high dimension number.
The experiment shows that there is a large difference between the results obtained
with the ABHA and the PSO algorithm, but the ABHA performs better than the
BSFO algorithm. Neither the BSFO algorithm nor the ABHA achieves the global
minima during 1000 epochs, which indicates that both need more time to converge.
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Figure 1. Box plots of the results obtained with the SCB function. Abbreviations: BSFO, bacteria
swarm foraging optimization; PSO, particle swarm optimization; IWPSO, inertia weight particle
swarm optimization; T1PSO, PSO with Trelea’s first parameter set; T2PSO, PSO with Trelea’s
second parameter set; CFPSO, constriction factor particle swarm optimization; ABHA, artificial
beehive algorithm.
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Figure 2. Box plots of the results obtained with the PFUNC function. Abbreviations as in
Figure 1.
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Figure 3. Box plots of the results obtained with the Peaks function. Abbreviations as in Figure 1.
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Figure 5 shows the results for the Grienwank function. In this experiment, the
results are very similar to that obtained for the De Jong F1 function, where the
performance of the ABHA is lower than that of the PSO variations but higher than
that of the BSFO algorithm.

For the Rastrigin function, as shown in Figure 6, the ABHA achieves a
performance very similar to that obtained with the BSFO algorithm. Again, the
PSO variations give better results. For this function, the results of the ABHA are
disappointing.

The results for the Ackley function are shown in Figure 7, which show similarity
with the Rastrigin function. The performance of the ABHA is roughly the same as
that of the BSFO algorithm.

Figure 8 shows the results for the DeJong F2 function. For this function, the
ABHA again achieves a better performance than the BSFO algorithm. Also, it
achieves the global minima at least once. Although the repeatability is lower than
that presented by the PSO algorithms, the performance is satisfactory.

Figure 9 shows the results for the Schaffer F6 function. Similar to the DeJong
F2 function, all the tested algorithms achieve the global minimum value. Again,
the performance of the ABHA is better than BSFO algorithm, by achieving a lower
mean and lower outliers. Although the performance of the ABHA in comparison
with the PSO algorithm is not very satisfactory, the algorithm performs within the
expectations.

Finally, Figure 10 shows the results for the Schewefel function. In this function,
where its objective value is a negative number, the ABHA performs somewhat better
than the BSFO algorithm. Again, the PSO algorithm achieves better values but does
not reach the optimal. Also, the repeatability of the ABHA is better than that obtained
by the PSO algorithm, which has more spreading.

In conclusion, the figures show that the performance of the ABHA are closely
related to the performance of the BSFO algorithm. It is clear that in some functions,
the performance of the ABHA is not satisfactory; the response in some functions is
better than BSFO; and in others, as good as the PSO algorithms. The best results
with the ABHA are achieved with the PFUNC function, where it achieved better
results than those shown by all the algorithms.

For a one-on-one performance comparison, we used the t test with a 95%
confidence interval range.42 The t test allows the verification of the statistical va-
lidity of the result and at the same time if the algorithm under test can be consid-
ered statistically better than the control algorithm. The t test, considered to be a
signal-to-noise ratio, provides the difference between the two groups and is calcu-
lated by Equation 13, where T is the test group and C the control group, n is the
number of samples and t the probability in a Student’s t distribution. The t value
is positive if the first mean is higher than the second and negative if it is lower.42

If we have n = 100 for both groups, the lower limit for a 95% confidence interval
range is 1.66055. According to t value, it is possible to conclude about the per-
formance of the test algorithm: if t ≤ −1.66055, the performance is better than
the control algorithm; if −1.66055 < t < 1.06605, the performance is equal; and the
performance is lower if 1.66055 ≤ t . The results are shown in Table IV, where the
boldface values represent a better or equal performance of the ABHA. The results
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Figure 4. Box plots of the results obtained with the De Jong F1 function. Abbreviations as in
Figure 1.
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Figure 5. Box plots of the results obtained with the Grienwank function. Abbreviations as in
Figure 1.
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Figure 6. Box plots of the results obtained with the Rastrigin function.
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Figure 7. Box plots of the results obtained with the Ackley function. Abbreviations as in
Figure 1.
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Figure 8. Box plots of the results obtained with the De Jong F2 function. Abbreviations as in
Figure 1.
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Figure 9. Box plots of the results obtained with the Schaffer F6 function. Abbreviations as in
Figure 1.
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Figure 10. Box plots of the results obtained with the Schewefel function. Abbreviations as in
Figure 1.

Table IV. Results of the t–test for the ABHA algorithm.

BSFO PSO IWPSO T1PSO T2PSO CFPSO

F1 −7.68 11.11 11.11 11.11 11.11 11.11
F2 −5.19 −2.02 −1.41 −2.02 −2.02 −0.99
F3 −2.87 −1.41 8.83 8.83 8.83 8.83
F4 −17.27 70.48 70.26 69.34 69.82 69.66
F5 −18.09 84.65 84.33 83.23 83.79 83.71
F6 3.67 167.52 150.92 130.59 131.71 143.76
F7 1.45 313.72 141.16 119.03 117.45 114.07
F8 −6.36 9.30 9.30 9.30 9.30 9.30
F9 −1.84 5.84 5.84 5.84 5.84 5.84
F10 −10.29 10.60 8.96 5.93 6.13 9.62

confirm the data obtained by the box and whiskers plots, where the performance of
the ABHA is, in most cases, better than the performance of the BSFO algorithm.
Also, the results show rather low performance of the ABHA in the more complex
functions. Again, the best performance against all the test algorithms is obtained for
the PFUNC function because of ABHA’s low standard deviation.

t = x̄T − x̄C√(
σ 2

T

/
nT

) + (
σ 2

C

/
nC

) (3)

5. CONCLUSIONS

This paper presented an SI algorithm based on a beehive IO model. The algo-
rithm uses a set of rules to represent bee behavior and includes a communication
strategy based on food source profitability. The agents can be represented as state
machines with four states: naive, experimented, explorer, and exploiting. In the naive
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and experimented states, the agents are located in the “nest” and acquire or gather
information from their partners, or begin a random search. In the explorer state, the
bee uses its information to find a better food source. In the exploiting state, the agent
calculates the profitability of its source and decides if it is worth announcing.

The algorithm was tested against other SI algorithms. The results showed that
the algorithm achieved good results, in a few cases with a better performance than
the test algorithms, although on other occasions when the performance was not
satisfactory, it showed good repeatability, represented by a low standard deviation
value.

Further work must include thorough testing of algorithm parameters, seeking to
obtain better performance in the complex functions, and also explore the possibility
to perform parameter control through evolutionary computing techniques that also
mimic social aspects of the bees. A possible candidate for this process is the marriage
in honeybee optimization.43 Some applications proposed would be used in parameter
identification in control and identification problems, neural network, and fuzzy
systems learning. Finally, a profound mathematical study of algorithm properties
such as stability and convergence is required.
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30. Alfonso W, Muñoz M, López J, Caicedo E. Optimización de funciones inspirada en el
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32. Pham D, Koç E, Ghanbarzadeh A, Otri S. Optimisation of the weights of multi-layered
perceptrons using the bees algorithm. In: Proc 5th Int Symp Intelligent Manufacturing
Systems, Kocaeli, Turkey 2006. pp 38–46.

33. Pham D, Darwish AH, Eldukhr E, Otri S. Using the bees algorithm to tune a fuzzy logic
controller for a robot gymnast. In: Proc Innovative Production Machines and Systems Virtual
Conf, Cardiff, UK. July 2–13, 2007.

34. Pham D, Muhamad Z, Mahmuddin M, Ghanbarzadeh A, Koç E, Otri S. Using the bees
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35. Pham D, Afify A, Koç E. Manufacturing cell formation using the bees algorithm. In: Proc
Innovative Production Machines and Systems Virtual Conf, 2007.

36. Pham D, Ghanbarzadeha A. Multi-objective optimisation using the bees algorithm. In: Proc
Innovative Production Machines and Systems Virtual Conf, 2007.

37. Alfonso W. Regulación de temperatura en la plataforma uv-ptm01 basada en agentes coop-
erativos para la asignación dinámica de recursos. Technical Report, Universidad del Valle,
Cali, Colombia, 2007.

38. Shi Y, Eberhart RC. Parameter selection in particle swarm optimization. In: Evolutionary
Programming VII: Proc Seventh Annu Conf Evolutionary Programming, San Diego, CA,
March 25–27, 1998. pp 591–600.

39. Trelea I. The particle swarm optimization algorithm: convergence analysis and parameter
selection. Inf Process Lett 2003;85:317–325.

40. Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm
optimization. In: Proc 1999 Congress on Evolutionary Computation (CEC 99), Washington,
DC, July 6–9, 1999.

41. Yisu J, Knowles J, Hongmei L, Yizeng L, Kell DB. The landscape adaptive particle swarm
optimizer Appl Soft Comput 2007;8(1):295–304.

42. Allen MP. “Understanding Regression Analysis” New York: Plenum Press. Chapter 13,
pp 61–65.

43. Abbass HA, Teo J. A true annealing approach to the marriage in honey-bees optimization
algorithm. In: Proc inaugural workshop on Artificial Life (AL’01), Adelaide, Australia,
December 11, 2001. pp 1–14.

International Journal of Intelligent Systems DOI 10.1002/int


