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Abstract—We expose and contrast the impact of landscape
characteristics on the performance of search heuristics for black-
box multiobjective combinatorial optimization problems. A sound
and concise summary of features characterizing the structure
of an arbitrary problem instance is identified and related to
the expected performance of global and local dominance-based
multiobjective optimization algorithms. We provide a critical
review of existing features tailored to multiobjective combinato-
rial optimization problems, and we propose additional ones that
do not require any global knowledge from the landscape, making
them suitable for large-size problem instances. Their intercor-
relation and their association with algorithm performance are
also analyzed. This allows us to assess the individual and the
joint effect of problem features on algorithm performance, and
to highlight the main difficulties encountered by such search
heuristics. By providing effective tools for multiobjective land-
scape analysis, we highlight that multiple features are required to
capture problem difficulty, and we provide further insights into
the importance of ruggedness and multimodality to characterize
multiobjective combinatorial landscapes.

Index Terms—Black-box combinatorial optimization, evo-
lutionary multiobjective optimization (EMO), feature-based
performance prediction, problem difficulty and landscape
analysis.

I. INTRODUCTION

VOLUTIONARY multiobjective optimization (EMO)
Ealgorithms and other multiobjective randomized search
heuristics have to face a lot of difficulties. Apart from the
typical issues encountered in single-objective optimization,
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multiobjective landscapes exhibit additional challenges such
as the identification of multiple (Pareto) optimal solutions,
corresponding to different tradeoffs between the objectives.
A large number of EMO algorithms has been designed in the
last thirty years, ranging from dominance-based approaches
to scalarization- and indicator-based refinements; see [1]-[3].
Despite the significant progress in recent years, we argue that
most EMO algorithms continue to be designed on the basis of
intuition, that they require a significant effort to be tailored to
a particular optimization scenario, and that there is a lack of
understanding about what makes them efficient or not when
solving a particular problem instance.

In single-objective optimization, however, landscape anal-
ysis has emerged as a valuable set of tools to characterize
problem difficulty [4]. Contrary to problem-specific structural
properties, such as the average vertex degree in the mini-
mum vertex cover problem [5] or the maximum cost between
two cities in the traveling salesman problem [6], landscape
analysis aims at designing general-purpose features that do
not depend on a specific problem class or problem domain.
Instead, it tries to characterize the topology of black-box prob-
lems in the eye of the challenges that stochastic local search
algorithms have to face when tackling them. Of particular
interest is the number and distribution of local optima in
the landscape, i.e., multimodality and ruggedness [7]-[11].
These features are empirically related to instance hardness and
algorithm efficiency, and provide significant insights into the
interplay between the problem structure and the behavior of
search algorithms and their working components. Pioneering
works on multiobjective landscape analysis include Knowles
and Corne [12], Paquete et al. [13], [14], and Garrett and
Dasgupta [15], [16], as well as the authors own previous
works [17]-[20]. We build upon those by considering general-
purpose problem features defined therein. In addition, we
derive new landscape features that our analysis reveals as
highly impactful for multiobjective search.

The purpose of designing features to characterize search dif-
ficulty is twofold: 1) gathering a fundamental understanding
of optimization problems and algorithms, eventually leading
to a better algorithm design and 2) automatically predicting
performance or selecting algorithm based on relevant features.
More particularly, feature-based performance prediction con-
sists of modeling the expected runtime or solution quality
of a given algorithm applied to a problem instance exhibit-
ing particular features. This, in turn, might also lead to
algorithm selection [21], [22] and configuration [23], [24],
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where the best-performing algorithm or configuration is to
be selected from a set of competitors. This issue is not spe-
cific to optimization, and is known as the algorithm selection
problem [25]. A statistical or machine learning regression
or classification model is constructed by means of exten-
sive experiments on a training set of instances, and this
model is later used to predict the performance or to select
between algorithms for previously unseen instances. This area
has received a growing attention in recent years, mainly by
relying on features that require a specific domain knowl-
edge from the target combinatorial optimization problem; see
[6], [26], [27]. Few exceptions can be found in [28]-[31],
where the selection among an algorithm portfolio is performed
using general-purpose landscape features related to local opti-
mality, ruggedness, and multimodality. Research in this line
can also be found for black-box continuous single-objective
optimization [32]-[34]. However, to our knowledge, black-
box landscape features have never been used for performance
prediction or algorithm recommendation in the context of
multiobjective combinatorial optimization. Although the sta-
tistical and machine learning models used in the single-
objective case can be applied, multiobjective landscape fea-
tures need to be carefully designed and analyzed, since existing
single-objective features are not relevant for multiobjective
optimization.

This is precisely the purpose of the current study.
Particularly, we first review and extend general-purpose fea-
tures to characterize the different facets of difficulty encoun-
tered in multiobjective combinatorial optimization. Features
include problem descriptors, as the solution and objective
space dimensions, global measures, that require the knowledge
of all or part of the solution space, and local measures, that
are computed from an affordable sample of solutions. Then,
we analyze features interrelation as well as their impact on
the performance of two canonical EMO algorithms, namely,
the global simple evolutionary multiobjective optimizer (G-
SEMO) [35] and the Pareto local search [13]. We selected
a global and a local simple elitist dominance-based EMO
algorithms, respectively, for the sake of clarifying the under-
standing of core EMO algorithm components. Experiments
are conducted on a family of multimodal pseudo-boolean
optimization problems known as multiobjective nk-landscapes
with objective correlation [18]. By paying a particular atten-
tion to the computational cost induced by these features, we
finally analyze their ability to predict algorithm performance
and to select among a small algorithm portfolio. A sound sta-
tistical analysis allows us to highlight the main difficulties that
dominance-based EMO algorithms have to face, as well as
the main differences induced by global and local EMO search
approaches.

This article is organized as follows. In Section II, we
present the main concepts from multiobjective combinato-
rial optimization, and we introduce the multiobjective algo-
rithms and multiobjective nk-landscapes considered in this
article. In Section III, we identify a substantial number
of existing and original features that characterize black-box
multiobjective landscapes. In Section IV, based on a set
of small-size multiobjective nk-landscapes, we analyze the
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correlation among features, and we measure their ability to
predict algorithm performance as well as their impact on
search efficiency. In Section V, we extend our analysis to
large-size instances by focusing on local features, i.e., features
that can be computed efficiently. In Section VI, we experiment
with feature-based algorithm selection for both multiobjective
nk-landscapes and quadratic assignment problems. In the last
section, we conclude this article and discuss further research.

II. MULTIOBJECTIVE COMBINATORIAL OPTIMIZATION
A. Definitions

Let us consider a black-box objective function vector
f 1 X — Z to be maximized. Each solution from the solu-
tion space x € X maps to a vector in the objective space
z € Z, with Z € R™, such that z = f(x). In multiobjective
combinatorial optimization, the solution space X is a discrete
set. We here assume that X := {0, 1}, where n is the problem
size, i.e., the number of binary (zero-one) variables. Given
two objective vectors z, 7 € Z, z is dominated by 7' iff for all
ie{l,.... m}z < zg, and there is a j € {1, ..., m} such that
7 < z]/-. Similarly, given two solutions x,x’ € X, x is domi-
nated by x" iff f(x) is dominated by f(x'). An objective vector
Z* € Z is nondominated if there does not exist any z € Z
such that z* is dominated by z. A solution x* € X is Pareto
optimal (PO), or nondominated, if f(x) is nondominated. The
set of PO solutions is the Pareto set (PS); its mapping in the
objective space is the Pareto front (PF). One of the main chal-
lenges in multiobjective optimization is to identify the PS, or a
good approximation of it for large-size and difficult black-box
problems.

B. Algorithms

We consider two randomized multiobjective search heuris-
tics: 1) the global simple evolutionary multiobjective optimizer
(G-SEMO) [35], a simple elitist steady-state global EMO
algorithm and 2) Pareto local search (PLS) [13], a population-
based multiobjective local search. Both algorithms maintain
an unbounded archive A of mutually nondominated solutions.
This archive is initialized with one random solution from the
solution space. At each iteration, one solution is selected at
random from the archive x € A. In G-SEMO, each binary
variable from x is independently flipped with a rate of 1/n in
order to produce an offspring solution x’. The archive is then
updated by keeping the nondominated solutions from AU {x'}.
In PLS, the solutions located in the neighborhood of x are eval-
uated. Let N (x) be the set of solutions located at a Hamming
distance 1. The nondominated solutions from A U A/(x) are
stored in the archive, and the current solution x is tagged as
visited in order to avoid a useless revaluation of its neigh-
borhood. This process is iterated until a stopping condition is
satisfied. While G-SEMO does not have any explicit stopping
rule, PLS naturally stops once all solutions from the archive
are tagged as visited. For this reason, we consider a simple
iterated version of PLS (I-PLS), that restarts from a solution
randomly chosen from the archive and perturbed by stochastic
mutation [36]. While PLS is based on the exploration of the
whole 1-bit-flip neighborhood from x, G-SEMO rather uses an
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ergodic operator, 1.e., an independent bit-flip mutation. Hence,
every iteration has a nonzero probability of reaching any solu-
tion from the solution space. This makes G-SEMO a global
optimizer, in contrast with a local optimizer as PLS.

C. Pseudo-Boolean Multiobjective Benchmark Instances

We consider pmnk landscapes [18] as a problem-indepen-
dent model used for constructing multiobjective multimodal
landscapes with objective correlation. They extend single-
objective nk-landscapes [8] and multiobjective nk-landscapes
with independent objectives [17]. Candidate solutions are
binary strings of size n. The objective function vector f =
(fi,...»fir -+, fuw) 1s defined as f : {0, 1} — [0, IT™ such
that each objective f; is to be maximized. As in the single-
objective case, the objective value f;(x) of a solution x =
(*1,...,%j,...,xy) is an average value of the individual
contributions associated with each variable x;. Given objec-
tive f;, i € {I,...,m}, and each variable x;, j € {I,...,n},
a component function f;; : {0, 1}<t1 [0, 1] assigns a
real-valued contribution for every combination of x; and its
k epistatic interactions {le, . ,xjk}. These fjj-values are uni-
formly distributed in [0, 1]. Thus, the individual contribution
of a variable x; depends on its value and on the values of
k < n variables {xj,, ..., xj,} other than x;. The problem can
be formalized as follows:

1 o .

max ﬁ(x):EZﬁ/()q;,le,...,x;k)ze{l,...,m}
j=1

st. x;€{0,1} je{l,...,n}.

In this article, the epistatic interactions, i.e., the k variables
that influence the contribution of x;, are set uniformly at ran-
dom among the (n — 1) variables other than x;, following the
random neighborhood model from [8]. By increasing the num-
ber of epistatic interactions k from O to (n — 1), problem
instances can be gradually tuned from smooth to rugged. In
pmnk s, fii-values additionally follow a multivariate uniform
distribution of dimension m, defined by an m x m positive-
definite symmetric covariance matrix (cp,) such that ¢,y =1
and ¢,y = p for all p,q € {1,...,m} with p # g, where
o > —1/(m — 1) defines the correlation among the objectives;
see [18] for details. The positive (respectively, negative) objec-
tive correlation p decreases (respectively, increases) the degree
of conflict between the different objective function values.
Notice that the correlation coefficient p is the same between
all pairs of objectives, and the same epistatic degree k and
epistatic interactions are set for all the objectives.

III. CHARACTERIZING MULTIOBJECTIVE LANDSCAPES

In this section, we present the set of multiobjective land-
scape features considered in our analysis. We start with global
features, that, in order to be computed, require the knowl-
edge of all solutions and/or Pareto optima. This makes them
impractical for performance prediction and algorithm selec-
tion. However, we decided to include them in order to measure
and understand their impact on search performance. Next,
we introduce a number of local features, which are based
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Fig. 1. Illustration of global features extracted from the PS, the PF, and the
solution space.

on a reasonable subset of solutions sampled during random
and adaptive walks, making them affordable in practice for
performance prediction. The whole set of features is listed in
Table I, together with the parameters of pmnk s described
above, i.e., p, m, n, and k.

As in single-objective optimization, we define a
multiobjective landscape as a triplet (X, N,f), where X
is a solution space, N : X 2X is a neighborhood relation,
and f : X — Z is a (black-box) objective function vector.

A. Global Features

Let us start with the subset of global features illustrated in
Fig. 1. In multiobjective combinatorial optimization, the num-
ber of PO solutions is considered as an important aspect of
difficulty. Generally speaking, the larger the PS, the smaller
the chance to identify all PO solutions in an efficient manner.
In that sense, most multiobjective combinatorial optimization
problems are known to be intractable, i.e., the number of
PO solutions typically grows exponentially with the problem
size [37]. As such, the proportion of PO solutions in the
solution space (#po) is one of the most obvious facet to char-
acterize problem difficulty; see [12], [15], [17]. For prmnk-
landscapes, #po is known to grow exponentially with the
number of objectives and with their degree of conflict [18]. PO
solutions can further be classified into two categories: 1) sup-
ported and 2) nonsupported solutions. A supported solution
is an optimal solution of a weighted-sum aggregation of the
objectives, and is mapping to an objective vector that is located
on the convex hull of the PF [37]. Although dominance-based
approaches are considered in our analysis, the proportion of
supported solutions in the PS (#supp) might impact the gen-
eral convexity of the PF, as illustrated by previous studies on
multiobjective landscape analysis [12]. Similarly, the hyper-
volume (hv) covered by the (exact) PF is shown to relate
to the expected performance of EMO algorithms [17]. The
hypervolume is one of the few recommended indicators for
comparing solution-sets in EMO. It gives the portion of the
objective space that is dominated by a solution-set [38].

Other relevant characteristics from the PS deal with the
distance and connectedness between PO solutions. Knowles
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TABLE I
STATE-OF-THE-ART AND NEWLY PROPOSED MULTIOBJECTIVE LANDSCAPE FEATURES CONSIDERED IN THIS ARTICLE. WHEN NO REFERENCE IS
GIVEN, THE CORRESPONDING FEATURE APPEARS IN THIS ARTICLE FOR THE FIRST TIME. NOTICE THAT THE COMPUTATIONAL COMPLEXITY FOR (I)
GLOBAL FEATURES FROM ENUMERATION Is O(|X|) = O(2"), (I1) LoCcAL FEATURES FROM RANDOM WALK SAMPLING IS O(£ - n), WHERE £ IS A
PRE-DEFINED PARAMETER, (III) LOCAL FEATURES FROM ADAPTIVE WALK SAMPLING IS O(¢ - n), WHERE £ IS THE NUMBER OF STEPS TO
FALL INTO A PARETO LOCAL OPTIMA (PLO). ALL BENCHMARK PARAMETERS ARE CONSIDERED IN OUR ANALYSIS, ALTHOUGH ONLY
THE PROBLEM SIZE (N) AND THE NUMBER OF OBJECTIVES (M) ARE AVAILABLE IN A BLACK-BOX SCENARIO

BENCHMARK PARAMETERS (4)

number of (binary) variables

~ B
=]

number of objectives
correlation between the objective values

D B

proportional number of variable interactions (epistatic links) : k/n

GLOBAL FEATURES FROM FULL ENUMERATION (16)

#po proportion of Pareto optimal (PO) solutions
#supp proportion of supported PO solutions

hv hypervolume-value of the (exact) Pareto front
podist_avg average Hamming distance between PO solutions

[12], [15]
[12]
[17]
[19]

podist_max maximal Hamming distance between PO solutions (diameter of the Pareto set) [12]
po_ent entropy of binary variables from Pareto optimal solutions [12]
fdc fitness-distance correlation in the Pareto set (Hamming dist. in sol. space vs. Manhattan dist. in obj. space) [12], [15]
#cc proportion of connected components in the Pareto graph [14]
#sing proportion of isolated Pareto optimal solutions (singletons) in the Pareto graph [14]
#lcc proportional size of the largest connected component in the Pareto graph [18]
lcc_dist average Hamming distance between solutions from the largest connected component here
lcc_hv proportion of hypervolume covered by the largest connected component here
#fronts proportion of non-dominated fronts [16], [17]
front_ent entropy of the non-dominated front’s size distribution here
#plo proportion of Pareto local optimal (PLO) solutions [13]
#slo_avg average proportion of single-objective local optimal solutions per objective here
LOCAL FEATURES FROM RANDOM WALK SAMPLING (17)
#inf_avg_rws average proportion of neighbors dominated by the current solution here
#inf_rl_rws first autocorrelation coefficient of the proportion of neighbors dominated by the current solution here
#sup_avg_rws average proportion of neighbors dominating the current solution here
#sup_rl_rws first autocorrelation coefficient of the proportion of neighbors dominating the current solution here
#inc_avg_rws average proportion of neighbors incomparable to the current solution here
#inc_rl_rws first autocorrelation coefficient of the proportion of neighbors incomparable to the current solution here
#1nd_avg_rws average proportion of locally non-dominated solutions in the neighborhood here
#lnd_rl_rws first autocorrelation coefficient of the proportion of locally non-dominated solutions in the neighborhood here
#lsupp_avg_rws  average proportion of supported locally non-dominated solutions in the neighborhood here
#lsupp_rl_rws first autocorrelation coefficient of the proportion of supported locally non-dominated solutions in the neighborhood  here
hv_avg_rws average (single) solution’s hypervolume-value here
hv_rl_rws first autocorrelation coefficient of (single) solution’s hypervolume-values [19]
hvd_avg_rws average (single) solution’s hypervolume difference-value here
hvd_rl_rws first autocorrelation coefficient of (single) solution’s hypervolume difference-values [19]
nhv_avg_rws average neighborhood’s hypervolume-value here
nhv_rl_rws first autocorrelation coefficient of neighborhood’s hypervolume-value here
f_cor_rws estimated correlation between the objective values here
LOCAL FEATURES FROM ADAPTIVE WALK SAMPLING (9)
#inf_avg_aws average proportion of neighbors dominated by the current solution here
#sup_avg_aws average proportion of neighbors dominating the current solution here
#inc_avg_aws average proportion of neighbors incomparable to the current solution here
#1nd_avg_aws average proportion of locally non-dominated solutions in the neighborhood here
#1lsupp_avg_aws  average proportion of supported locally non-dominated solutions in the neighborhood here
hv_avg_aws average (single) solution’s hypervolume-value here
hvd_avg_aws average (single) solution’s hypervolume difference-value here
nhv_avg_aws average neighborhood’s hypervolume-value here

length_aws average length of adaptive walks

[18]

and Corne [12] studied the maximal distance, in the solu-
tion space, between any pair of PO solutions (podist_max).
They denote this as the diameter of the PS. For pmnk s, the
distance measure is taken as the Hamming distance between
binary strings, which is directly related to the bit-flip neigh-
borhood operator. Similarly, the average distance between PO
solutions (podist_avg) can also be taken into account [19].
Another measure capturing the dispersion of solutions is the
entropy of the PS [12], here measured as the entropy of

(binary) variables from PO solutions (po_ent). Extensions
of the fitness-distance correlation, a widely acknowledged
landscape measure [39], to multiobjective optimization is
discussed in [12] and [15]. We here consider the correla-
tion between the (Hamming) distance between PO solutions
and their Manhattan distance in the objective space [12].
Another important property of the PS topology is connect-
edness [40], [41]. The PS is connected if all PO solutions are
connected with respect to a given neighborhood structure. This
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f2
A

Fig. 2. Illustration of global features extracted from the connectedness
properties of the PS.

makes it possible for local search to identify the whole PS
by starting with one PO solution. Let us define a graph such
that each node corresponds to a PO solution, and there is an
edge between two nodes if the corresponding solutions are
neighbors in the landscape. Arguing that the degree of con-
nectedness impacts the performance of multiobjective local
search [14], [42], we here consider the following landscape
features, illustrated in Fig. 2: the proportion of connected
components in this Pareto graph (#cc) [14], the proportion
of isolated nodes (#sing) [14], the proportional size of the
largest connected component (#1cc) [18], [42], as well as the
average distance between pairs of nodes (Lcc_dist), and the
proportion of hypervolume covered by the largest connected
component from the Pareto graph (1cc_hv).

The characteristics of the PS and the PF, however, are not
the sole factors that impact the performance of EMO algo-
rithms. Garrett and Dasgupta [16] and Aguirre and Tanaka
[17] analyzed how the landscape affects the number of non-
dominated fronts, and how this relates to search performance.
As illustrated in Fig. 1, the whole set of solutions from the
search space is divided into different layers of mutually non-
dominated solutions, following the principles of nondominated
sorting used, e.g., in NSGA-II [1]. To cater for this, we mea-
sure both the proportion of nondominated fronts in the solution
space (#fronts) [16], [17], and the entropy of the nondom-
inated front’s size distribution (front_ent). Finally, one of
the main landscape features in single-objective optimization
is the number of local optima [8]. Although multimodality is
still largely overlooked in the multiobjective optimization lit-
erature, where the number of objectives is seen as the main
source of difficulty, few recent studies have revealed its impact
on multiobjective search performance [11], [13], [18], [20].
Following [13], we define a Pareto local optimum (PLO) as
a solution x € X for which there does not exist any neigh-
boring solution X' € A (x) such that x is dominated by X/,
and we measure the proportion of PLO in the solution space
(#plo). Additionally, we also consider the average number of
single-objective local optima (SLO) with respect to each sepa-
rate objective function, proportional to the size of the solution
space (#slo_avg). In other words, #slo_avg corresponds
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Fig. 3. [Illustration of Pareto local optima (PLO) and single-objective local
optima (SLO).

to the proportion of local optima per objective, all m val-
ues (i.e., one per objective) being averaged. The definitions of
PLO and SLO are illustrated in Fig. 3. We expect #slo_avg
to increase with the number of variable interactions k, as in
single-objective nk-landscapes [8]. However, we conjecture
that #plo is not only affected by k, but also by the number
of objectives and their degree of conflict. Both features might
then capture different facets of multiobjective multimodality.

B. Local Features

Unfortunately, computing the global features introduced
above requires the solution space, or the PS, to be exhaus-
tively enumerated, which makes them impractical. Therefore,
we consider local features, computed from the neighborhood
of a sample of solutions, which makes them relevant for
performance prediction. In the following, we introduce two
sampling strategies and a number of landscape measures. We
simply consider a local feature as a combination of both.

1) Sampling: In single-objective landscape analysis, sam-
pling is often performed by means of a walk over
the landscape. A walk is an ordered sequence of solu-
tions (xg,x1,...,x¢) such that xo € X, and x; € N(x—1)
forall r € {1,...,¢} [7], [8].

During a random walk, there is no particular criterion to
pick the neighboring solution at each step; i.e., a random
neighbor is selected. In the single-objective case, the first auto-
correlation coefficient of (scalar) fitness values encountered
during the random walk characterizes the ruggedness of the
landscape [7], [43]: the larger this coefficient, the smoother
the landscape. To accommodate the multiobjective nature of
the landscape, different autocorrelation measures will be dis-
cussed below. In the case of a random walk, the length of the
walk £ is a parameter that must be provided beforehand. The
longer the length, the better the estimation.

By contrast, during an adaptive walk, an improving neigh-
bor is selected at each step, as a conventional hill climber
would do. In this case, the length £ is the number of steps per-
formed until the walk falls into a local optimum. This length
is used as an estimator of the diameter of local optima’s basins
of attraction: assuming isotropy in the search space, the longer
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Fig. 4. Illustration of a multiobjective random walk in the objective space.
In this example, the walk length is set to £ = 7.

f2

Fig. 5. Illustration of a multiobjective adaptive walk (PHC) in the objective
space. In this example, the walk performs £ = 5 until it falls into a PLO.

the length, the larger the basins size, hence the lower the num-
ber of local optima [8]. Multiple adaptive walks are typically
performed to improve the estimation.

A random walk does not require any adaptation to the
multiobjective case, except for the measure used to estimate
the correlation coefficient, detailed next. As for the adap-
tive walk, we consider a very basic single solution-based
multiobjective Pareto hill climber (PHC) [18]. The PHC is
initialized with a random solution. At each iteration, the cur-
rent solution is replaced by a random dominating neighbor
until it falls into a PLO. The considered random and adaptive
walks are illustrated in Figs. 4 and 5, respectively.

2) Measures: Given an ordered sequence of solutions col-
lected along a walk, we consider the following measures.
For each solution from the sample, we explore its neighbor-
hood, and we measure the proportion of dominated (#inf),
dominating (#sup), and incomparable (#inc) neighbors, as
illustrated in Fig. 6. We also consider the proportion of non-
dominated solutions in its neighborhood (#1nd), as well as the
proportion of supported solutions therein (#1supp). In Fig. 7,
we illustrate some measures-based on hypervolume: the aver-
age hypervolume covered by each neighbor (hv), the average
difference between the hypervolume covered by each neigh-
bor and the one covered by the current solution (hvd), and
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Fig. 6. Illustration of local dominance measures collected along random and
adaptive walks.

Fig. 7. Tllustration of local hypervolume measures collected along random
and adaptive walks.

the hypervolume covered by the whole neighborhood (nhv).
The notions of dominance and hypervolume improvement
that can be reached by a solution’s neighborhood can be
seen as measures of evolvability [44] for multiobjective
optimization.

For samples collected by means of a random walk, we com-
pute both the average value as well as the first autocorrelation
coefficient of the measures reported above. Let us consider, for
instance, the hv measure. When there is a strong correlation
between the hypervolume of neighboring solutions observed
at two consecutive steps of the random walk, we argue that it
tends to be easier to improve locally by means of neighbor-
hood exploration. On the contrary, when there is no correlation
between the hypervolume of neighboring solutions, it is likely
harder to improve locally. As such, the corresponding feature
might characterize a facet of difficulty for multiobjective land-
scapes. We also use the random walk sample to estimate the
degree of correlation between the objectives (£_cor_rws).
The latter is expected to estimate p for pmnk-landscapes.
For adaptive walks, we simply compute average values for
each measure, as well as walks length (length_aws).
In [18], length_aws is shown to be a good estimator
for #plo.
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IV. LANDSCAPE FEATURES VERSUS ALGORITHM
PERFORMANCE ON SMALL INSTANCES

A. Experimental Setup

We consider small-size pmnk-landscapes with a problem
size n € {10, 11, 12,13, 14, 15,16} in order to enumerate
the solution space exhaustively, as required by global fea-
tures; a number of variable interactions (epistatic degree)
kef{0,1,2,3,4,5,6,7, 8}, from linear to highly rugged land-
scapes; a number of objectives m € {2, 3,4, 5}, from bi-, to
multi and many-objective instances; and an objective correla-
tion p € {—0.8, -0.6, —0.4, —0.2,0.0, 0.2, 0.4, 0.6, 0.8, 1.0}
such that p > —1/(m — 1). We generate 30 landscapes
independently at random for each combination of instance set-
tings. This represents a dataset of 60480 small-size problem
instances in total, exhibiting a large span of landscape char-
acteristics. For local features, we perform one random walk
of length £ = 1000, and 100 independent adaptive walks,
per instance. As in single-objective landscape analysis [8],
multiple adaptive walks are performed to account for the
stochasticity observed in their length, whereas a single long
random walk is performed to obtain a large sample to better
estimate the autocorrelation coefficients. For features based
on hypervolume, given that all pmnk-landscape’s objectives
have a similar range and take their values in [0, 1], we set
the reference point to the origin. In terms of algorithms, we
perform 30 independent runs of both G-SEMO and I-PLS on
each instance. We are interested in the approximation quality
found by each algorithm after reaching a maximum budget,
here defined as a number of calls to the evaluation function.
The stopping condition is set to a fixed budget of 10% of
the solution space size, i.e., [0.1 - |X|] = [0.1 - 277 calls
of the evaluation function. This represents a budget of 103
evaluations for n = 10, up to 6554 evaluations for n = 16.
Performance quality is measured in terms of the multiplicative
epsilon indicator [38], that is the epsilon approximation ratio
to the exact PF.

B. Correlation Between Landscape Features

Fig. 8 reports the correlation matrix and a hierarchical clus-
tering of all features, as measured on the complete dataset of
small-size instances. This highlights the similarities between
features and their main association with either benchmark
parameters: it is worth noticing that each cluster contains
a benchmark parameter, as well as both global and local
features.

1) Cluster Associated With Ruggedness (Violet): All of the
eight landscape features from the first autocorrelation coeffi-
cient of random walks measures strongly correlate with the
proportional number of variable interactions (epistatic links)
of pmnk-landscapes (k_n = k/n). Intuitively, those features
are related to the ruggedness of the multiobjective landscape,
which generalizes known results from single-objective land-
scape analysis [7]: the ruggedness of the landscape increases
with k_n. As in single-objective optimization, the aver-
age number of local optima per objective #slo_avg also
correlates to k_n. All the features related with connected-
ness (#cc, #sing, #lcc, lcc_dist, lcc_hv) belong
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to this same cluster, together with other features related to
the distance between PO solutions (podist_avg, po_ent,
fdc), although the correlation with k_n is lower in this
case.

2) Cluster Associated With the Number of Objectives
(Orange): The features related to hypervolume that do not
belong to the previous cluster (associated with ruggedness)
are all negatively correlated to the number of objectives (m).
Interestingly, features based on average hypervolume mea-
sures (hv, hvd, nhv) are closely related to one another, for
samples from both random and adaptive walks. This means
that the landscape evolvability, in terms of hypervolume,
decreases with the objective space dimension, and so does
the PF hypervolume.

3) Cluster Associated With Objective Correlation (Green):
This last cluster contains the highest number of features, all
related to the correlation between the objective values (p).
Note that £_cor_rws is shown to highly correlate with
o, and can thus be used as an estimator for black-box
instances, for which p is typically unknown. Objective cor-
relation seems to impact both the shape and the cardinality
of the PF (#po, #supp, podist_max). Similarly, local fea-
tures based on dominance (#inf, #inc, #sup) are close
to one another, both for random and adaptive walks. More
interestingly, the proportion of Pareto local optima (#plo)
and its estimator length_aws both belong to this cluster.
Although #slo_avg belongs to the first cluster associated
with ruggedness (see above), #plo seems to increase with the
degree of conflicts between the objectives. Indeed, the objec-
tive correlation directly impacts the probability of dominance:
the larger p, the smaller the chance to have a dominated or
dominating neighbor, and the larger the chance to have an
incomparable one, which directly impacts the number of PLO.
The problem size n is also contained in this cluster, although
it is only slightly correlated to other features, except for the
proportional number of fronts (#fronts).

C. Feature-Based Performance Prediction

To investigate the association between instance features and
empirical problem hardness, we build a regression model that
predicts search performance based on different subsets of
input features. More precisely, we predict the multiplicative
epsilon indicator value reached by G-SEMO and I-PLS based
on: all features, global features, local features, local features
based on random walk, local features based on adaptive walk,
benchmark parameters, and problem parameters available in
a black-box scenario. Given the nonlinearity observed in the
data, we chose a tree-based regression model: an ensemble of
extremely randomized trees [47]. It is a variant of the popular
random forest model [48] that differs in the way individual
trees are built. While splitting a node, we do not only ran-
domize the choice of input variable, but also the cut-point.
Moreover, each tree uses the entire training data, rather than
bootstrap replicas. In our experiments, we employ ensembles
of 500 unpruned regression trees [49]. The prediction target is
the approximation ratio to the exact PF, measured every tenth
of the total evaluations budget. That is, we model the search
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Features clustering (left) and features association (right) computed over the whole set of small instances. The strength of monotonic association

between each pair of features is measured by the Kendall coefficient 7, which is a rank-based nonlinear correlation measure. The distance between each pair
of features is defined as 1 — |r|. Ward’s hierarchical clustering [45] is performed according to such distance (left figure, y-axis): the lower the split, the closer
the features. Clustering is also used to reorder rows and columns of the symmetrical correlation matrix [46] (right figure, see color legend in the middle): the
darker the color, the higher the strength of association between the corresponding features. By cutting the clustering tree, we can group together the features
that are more associated with each one of the benchmark parameters {p, m, n, k_n}; see branches and row label colors: green for p, violet for k_n, and

orange for m.

TABLE 11
TENFOLD CROSS-VALIDATED REGRESSION ACCURACY OBTAINED ON SMALL INSTANCES FOR DIFFERENT INPUT FEATURES

MAE MSE R? adjusted R2
Algo. | Set of features avg std avg std avg std avg std Rank
all features 0.007781  0.000055 | 0.000118  0.000002 | 0.951609  0.001463 | 0.951238  0.001474 1
° global features 0.008411  0.000064 | 0.000142  0.000003 | 0.943046  0.001665 | 0.942876  0.001670 2
S local features 0.009113  0.000072 | 0.000161  0.000003 | 0.932975  0.001555 | 0.932663  0.001562 3
o local features (random walk) 0.009284  0.000081 | 0.000167  0.000003 | 0.930728 0.001605 | 0.930510  0.001610 4
) local features (adaptive walk) | 0.010241  0.000106 | 0.000195  0.000004 | 0.917563  0.002260 | 0.917399  0.002264 5
{p,m,n, k_n} 0.010609  0.000110 | 0.000215  0.000004 | 0.911350  0.002436 | 0.911292  0.002372 6
{m,n} 0.032150  0.000309 | 0.001545  0.000025 | 0.340715 0.011217 | 0.340497  0.011220 7
all features 0.008043  0.000052 | 0.000127  0.000002 | 0.944367 0.001429 | 0.943940  0.001440 1
global features 0.008613  0.000054 | 0.000149  0.000002 | 0.936046  0.001479 | 0.935856  0.001484 2
%) local features 0.009297  0.000081 | 0.000167  0.000003 | 0.925610  0.001900 | 0.925264  0.001909 3
= local features (random walk) 0.009485  0.000089 | 0.000173  0.000004 | 0.923032 0.001863 | 0.922789  0.001869 4
- local features (adaptive walk) | 0.010336  0.000098 | 0.000198  0.000004 | 0.910670  0.002455 | 0.910493  0.002459 5
{p,m,n,k_n} 0.010817  0.000122 | 0.000223  0.000005 | 0.901888  0.002803 | 0.901823  0.002882 6
{m,n} 0.030523  0.000286 | 0.001423  0.000023 | 0.351707 0.009822 | 0.351493  0.009826 7

convergence curve with a multioutput regression. The mean
square error (MSE), mean absolute error (MAE), coefficient
of determination (R?), and adjusted R? of the regression model
for different sets of predictors are reported in Table II. A score
is the average score over the multiple outputs of a model. The
closer MSE and MAE are to 0.0, the better. Conversely, R2
reaches 1.0 when the predictions are perfect, and would be 0.0
for a constant model that always predicts the global average
of the target value, irrespective of the input features. For each

measure of accuracy, we report the average value on test and
its standard deviation over a tenfold cross-validation.

A general observation is that the MAE and the MSE are in
accordance with each other, as shown by the relative ranking
of each subset of features. The rank reflects any significant sta-
tistical difference on MAE and MSE over the holdouts of each
cross-validation iteration, with respect to a Mann-Whitney sta-
tistical test at a significance level of 0.05 with Bonferroni
correction for multiple comparisons [50]. In addition, when
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comparing G-SEMO and I-PLS, we observe almost no dif-
ference in the models accuracy. When analyzing the impact
of the different subset of features, we can observe a poor
performance when using solely m and n as input variables.
This means that the problem input provided in a black-box sce-
nario, i.e., the solution and objective space dimensions, is not
sufficient to explain the performance of G-SEMO and I-PLS.
Once we take into account the objective correlation p, and
more importantly the proportional number of variable inter-
actions k_n, we observe a significant increase in the model
accuracy. For both algorithms, the R? exceeds 0.9. In a sense,
more than 90% of the variance of search performance between
instances is explained by the pmnk-landscape parameters. This
is not a surprise since these four parameters define the way
pmnk-landscapes are constructed; see Section II-C. However,
let us remind that p and k_n are not known in practice when
solving a black-box problem instance. More interestingly,
however, we see that the proposed local features, based on
sampling, allow the model to obtain a better prediction accu-
racy than benchmark parameters. We attribute this to the fact
that they are able to capture the variations between instances
with the same parameters; i.e., the randomness in the construc-
tion of pmnk-landscapes. This is particularly true for local
features based on random walk, which contain more insight-
ful information for search performance than the ones based
on adaptive walk. Indeed, the regression accuracy obtained
with the former subset of local features is almost as good as
the combination of both. At last, we observe that global fea-
tures, based on the enumeration of the solution space, obtain
a better ranking, although the addition of local features seems
to increase the predictive power of the regression model even
more, as illustrated by the results obtained by the models using
all features.

D. Importance of Features for Search Performance

Tree-based predictive models also allow for the identifica-
tion of which input features are the most important to make
accurate predictions, which provides insight into the process
being modeled [51], [52]. In particular, we consider the mea-
sure of importance that relates to the decrease in node impurity
after each split on a given predictor; the larger the decrease,
the more important the predictor. Note that, in the regression
case, node impurity is measured by variance. We derive our
estimates from a large ensemble of 50 000 shallow and totally
randomized regression trees. Choosing the input variable to
split on totally at random prevents correlated variables to mask
one another, which would result in underestimating their rela-
tive importance [52]. Then, by using small trees, we strive to
minimize the effect of having a finite sample set, which intro-
duces noise in the node impurities as trees grow. The relative
importance of features thus extracted, is depicted in Fig. 9.
For a given algorithm, features are sorted in decreasing order
of importance, from top to bottom. Although the regression
accuracy is similar for both algorithms, the most important
features are different for G-SEMO and I-PLS.

For G-SEMO, the six most important features are all related
to the ruggedness of the landscape (in violet). Apart from the
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Fig. 9. Relative importance of features (mean decrease in node impurity)
from totally randomized regression trees for small instances.

proportional number of variable interactions k_n in pmnk-
landscapes, the others correspond to the first autocorrelation
coefficient of the proportional number of dominated (#inf),
dominating (#sup), and incomparable (#inc) neighbors,
the proportional number of nondominated solutions in the
neighborhood (#1nd), and the hypervolume covered by the
neighborhood (nhv) encountered along a random walk. Next
in the ranking are those associated with objective corre-
lation and dominance (in green), such as the diameter of
the PS (podist_max), which also correspond to the most
important global feature. For I-PLS, features related to the
ruggedness (in violet) and to the objective correlation (in
green) seem equally important, and the features listed above
also appear to be impactful. Most notably, the proportion of
PLO (#plo) seems of high importance; it appears in the 3rd
place for I-PLS and only in the 12th place for G-SEMO. By
contrast, the features associated with the number of objec-
tives (in orange) are of low importance for the two algorithms.
Interestingly, for both G-SEMO and I-PLS, the most important
benchmark parameter is the proportional number of variable
interactions k_n, followed by the problem size n, the objective
correlation p, and finally the number of objectives m.

V. SCALING TO LARGE INSTANCES

In this section, we extend our analysis to large-size
instances. Since global features cannot be computed anymore,
we investigate the ability of local features to explain algorithm
performance for large dimensions.

A. Experimental Setup

We generate large-size pmnk-landscapes by means of a
design of experiments based on random latin hypercube
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Fig. 10. Features clustering (left) and features association (right) computed over the whole set of large instances; see Fig. 8 for details.

sampling. We consider problem sizes in the range n €
{64, ...,256}, numbers of variable interactions k € {0, ..., 8},
numbers of objectives m € {2,...,5}, and objective corre-
lations p € [—1,1] such that p > —1/(m — 1). A total of
1000 problem instances is considered, a single instance is
generated for each parameter setting provided by the design
of experiments. We consider all local features as well as
benchmark parameters, and the same two multiobjective algo-
rithms. We perform 30 independent runs per instance and
per algorithm, with a fixed budget of 100000 calls to the
evaluation function. The performance quality is measured in
terms of the multiplicative epsilon indicator to the best-known
nondominated set.

B. Correlation Between Landscape Features

As performed in the previous section for small instances, we
report the correlation between each pair of features and the
corresponding clustering in Fig. 10. Similar to our previous
results, we obtain three clusters, each one being associated
with one benchmark parameter.

The local features related to the first autocorrelation coef-
ficient measured on random walks remain in the cluster
associated to ruggedness (in violet), as it was with small
instances. In addition, both features measuring the average dif-
ference between the hypervolume covered by each neighbor
and the one covered by the current solution (hvd) moved to
this cluster, but their correlation with the other features in
the cluster is low. Similar observations can be made for the
problem size n. We attribute this to the design of experiments

of this new dataset for large instances. Once again, the fea-
tures related to dominance (in green) are all very close to one
another. They relate very much to the objective correlation (p)
and to the proportion of PLO (#plo). As with small instances,
features related to hypervolume are correlated with the num-
ber of objectives (m, in orange). Overall, there are no major
changes with respect to the previous dataset, which validates
this article on small instances.

C. Feature-Based Performance Prediction

The prediction accuracy of regression models predicting
search performance for different subsets of input variables is
reported in Table III. Overall, the fitting quality is lower than
for small instances. We attribute this to the smaller number of
observations contained in the dataset for large instances (1000,
against 60480 for small instances). Once again, the results
for G-SEMO and I-PLS are quite similar. As before, the
objective correlation p and the proportional number of vari-
able interactions k_n, which are unknown in a black-box
scenario, are essential to understand search performance and
to reach a good prediction accuracy. Surprisingly, the model
using solely the solution space and objective space dimen-
sions, n and m, has a negative R2, and performs worse than
a model that always predict the average performance value.
Actually, a visual inspection (not reported) allows one to note
that observed and predicted values can be far from each other,
in particular for instances where algorithms are efficient. All
other models obtain an R? larger than 0.8. This means that
more than 80% of the variance in the algorithms performance
is explained by local features. The set of all local features has
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TABLE III
RANDOM SUBSAMPLING CROSS-VALIDATED REGRESSION ACCURACY OBTAINED ON LARGE INSTANCES (50 ITERATIONS, 90/10 SPLIT)

MAE MSE R?2 adjusted R?
Algo. | Set of features ave std ave std ave std ave std Rank
all features 0.003049  0.000285 | 0.000017  0.000004 0.891227  0.024584 0.843934  0.035273 1
o local features 0.003152  0.000295 | 0.000018  0.000004 0.883909  0.026863 0.838126  0.037457 1
E local features (random walk) 0.003220  0.000314 | 0.000019  0.000004 0.878212  0.028956 0.849287  0.035833 1.5
2 local features (adaptive walk) | 0.003525  0.000329 | 0.000023  0.000006 0.854199  0.032339 0.834089  0.036799 5
< {p,m,n, k_n} 0.003084  0.000270 | 0.000017  0.000003 0.892947  0.020658 0.888440  0.021528 1
{m,n} 0.010813  0.000830 | 0.000206  0.000030 | -0.303336  0.188046 | -0.330209  0.191923 6
all features 0.004290  0.000430 | 0.000034  0.000008 0.886568  0.026980 0.837249  0.038710 1
local features 0.004359  0.000423 | 0.000035  0.000008 0.883323  0.027274 0.837309  0.038030 1
cﬁ local features (random walk) 0.004449  0.000394 | 0.000036  0.000008 0.879936  0.026335 0.851421  0.032589 1
& local features (adaptive walk) | 0.004663  0.000403 | 0.000039  0.000008 0.871011  0.025903 0.853219  0.029476 35
{p,m,n,k_n} 0.004353  0.000320 | 0.000033  0.000006 0.889872  0.024505 0.885235  0.025537 1
{m,n} 0.016959  0.001473 | 0.000472  0.000077 | -0.568495  0.228629 | -0.600836  0.233343 6
a similar predictive power than (known and unknown) bench- GSEMO IPLS
: . : . on- [ inc_avg_rws+ [
mark parameters. Let us remind that in this dataset, a single w_rt_rws - [ #mciav:jws, ]
instance is generated per instance setting, so that there is no ta_rt_rws - [ #sup_avg_aws- [
. . . . length_aws - - #sup_avg_rws - _
variance between instances with the same parameters. As with #supjvgfaws, ] ,:ngmgjws, ]
small instances, the local features based on random walks have sine_rt_rws - [N sint_avg_aws - [N
. . . m- #isupp_avo_aws - |
a higher predictive power than those based on adaptive walks, mw_rt_rws- [ #isupp_avg_rws | [N
although the combination of both is always more accurate. :'""—'I—””s’ = . o1 =
. . . sup_r1_rws - f_cor_rws
Ultimately, local features allow the regression model to obtain tw_ava_rws- [ wint_ava_ws-| |
. . . : M #inf_r1_rws - - #Ind_avg_aws - _
a satisfying prediction accuracy. We analyze the 1mportan§e il — ol ———
of local features below, and then we study their relevance in #oup_avg_rws - [ tw_avg_aws | [
the context of algorithm selection. gl = Heuperine] =
#Ind:avgirwsf . hv_avg_rws - -
hvd_avg_rws - . #sup_r1_rws+ .
n- . #inf_r1_rws - l
D. Importance of Features for Search Performance o_avg_aws- [l nl B
The importance of features for both algorithms is reported o] u el
. N i inf_avg_rws . nhv_avg_rws
in Fig. 11. For G-SEMO, features related to ruggedness (in #ini_avg_aws- [l h_1_ws-
violet) are more relevant than others, followed by features ::::::::le fplged
related to objective correlation, such as the estimator of the #isupp_ri_rws - ] #ind_r1_rws -
proportion of PLO (Length_aws), and to a smaller extent, to el I Rbwpigid
features that are associated with the number of objectives (m).  #sup_avgaws- | n
#lsupp_avg_rws - } hvd_avg_aws

Interestingly, for I-PLS, features related to dominance and
objective correlation (in green) are clearly much more infor-
mative. Indeed, the average rank of those features is 7 for
I-PLS, whereas it is only 19.08 for G-SEMO. Conversely,
the average rank of features related to ruggedness (in vio-
let) is 10.33 for G-SEMO, against 23.67 for I-PLS. For both
algorithms, the average rank of features related to the num-
ber of objectives (in orange) is about the same, and the second
most important one (16.6 for G-SEMO, against 18 for I-PLS).
This highlights that problem features impact local and global
dominance-based multiobjective algorithms differently.

VI. TOWARD FEATURE-BASED ALGORITHM PORTFOLIO

We conclude our analysis with a feature-based algorithm
selection using a portfolio of three EMO algorithms, namely,
NSGA-II [1], IBEA [2], and MOEA/D [3]. They were chosen
as representatives of the state-of-the-art in the field, cover-
ing dominance-, indicator- and scalarization-based approaches,
respectively. We rely on an out-of-the-box implementation
with default parameters, as provided in jMetal 4.5 [53].
We first consider the dataset of large pmnk-landscapes,

Fig. 11. Relative importance of features (mean decrease in node impurity)
from totally randomized regression trees for large instances.

and then a scenario for multiobjective quadratic assignment
problems.

A. pmnk-Landscape

For pmnk-landscape, all three algorithms use a population
of size 100, a 1-point crossover with a rate of 0.9, and a bit-flip
mutation with a rate of 1/n, under a fixed budget of 1000000
evaluations. Notice that the dataset contains 999 observations:
one instance was discarded as there was no distinction between
the algorithms. In order to predict the best-performing algo-
rithm for solving a given instance, we build an ensemble of
500 extremely randomized classification trees, in contrast to
the regression models discussed so far. The output class is
simply whether: 1) NSGA-II; 2) IBEA; or 3) MOEA/D per-
forms better, on average, for a given instance, in terms of
hypervolume. The classification accuracy, measured in terms
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TABLE IV
RANDOM SUBSAMPLING CROSS-VALIDATED CLASSIFICATION ACCURACY OBTAINED ON LARGE puNK-LANDSCAPES (50 ITERATIONS, 90/10 SPLIT)

Set of features Error rate of best average performance Rank Error rate of best statistical rank Rank
mean std mean std
all features 0.122222 0.031033 1 0.012727 0.014110 1
local features 0.123030 0.030521 1 0.013737 0.014103 1
local features (random walk) 0.118788 0.029187 1 0.013333 0.012149 1
local features (adaptive walk) 0.130303 0.029308 1 0.015354 0.014026 1
{p,m,n,k_n} 0.125859 0.028875 1 0.014141 0.013382 1
{m,n} 0.413333 0.045533 6 0.197374 0.043778 6
. . . NSGA-I
of a cross-validated error rate, is reported in Table IV. In fact,
we report two error rates. In the error rate of best average #Ind_avg_aws < 0.12
performance, an error is taken into account if the predicted e
algorithm differs from the best performing algorithm on aver-
age. Complementarily, in the error rate of best statistical rank, AR 21 %08
. . . . . . hvd_avg_rws >= 0.008 hv_avg_aws >=0.18
an error is taken into account only if the predicted algorithm is <0.008 <0.18
significantly outperformed by any other according to a Mann- i i
Whitney statistical test at a significance level of 0.05 with
Bonferroni correction. #ind_avg_rws <0.037 hv_r1_rws < 0.96
Overall, the feature-based classification models are able >=0.087 >=0.96
to reach an error rate below 0.131 for the. pest average NSl e e @é@
performance and below 0.016 for the best statistical rank. As 77033 170 9% 2104 118
such, one of the significantly best-performing algorithms is
Fig. 12. CART decision tree for algorithm selection on pmnk-landscapes.

predicted in more than 98.4% of the cases. This is signifi-
cantly more accurate than the basic approach based on the
solution and objective space dimensions (n and m), which has
an error rate of about 41.3% for the best average performance,
and of 19.7% for the best statistical rank. Notice that a naive
approach that always chooses the best algorithm on aver-
age (NSGA-II) has an error rate of more than 50%, while
always selecting the algorithm with the best statistical rank
(MOEA/D) would result in more than 12% of errors. We did
not find any statistical difference between all other classifica-
tion models, although the model with the lowest error always
uses local features. Note that models built on features from
random walks only are almost as good as any other model:
this might provide a viable option to reduce the computa-
tional cost of the portfolio without altering much the prediction
accuracy.

For the sake of providing a model that is easier to interpret,
we construct another classifier based on a simple decision
tree [54], [55], as illustrated in Fig. 12. Even with such a
simple decision tree of depth three, the proposed features
are able to distinguish between the algorithms with a cross-
validated error rate on best average performance of 12.61%.
The root of the decision tree is a feature related to the objective
correlation (#1nd_avg_aws), measured in terms of the pro-
portion of locally nondominated neighbors encountered along
an adaptive walk. When there are few nondominated solu-
tions in the neighborhood, NSGA-II has more chances of being
selected. This typically happens when the objectives are cor-
related. Indeed, on the left-hand side of the tree, NSGA-II
outperforms IBEA and MOEA/D on 469 instances, whereas
it is outperformed only 196 times. On the contrary, when
there are more nondominated solutions, MOEA/D shall be
selected, as it performs better on 308 instances, against 26
for the other algorithms. In order to reduce the error rate on

The nodes report the number of instances where NSGA-II, IBEA, and
MOEA/D performs better in average, from left to right, respectively.

the left-hand side of the decision tree, two features are con-
sidered (hvd_avg_rws and #1nd_avg_rws), both related
to ruggedness. Roughly speaking, MOEA/D shall be preferred
over NSGA-II for correlated objectives only when the land-
scape is relatively smooth. Overall, this emphasizes that a
single feature is not enough to distinguish between the differ-
ent algorithms, and that multiple features, in this case related
to ruggedness and objective correlation, are required to design
an accurate portfolio approach. This simple example illustrates
the potential of algorithm selection based on multiobjective
landscape features for large dimensions.

B. Multiobjective QAP

The second considered algorithm portfolio scenario deals
with another problem class: the multiobjective quadratic
assignment problem (mQAP) [12]. The mQAP differs from
pmnk-landscapes in multiple aspects, notably the solution rep-
resentation, which is based on permutations and not binary
strings. We generate 1000 mQAP instances based on [12],
and following a design of experiments based on random latin
hypercube sampling. We consider problem sizes in the range
n € {30,...,100}, numbers of objectives m € {2,...,5},
objective correlations p € [—1, 1], and two instance types:
uniform and real-like instances [12]. Bear in mind that the
instance type and the objective correlation are unknown in
practice for black-box mQAP instances. Local features are
computed based on a single adaptive walk, and a single ran-
dom walk of length £ = 200. Moreover, in order to cope with
the quadratic nature of the swap neighborhood considered for
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TABLE V
RANDOM SUBSAMPLING CROSS-VALIDATED CLASSIFICATION ACCURACY OBTAINED ON MQAP (50 ITERATIONS, 90/10 SPLIT)

Set of features Error rate of best average performance Rank Error rate of best statistical rank Rank
mean std mean std
all features 0.1558 0.038124 1 0.0076 0.008704 1
local features 0.1560 0.038012 1 0.0070 0.010152 1
local features (random walk) 0.1632 0.036558 1 0.0104 0.011773 1
local features (adaptive walk) 0.1704 0.033195 1 0.0066 0.009392 1
{type,m, n, p} 0.1686 0.035226 1 0.0100 0.010880 1
{m,n} 0.3132 0.044741 6 0.1156 0.031178 6
/ 134-43352 st As such, IBEA is recommended when the length is large, that
tength aws >=0.47 \dm is, when there are few PLO. On the contrary, MOEA/D is
recommended when there are more PLO. This emphasizes the
high importance of multimodality for mQAP as well, over the
J1e s & o1 2% number of objectives and their degree of conflict.
n<54 #lsupp_avg_aws < 0.47
>=54 >=0.47
NSGA i VII. CONCLUSION
54 282

8;3 63 6 24 358 55
nhv_avg_rws >= 92e+12 f_cor_s rws <0.! 59

< 92e+1 2 >=0.59
(NSGA-ID (MOEAD)
63 13 37 25 50 9 7 325 21

17 33 34

#Ind_avg_ aws >= 0 33

<033
NSGA Il
301

Fig. 13. CART decision tree for algorithm selection on mQAP. The nodes
report the number of instances where NSGA-II, IBEA, and MOEA/D performs
better in average, from left to right, respectively.

mQAP, we simply sample 200 neighbors at random instead
of performing a full neighborhood exploration at each step.
In terms of algorithms, we still consider NSGA-II, IBEA, and
MOEA/D, with a population of size 100, a swap mutation with
a rate of 0.2, and a 2-point crossover with a rate of 0.95. The
crossover operator simply copies the segment in-between two
randomly chosen points from one parent, and fill the missing
values following the order from the other parent [53]. All the
algorithms stop after 1000000 evaluations.

Table V reports the error rates obtained by the classifica-
tion model based on different subsets of features. Similar to
pmnk-landscapes, apart from the simple model based on m
and n, the error rate is always below 17.1% in terms of best
average performance, and below 1.1% in terms of best statis-
tical rank. In other words, a feature-based classification model
is able to choose an algorithm that is not significantly out-
performed by any other in almost 99% of the cases. This
shows that the information contained in the proposed local fea-
tures generalizes to other problem classes. Notice that IBEA
is the best-performing algorithm overall for mQAP, being out-
performed on 51.8% of instances only in terms of average
performance, and on 31.4% of instances in terms of statistical
difference. Once again, we did not observe any significant dif-
ference between all classification models, but the one based on
m and n. It is interesting to notice that, in average, the total
cost of local features represents less than 5% of the budget
allocated to the search process in this case. A simple decision
tree for mQAP is provided in Fig. 13. In this case, the most
discriminant feature to distinguish between the algorithms
is length_aws, that is the length of the adaptive walk.

In this article, we investigated the potential of land-
scape features to explain and predict the performance
of EMO algorithms for black-box multiobjective combi-
natorial optimization. We reviewed the state-of-the-art of
multiobjective landscape analysis, and we proposed new
general-purpose features characterizing the landscape, which
are affordable for high-dimensional problems due to their
local nature. By analyzing their association and relevance to
search performance, we highlighted the insightful information
they are able to capture regarding problem difficulty. In the
context of performance prediction, our data-driven analy-
sis revealed the crucial importance of considering multiple
features to reach a good prediction accuracy. From a bench-
marking point-of-view, we showed that not only the number
of objectives, but also their degree of conflict, are jointly
important to model search performance. Even more notably,
ruggedness, and multimodality, which are often overlooked in
the EMO literature, constitute crucial dimensions that comple-
ments the portrait of multiobjective landscapes. By extending
results from single-objective landscape analysis, we were able
to design affordable features to characterize ruggedness and
multimodality in multiobjective optimization. Interestingly,
relevant features are not the same for the considered algo-
rithms, which allows us to understand what makes an instance
more difficult to solve for a given algorithm. Ultimately,
two algorithm selection scenarios with a portfolio of three
algorithms allowed us to emphasize that, by leveraging the
proposed landscape features, one can accurately select the
most appropriate algorithm for different large-size problem
classes and instances.

Extending and analyzing our feature-based performance
prediction and algorithm selection methodology by consid-
ering more practical scenarios would allow us to increase
our understanding of the landscape structure exhibited by
black-box multiobjective combinatorial optimization prob-
lems, particularly when an instance generator is not avail-
able. Consequently, we plan to consider other multiobjective
problem and algorithms classes, to study how algorithm
component choices impact search performance over different
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multiobjective landscapes, and how this could help improving
the design of EMO algorithms. Another challenge for feature-
based algorithm selection is to investigate the tradeoff between
feature cost and accuracy.
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