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Abstract

This paper presents a self—-adaptive bacteria swarm op-
timization algorithm, and its application in a suite of opti-
mization benchmark problems, where the self-adaptive al-
gorithm outperformed in most cases the non adaptive ver-
sion. The algorithm follows a methodology that uses some
concepts included in the Evolution Strategies for the param-
eter control, allowing the algorithm to select online the best
parameter set.

1 Introduction

In nature, it is common to see animals forming groups
to perform survival tasks, e.g. we can see ants looking for
food, fish forming schools to face predators, birds fly in par-
ticular formations to optimize energy consumption, and so
on. Social behavior is key for the success of several species
and, because of that, many scientists have studied in depth
its characteristics and have created computational and math-
ematical models [13]. From these studies has arised a set of
techniques in the field of computational intelligence called
Swarm Intelligence (SI), based on the collective behavior
of self-organized and decentralized systems used to solve
practical optimization problems [25].

For an algorithm to be classified as SI, it must use a pop-
ulation of simple computational agents capable of sensing
and change their environment locally. This characteristic
makes the communication between agents possible through
the detection of the changes in the environment made by
their peers [24]. Although there is no central control struc-
ture that determines the agent behavior, the local interac-
tions between agents allow the appearance of a global in-
telligent behavior. There are several techniques that be-
long to SI. The more representative are Ant Colony Op-
timization (ACO) [4-6] and Particle Swarm Optimization
(PSO) [7,10, 11]. Other algorithms that can be classified as
SI are the Bacteria Swarm Foraging Optimization (BSFO)
[13, 16, 17] and several algorithms based on beehive behav-
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ior [2,9,15,18,21].

Those techniques have been successfully applied to a
variety of problems; however, they have, as main draw-
back, the need to specify several parameters that control
the behavior of the agents. Select an appropriated param-
eter set is a difficult task because of the interdependence of
the parameters and its relation to the problem specification.
For this reason, the algorithm tuning process requires time—
consuming tests.

There has been some attempts to obtain a general param-
eter set that behave correctly in several optimization prob-
lems, but most of the published works suggest values based
in “rules of thumb”. Today it is recognized that each prob-
lem requires a specific parameter set and that search for a
general optimal parameter set is a lost battle [8], because
it does not consider the dynamic nature of the search pro-
cess. It has been accepted that the parameters must change
on-line taking as measure the general performance of the al-
gorithm. This mechanism called parameter control, modi-
fies the search parameters by deterministic, adaptive or self—
adaptive methods. One algorithm that uses a self—adaptive
method to control its search parameters is the Evolution
Strategies (ES), which uses mutation, recombination, and
selection in the strategy and objective parameters.

This paper presents a Self-Adaptive SI technique based
on the Bacteria Swarm Foraging Optimization (BSFO). Our
goal is to allow the on-line search of a good parameter
set for this continuous optimization technique. The result-
ing algorithm, the Self-Adaptive Bacteria Swarm Foraging
Optimization, not only searches for a good solution of the
problem but also modifies its parameters according to the
general performance of the algorithm. The paper is orga-
nized as follows: First, in section 2, we present some gen-
eral concepts of BSFO. Next, in section 3, we describe the
self—adaptive bacteria swarm algorith. Then, in section 4,
we continue with the performance evaluation of the algo-
rithm presented by using a suite of benchmark functions
found in the literature and the so—called t—test. Finally, in
section 5 we present some conclusions and recommenda-
tions for further development.
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2 Bacteria Swarm Foraging Optimization

BSFO was proposed by Passino in 2000 [16], inspired
by the chemotactic behavior of the E. Coli. Chemotaxis is
the phenomenon in which bodily cells, bacteria, and other
single-cell or multicellular organisms direct their move-
ments according to certain chemicals substances in their
environment. Bacteria go toward places with large con-
centrations of nutrients and they move away from places
with low concentrations of nutrients or places with harm-
ful substances. In BSFO, the quantity of nutrients is related
to the value of the performance function. A big value of
the performance function indicates that the bacterium is in
a place with plenty of food (nutrients). The artificial bacte-
ria try to move in a direction to increase the concentration
of nutrients. A bacterium is influenced by the behavior of
other bacteria. In BSFO, this element is imitated by using a
repellent-attracting function. If the effect of the attraction if
strong, the bacteria try to form groups or swarms. BSFO has
been used to tune a proportional-integral-derivative (PID)
controllers [12] and in the temperature regulation in a tem-
perature grid [1].

3 Self-Adaptive Bacteria Swarm Foraging
Optimization

When we use an algorithm to solve an optimization prob-
lem, the selection of parameters of the algorithm is equiva-
lent to place a point in the M—dimension parameter space,
where M is the number of parameters, such that it achieves
the best possible general performance value. The selection
of these parameters is, in fact, another optimization problem
which can be as or more complex than the main problem,
since we do not know the relationship between the general
performance of the algorithm, the values of the parameters,
and the objective function. Because of that, the common
approach is to choose these parameters by trial and error
which has, among others, the following limitations [8]:

e The parameters are not independent
e The tuning process requires time—consuming tests

e The parameter set is related to problem specification

Today, change on-line the parameters of the optimiza-
tion algorithm is widely accepted idea. This mechanism
called parameter control, modifies the search parameters
by deterministic, adaptive or self—adaptive methods. Self-
adaptive refers to the use of evolutionary methods for the
parameter control by means of a general performance func-
tion, G, or secondary optimization problem, directly related
to the cost function, J, or main optimization problem. To
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define a general method for swarm self—adaptation, we se-
lect some basic concepts of the ES to solve the problem of
finding a good set of parameters.

First, we defined u populations of k¥ swarm agents. Each
population has a strategy parameter set that is mutated us-
ing a normal distribution to generate A new populations;
each one seeks a solution of the main optimization prob-
lem. We define the general performance of the / population
as the average of cost value of the k agent at the i—th itera-
tion, J (1,k,i,0), according to Equation 1. After the general
performance has been calculated, we select the best y pop-
ulations, who become the parents of the next generation.
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Next we use the 1/5th rule to modify the values of the
mutation strength [19]. This deterministic rule states that
if performance of the new populations is better than the
last populations, then we have found a better position in
the parameters’ space of the algorithm and we can decrease
the mutation strength by using a factor of 0.82, reducing
the subspace where the algorithm search in the parameters’
space. Otherwise, we increased the mutation strength by
using a factor of 1.22, increasing the subspace.

These simple rules can generate different architectures,
depending of the values of k, u, A, p, and the use of eli-
tist or non elitist selection. To simplify the description
of a self—adaptive swarm (SAS), we propose the notation
(k — p/p,+2A)-SAS based in the ES notation. With this
notation, we can describe any SAS algorithm, including the
presented by Miranda and Fonseca [14], which can be cod-
ified as (1 — u/p,A)-SAS.

Based on this notation, we define a (k — 1,4)-SAS,
which means k swarm agents, one parent population, A
offspring populations, with elitism and no recombination,
which is the simplest architecture possible using multi—
member populations.

For the implementation of a self-adaptive algorithm
based on BSFO, it was necessary to make some adjustments
over the original algorithm. BSFO has some parameters
that control the workings of additional heuristics besides the
chemotaxis search; those are the reproduction, the elimina-
tion/dispersion, and the communication by attractants and
repellents. These heuristics were added to improve the per-
formance of the algorithm, but its design based in FOR cy-
cles, makes them time consuming and inefficient, especially
in vector oriented languages like MATLAB.

To determine the influence of the algorithm parameters
in the search, we performed several preliminary tests, by
which we concluded that the main parameter is the step size,
C. Other parameters that have influence in the chemotactic
behavior are the number of chemotactic steps, N, the mag-
nitude of the attractants and repellents, m, and width of the
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Select the initial strategy parameters
Mutate the strategy parameters to obtain A sets
Initialize the position @ of the population randomly
Calculate the initial cost of the population
FOR i=1 TO epochs DO
FORI=1 TO A DO
Calculate Jec
IF J+Jee = Jjgg +Jcc THEN
Generate a new W for the bacteria
END IF
Calculate
Calculate
Calculate
END IF
Select the population with the best G
Update the variables of the population
IF i>1 THEN
IF Y Gapt > LG THEN
Decrease the mutation
ELSE
Increase the mutation strength by 1.22
END IF
END IF
Mutate the strategy parameters to obtain A sets
YGant =LG
END FOR

the value of A6 with the parameter set [
the population’s cost J(I,k,i,f)
the population’s general performance value G(l,i)

strength by 0.82

Table 1. Self-Adaptive Bacteria Swarm Forag-
ing Optimization

attractants, a, and repellents, r. Because the reproduction
and elimination/dispersion do not have a great influence in
the search mechanism, we decide to simplify the algorithm
by using only chemotaxis search and the communication
mechanism.

Next, for the bacteria algorithm in the i iteration for the
k individual with the group of parameters, we define a new
possition for the agent 6; (i+ 1) value by the equation 2,
where Y (i) represents the direction followed by the bac-
terium. The cost value is composed by the nutrients values
and the attractants/repeallants values as shown by the equa-
tion 3. The equation 4 defines the attractants/repeallants
values, with r > a because their size is inversely propor-
tional.

O (i+1) = 6, (1) + G (i) i (7) 2)

J(elmi):-ln (ek)+-,ar(9k7i) (3)

Jar (6, 0) = my (i) (effz(i)2(9r9m>2 _ e*a/(i)f.(eremy) %)

The self—adaptive algorithm is constructed with Equa-
tions 1, 2, 4, and 3. The result is the algorithm shown in
Table 1.

The algorithm follows this procedure. After initiate and
generate set of parameters, the population is distributed in
random locations over the complete search space, and the
cost of each position is acquired. At this point, the main
loop begins. The next step is to calculate the new positions,
cost, and general performance value, with each group of pa-
rameters. Then, the best population is selected. After, the
algorithm determines if the performance of all the popula-
tion has improved, allowing the reduction of the mutation
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strength, otherwise the mutation strength is increased. Fi-
nally, the memory for the general performance is updated,
and the main loop ends. The algorithm as proposed is de-
signed to minimize a function. To maximize, the cost func-
tion can be expressed as J (6, i) = —J, (6k) — Jar (61, 1).

It is important at this stage to determine the perfor-
mance of the algorithm against other techniques, specially
the BSFO algorithm. The next section shows the results of
this study.

4 Function Optimization through Self-
Adaptive Bacteria Swarm

We conducted a simulation study by using a suite of ten
benchmark functions and five SI algorithms for continu-
ous optimization to test the algorithm proposed: Bacteria
Swarm Foraging Optimization (BSFO) [13,16,17], Particle
Swarm Optimization (PSO) [11], the Inertia Weight Parti-
cle Swarm Optimization IWPSO) [20], the PSO with Tre-
lea’s first parameter set (T1PSO), and the PSO with Tre-
lea’s second parameter set (T2PSO) [22], the Constriction
Factor Particle Swarm Optimization (CFPSO) [3], and the
Artificial Bee Hive Algorithm (ABHA) [15]. The parame-
ters used for each algorithm are for BSFO p,; = 0.10, p,. =
0.20, C; = 0.05d, N; = 10, for PSO mv =0.01d, ¢c1 = ¢c» =
2.000, for IWPSO mv = 0.01d, w = 0.600, ¢ = ¢ =2.000,
for TIPSO mv = 0.01d, w = 0.600, ¢; = ¢, = 1.700, for
T2PSO mv = 0.01d, w = 0.729, ¢; = ¢, = 1.494, for CF-
PSO mv = 0.01d, x = 0.7298, c¢; = 2.8000, ¢, = 1.3000,
for ABHA p,, = 0.5, p. =038, 6 =02, p =C =0.1,
SR = 0.95, and for SABSFO x =50, A =35, C; = 0.05d,
N; = 10; where d is the diagonal of the search space. The
test was carried out for 100 iterations of 1000 epochs. The
number of agents for all algorithms in each of the itera-
tions was constant and equal to 50 agents. All the bench-
mark functions used are non-linear and they are commonly
used in optimization algorithm benchmarks. These are
the SCB [26], PFUNC [17], MATLAB Peaks, DeJong F1,
Grienwank, Rastrigin, Ackley, DeJong F2, Schaffer F6, and
Schewefel functions [27]. The Table 2 shows the equations
of the benchmark functions and the Table 3 shows the num-
ber of dimensions, range, an minimum value.

For a one—on—one performance comparison, we used the
t—test with a 95% confidence range [23]. The t-test allows
the verification of the statistical validity of the result and
at the same time if the algorithm under test can be con-
sidered statistically better than the control algorithm. The
t—test, considered to be a signal to noise ratio, calculates a
difference between the two groups and it is calculated by
the equation 5, where T is the test group and C the con-
trol group, n is the number of samples and ¢ the probability
in a t-student distribution. The ¢ value will be positive if
the first mean is higher than the second and negative if its
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Name Equation
SCB J=(4-2.107+ 16}) 67 + 6,0, + (—4+462) 62
PFUNC J= legl Al.e*lxi((el ~X;)*+(6,-1)?)
A=[5-232-2-4-2-222
o =1[0.10.080.080.10.50.10.50.50.50.5]
X =[152025105 158 21 25 5]
Y =[20151010105252516 14]
Peaks J=3(1—6y)%e (O’ =6f _
%e—ww)z—s%,
10(% — 67 —65) e 002
Delong F1  J=Y"  x?
Grienwank ~ J = 55 Y% 22 — [T cos (%) +1
Rastrigin =~ J =Y, x7 — 10cos (27x;) + 10
Ackley J= _20670‘2\ 3170):?:1’)”‘12 — B% Y7 cos(2mx;) +20+¢
Delong 2 J =100 (x2 —y)” + (1 —x)?
2
siny/x24+y%) 0.5
Schaffer F6 /= 0.5— LnV=r) 03
(1+0.001 (x2+y2) )"
Schewefel — J =Y x;sin/|x]

Table 2. Benchmark functions equations

Name D Range Jin
SCB 2 [-2,2;-1,1] —1.0316
PFUNC 2 [0,30)° ~3.9867
Peaks 2 [-3,3]? —6.5511
DeJong F1 30  [-100,100]" 0.0000
Grienwank 30  [—100,600]"  0.0000
Rastrigin =~ 30 [-5.12,5.12]"  0.0000
Ackley 30 [-32,32]" 0.0000
DelJongF2 2 [-100,100>  0.0000
Schaffer F6 2 [—100,100>  0.0000
Schewefel 30  [-500,500]" —12569.5

Table 3. Benchmark functions parameters

lower [23]. If we have n = 100 for both groups, the lower
limit for a 95% confidence range is 1.66055. According
to ¢ value is possible to conclude about the performance of
the test algorithm, if t < —1.66055 the performance is bet-
ter than the control algorithm, if —1.66055 <t < 1.06605
the performance is equal, and the performance is lower if
1.66055 <t.

&)

The results obtained in the t—test are show in Table 4,
where the boldface values represent a better or equal per-
formance of the test algorithm. The results show that the
self—adaptive version of the bacteria algorithm perform bet-
ter than its similar non adaptive in eight of ten tests, nev-
ertheless it does not achieve a better performance than the
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particle algorithms.

5 Conclusions

This paper presented a self—adaptive bacteria swarm al-
gorithm for optimization, using a methodology that uses
some concepts included in the Evolution Strategies for the
parameter control, allowing the algorithm to select online
the best parameter set. The methodology considers the
swarm as a middle level structure characterized by its strat-
egy parameters, which are modified through artificial evo-
lution in order to find better ones.

The implementation of the SABSFO allowed us to un-
derstand how the self-adaptation mechanism aided in the
search for better results in several test functions and in the
adaptive control design problem. The performance of the
self—adaptive algorithm was in most cases better than the
non adaptive one. We conclude that the self—adaptation al-
lows a higher level of space exploration and it can be com-
pared to a controlled systematic test of a parameter set. The
variations allow the algorithm to find better values than the
non adaptive one, which is confirmed with the lower values
in the t—test.

Further work should include the study of convergence
and stability of the proposed algorithm, and the search of
new applications. The self-adaptation represents an im-
provement that can be useful in search spaces where the
cost function is dynamic, e.g. the error surface of an adap-
tive control system.
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