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Early Detection of Vegetation Ignition Due to
Powerline Faults

Sevvandi Kandanaarachchi

Abstract—High impedance faults through contact with vegeta-
tion are one of the main causes of electrically caused wildfires. While
detecting these faults is challenging on its own, it is important to do
so in the context of the risk of vegetation ignition, as disconnecting
the power infrastructure can have unwarranted, damaging conse-
quences during an emergency. Hence, we propose a methodology
for prevention of wildfires, through the accurate prediction and
early detection of the ignition risk resulting from high impedance
faults. Our methodology uses a set of features derived from time-
and frequency-domain analyses. To test our methodology, we use a
large, publicly available experimental dataset. Our results demon-
strate that the methodology allows the detection of ignition risk
well before its onset with high accuracy.

Index Terms—Anomalous time series detection, fire-risk
modelling, high-impedance faults, vegetation faults, wildfire
ignition.

I. INTRODUCTION

AILURES in electrical infrastructure have been at the
F centre of severe wildfires across the world, particularly in
the United States, Spain and Australia [1]. Powerline faults in
specific can start fires through three well-known ignition mech-
anisms: incandescent metal particles emitted when high voltage
conductors clash; high voltage arcs that occur near vegetation;
and high voltage current that passes through vegetation [2].
Although powerline faults are not one of the main reasons why
wildfires start, e.g., in Victoria, Australia, 1.5-3.0% of all fires
between 2007 and 2014 were due to electrical sources [3]; these
tend to occur during elevated fire danger conditions, resulting
in quick spread and more severe consequences [1]. In fact, the
average size of a large electrical-caused wildfire is an order of
magnitude higher than large fires due to other causes [1].

Manuscript received January 30, 2020; revised April 16, 2020 and June 4,
2020; accepted June 22, 2020. Date of publication July 2, 2020; date of current
version May 21, 2021. This work was supported in part by the Australian
Research Council under Grant LP160101885 and in part by the ARC Centre
of Excellence for Mathematical and Statistical Frontiers (ACEMS) through
their research support scheme. Paper no. TPWRD-00123-2020. (Corresponding
author: Sevvandi Kandanaarachchi.)

Sevvandi Kandanaarachchi is with the School of Science, Mathematical
Sciences, RMIT University, Melbourne, VIC 3000, Australia, and also a Re-
search Affiliate with the Department of Econometrics and Business Statis-
tics, Monash University, Clayton, VIC 3800, Australia (e-mail: sevvandi.
kandanaarachchi @rmit.edu.au).

Nandini Anantharama is with the Faculty of Information Technology, Monash
Unviersity, Clayton, VIC 3800, Australia (e-mail: nandini.anantharama@
monash.edu).

Mario A. Muiioz is with the School of Mathematics and Statistics, The
University of Melbourne, Parkville, VIC 3010, Australia (e-mail: munoz.m@
unimelb.edu.au).

Digital Object Identifier 10.1109/TPWRD.2020.3006553

, Nandini Anantharama

, and Mario A. Muifioz

High voltage current that passes through vegetation, unlike
the other two ignition mechanisms, is not well understood [2].
This is because it is a High-Impedance Fault (HIF): an electric
fault whose current amplitude does not exceed the threshold of
protection devices. As such, they do not represent stress risk to
the equipment and can easily be confused by increased customer
load [4]. Ghaderi et al. [5] and Jazebi et al. [6], [7] provide
comprehensive reviews of HIF detection approaches. Typically,
HIF detection algorithms rely on arcing fault signatures. For
example, Zhang and Jing [8] proposed a generic model for
detecting both high currents and high impedance arc faults. Their
approach evaluates the fault signature for best fit with an arc
fault model and a non-arcing disturbance model, and provides a
binary outcome for identifying arc faults. Mukherjee et al. [9]
proposed an electromagnetic radiation (EMR) centred approach
for the detection of arcing faults in low voltage distribution
systems. This approach uses the Log-Spectral distance metric of
EMR sensor data to detect arcing faults. While the algorithm is
able to detect arcing faults as well as distinguish between arcing
faults and arc-mimicking faults, it is sensitive to the distance of
the sensor from the arc current path, and does not yet support
identification of the source.

Vegetation HIFs are caused by powerlines breaking and
falling onto vegetation at ground level, vegetation brought by
heavy winds bridging two phase conductors, or tall trees reach-
ing powerlines [5]. Unlike arcing faults, vegetation HIFs differ
in terms of lower frequency components and growth rate of
current [7]. Moreover, vegetation HIFs are influenced by factors
such as grounding type, voltage level, fault impedance value,
signal sampling parameters, and the characteristics of the contact
surface, among others [4]. For example, a study by Guggen-
moos [10] identifies off-row trees as a major source of tree
related outages, and provides a model to quantify tree failure risk
with a trade-off between line risk and clear width. The trade-off
is provided as a cost-benefit representation, thus enabling an
informed comparison of benefits of clearance width with other
alternatives. Due to the diversity of factors, detecting Vegetation
HIFs is a challenge. Previous analyses that have been effective
in identifying these type of faults use electrical conductivity
of the vegetation’s sap and risk level of the vegetation area as
influencing factors [11], [12].

Gomes et al. [4], [13], [14] have focused on the charac-
terization of vegetation HIFs, particularly by examining the
fault signatures’ high frequency content. In their work, they
employed the real-world Powerline Bushfire Safety Program
(PBSP) dataset comprising a large number of experiments,
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sampled in a functioning network in the presence of noise [2].
From this dataset and each fault they collected one sample
of 20 ms from a high frequency voltage signal, i.e., in the
0 kHz to 50 kHz frequency range and the 10 kHz to 1 MHz
bandwidth. Using Fourier [4] and Wavelet [13] transforms, and
Shift-Invariant Sparse Coding [14] to characterise the signal
patterns, Gomes et al. used decision tree classifiers to separate
faulty from non-faulty signals, with the aim of disconnecting
power immediately after detecting a fault. Their results achieved
a high detection performance, with a true positive rate of 97.4%,
confirming that the signatures’ high frequency content help
discriminate vegetation HIFs.

However, while characterizing and detecting these HIFs is
challenging on its own, it is important to do so in the context
of the risk of vegetation ignition. Without appropriate consider-
ation given to such risk, disconnecting power when faults are
detected is sub-optimal. Moreover, it can have unwarranted,
damaging consequences. For example, during emergencies, loss
of power will disrupt among other essential services: com-
munication systems, affecting the dissemination of important
information; traffic signaling, increasing the risk of road acci-
dents; water distribution, hampering fire fighting activities; and
air cooling systems, increasing the likelihood of heat related
sicknesses [15].

Therefore, in this work we propose a methodology for pre-
vention of wildfires, through the accurate prediction and early
detection of the ignition risk resulting from HIFs. To test our
methodology, we make use of the PBSP dataset [2], previ-
ously employed by Gomes et al. in their work [4], [13], [14].
This dataset is encoded in the proprietary .pnrf file format.
Therefore, we also provide the software package pnrfr for
the R programming language [16], which besides importing
seamlessly the PBSP data and providing other basic operations,
facilitates the access to the vast array of statistical and machine
learning methods available in R to other researchers using this
dataset.

The remainder of the paper is organised as follows. In
Section II, we describe the data employed in this research. Then,
in Section III, we describe our methodology to pre-process,
characterise and classify the fault signatures depending on their
risk of ignition. In Section IV, we present the results of our
experiments. We finalise this paper with our conclusions in
Section V.

II. BACKGROUND

A. Black Saturday Bushfires

The “Black Saturday bushfires” were a series of catastrophic
wildfires that occurred in the state of Victoria, Australia, in
February 2009, when temperatures often exceeded 45 °C. Col-
lectively, they killed 173 people, injured over 4000 more, burnt
over 270000 ha, and caused over $4.4 billion in economic dam-
ages to the state, including the destruction of 1832 homes [2],
[17]. Five of the eleven major wildfires were caused by elec-
tricity assets, accounting for over 70% of the fatalities and
60% of the burnt area. Moreover, two of them, known as the
Beechworth-Mudgegonga and Coleraine bushfires, were di-
rectly caused by vegetation contact with powerlines accounting
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for two fatalities and 13% of the burnt area [17]. The state of
Victoria has a record of electrically caused, catastrophic wild-
fires. For example, in the months of February of 1977 and 1983,
both known as devastating seasons, over half of the major wild-
fires were caused by electrical infrastructure [17]. Therefore,
in the aftermath of the “Black Saturday bushfires,” an inquiry
known as the 2009 Victorian Bushfires Royal Commission was
carried out. Some of its recommendations focused on improved
management of electrical infrastructure, particularly on days
of peak fire danger, and requirements for distribution business
and municipal councils to identify and reduce the risk posed by
“hazard trees,” i.e., trees that are outside the clearance zone but
that could come into contact with an electric powerline having
regard to foreseeable local conditions [17]. For this purpose, the
electricity state regulator oversees pruning programs that that
operate on a two to three year cycles, and fosters community
engagement for the reporting of tree clearance issues [18]. How-
ever, due to the vast amounts of uninhabited forestland, pruning
may not be frequent enough to detect all “hazard trees,” making
essential the development of automated monitoring equipment
and tools that facilitate the rapid identification of problem areas,
and disconnection of a powerline if required.

Besides the response by the state regulators, the findings of
the Commission have also resulted in research being carried
out from different disciplines. For example, Di Giulio [19]
discusses the policy implications concerning the replacement
of Single Wire Earth Return powerlines. Oloruntoba [20] ex-
plores the challenges wildfires poses to disaster planning, and
effective strategies for emergency response planning. Eburn
et al. [21] discuss new approaches for post-event reviews as
alternatives to government enquiries such as a Royal Commis-
sion. Williamson [22] discusses the role of solar photo-voltaics
and energy storage systems in mitigating bushfires. Roozbahani
et al. [23] discuss a mathematically based optimisation approach
for asset replacement as an alternative to the current practice
based on expert interpretation of risk maps. Whittaker et al. [24]
explore the factors affecting the severity of bushfires and discuss
ways to adapt to a changing climate. Miller et al. [1] explore
the extent of damage caused by electrically caused bushfires.
Broome et al. [15] investigate the health risks arising from cut-
ting off power during periods of high bushfire threats, and argue
that cutting off power leads to more deaths and higher costs to
communities. Gomes et al. [4], [13], [14] focus on the detection
of high impedance current faults, particularly by characterising
the fault signatures’ high frequency content. However, none of
this research proposes methods for safely disconnecting power
after a fault considering the risk of vegetation ignition.

The Victorian Government also responded to the findings by
establishing the Powerline Bushfire Safety Program (PBSP),
which focused on research to improve the knowledge on how
fires can start from powerline faults and how they might be
prevented [2]. The two main goals from the PBSP were to: (a)
identify the worst species for fire starts from powerline faults
and understand their ignition processes; and (b) to compile
a reference data base of electrical signals caused by vege-
tation faults to support development of better fault detection
technology. To fulfill its second aim, the PBSP commissioned
a series of tests which resulted in the vegetation fault database
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described in the following section. Like other anomaly detection
problems such as intrusion detection, cyber crime, and terrorist
attacks, where uncommon but extremely damaging events must
be avoided, the PBSP database provides a benchmark for testing
essential technology, for which we cannot wait for real-world
data. This is despite testing being carried out under a con-
trolled environment, which may not perfectly mirror real-world
conditions.

B. The PBSP Vegetation Fault Database

During the summer season of 2014-15, a test rig was con-
structed inside an insulated shipping container, where extreme
fire weather conditions such as dry wind were simulated [2].
The rig was connected to a real network via current-limiting
resistors. Stewart [25] discusses the design and operation of the
test facility that was used to conduct over 1000 tests aimed at
testing various HIFs and the associated risk of fire in a safe
environment.

Voltage and current signals were collected using low-noise
and wide-bandwidth measuring systems at two different sample
rates, i.e., low frequency data was continuously sampled at
100 kHz, while high frequency data was sampled at 20 ms/s
bursts at 2 MHz. Vegetation samples of various sizes from 18
species were prepared by drying them at 45 °C for up to 24 h.
The selected species are mostly native and unique to Australia,
with some exceptions such as Acacia melanoxylon and Fraxinus
angustifolia, which are also present in Africa, Asia and Europe;
Cotoneaster glaucophyllus is native to China and the Himalayas
region; and Schinus molle is native to South America. The tests
yielded a database of fault signatures composed of 1038 fault
tests and 112 calibration/noise tests. Three fault geometries were
used:

1) Phase-to-earth (P2E — 389 valid tests), where a branch
was laid across two high voltage conductors, one of them
earthed and the other one with full nominal phase voltage
applied, i.e., 12.7 kV between them.

2) Phase-to-phase (P2P — 389 valid tests), where a branch
was laid across two high voltage conductors connected to
separate phases of the incoming high voltage supply, i.e.,
22 kV between them. These tests resulting in faults with
a growth rate four times faster than P2E, with an initial
current also 70% to 80% higher.

2) Wire-into-vegetation (W2V — 260 valid tests), where a
high voltage conductor energised at 12.7 kV was placed
into earthed vegetation, either grass or bush.

Fig. 1 illustrates a 10 ms rolling window RMS current signal
during a vegetation HIF. Where the vegetation goes through
irreversible physical changes, the fault current tends to take
up where it left off [2]. Four phases of the failure are presen-
ted [2]:

1) Development of conductor-vegetation contact which
lasts between the application of high voltage to the vege-
tation sample until the first maximum peak current value.
During this phase, small embers develop. Moreover, con-
ductive plasma and flame grow in the contact points, which
increase the overall contact area. This phase usually takes
between 10 s to 15 s. However, it can take more than a
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Fig. 1. LF current signal (RMS) of test VT426, which illustrates the four

phases of the vegetation high impedance fault: (1) Development of conductor-
vegetation contact; (2) Expulsion of moisture; (3) Progressive charring exten-
sion; and (4) Flashover. The probability of ignition should be established during
phase 1.

minute in extreme cases. During this phase, current may
exceed the protection levels — often set at either 0.5 A,
1.0 A, 2.0 A, 4.0 A — disconnecting the powerline.

2) Expulsion of moisture which lasts from the first max-
imum peak current value until the next minimum peak.
During this phase, the sample released steam and water,
often accompanied by loud noises. Tests that went on into
this phase often continued into the next.

3) Progressive charring extension which last until the ul-
timate appearance of runaway current. During this phase,
flame slowly spreads along the sample, producing inter-
mittent arcs that would briefly short-circuit the system,
creating large current fluctuations.

4) Flashover which occurred when the maximum current
value appeared — 45.0 A in phase-to-phase tests and
65.0 A in phase-to-earth tests — due to the flame extending
from conductor to conductor creating a unbroken short-
circuiting path.

These tests also concluded that samples with moisture content
below 10% to 15% do not conduct enough current to cause
thermal runaway; larger samples drew high levels of initial
current, which quickly increased to reach the pre-set limits; and
most conductive layers of the sample were those immediately
under the bark [2].

III. METHODOLOGY

Our ignition risk detection methodology can be divided in
four steps, i.e., importation, pre-processing, feature calculation
and classification. The details of each step are described in the
following sections.

A. Data Importation

At the core of the PBSP vegetation fault database is the
collection of signatures recorded in the proprietary Perception
Native Recording Format .pnr £ by HBM. While broadly used
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Fig. 2.
VT426.

RMS signals from a 50 us burst of high-frequency data during test

in data acquisition, as it efficiently stores multi-channel data
records, this format is unfamiliar to the broader Machine Learn-
ing community. As such, tools to read this format in R or Python,
the two most commonly used languages by this community, are
not available. Therefore, the researchers working with the PBSP
database would not have access to a broad array of state-of-the-
art methods for classifying complex data such as this.

Hence, we provide the pnrfr package [16] as a R wrapper
around the PNRF Toolkit Reader software by HBM. While
limited to the Windows Operating System at the moment, this
package provides an R interface to read PNRF channel data.
Moreover, it provides access to meta information such as name,
type, unit of recording and the sampling interval for each channel
in the file. Finally, it provides some additional functionalities
such as down sampling the data and computing RMS value for
a given window period.

B. Data Pre-Processing

As described in Section II, each one of the valid tests has
four channels of signal data, i.e., voltage and current both
sampled at low (100 kHz) and high (2 MHz) frequencies. Low
frequency (LF) signals were continuously recorded, while high
frequency (HF) signals were recorded at 20 ms/s bursts, resulting
in an equal number of samples per second on all channels. We
computed a RMS signal by using a rolling window of 10 ms for
the LF channels, and a 50 us one for the HF channels. Fig. 2
illustrates the RMS signals for one 20 ms burst of HF signals.

The signals were recorded in a variety of conditions. For ex-
ample, recording started with and without voltage being applied.
As such, we define starting point of the test as the first sample
from the HF signals, for which the RMS LF Voltage is higher
than 10 kV and the RMS LF current is higher than 100 mA. The
end point of the test was defined as the first peak of the RMS LF
current using a rolling window of 500 ms, which corresponds to
the end Phase 1. According to Marxen [2], the onset of ignition
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occurs at some instant during Phase 2 onward, whose exact value
is unknown. Given that we are interested in characterising the
risk of ignition, we examine the signals until the risk is at its
highest. To identify the first peak, we employed the findpeaks
algorithm from MATLAB. The four raw signals and four RMS
signals were then divided into non-overlapping windows of
100 x 10% samples.

C. Features

Marxen [2] considers a combination of non-linear time- and
frequency-domain techniques as the most promising approach
to detect the disturbance created by a vegetation HIFs. Previous
studies [13], [14] have focused on frequency-domain techniques.
Hence, we use a simple, low-cost approach based on features
to characterize the signals in both domains. This approach is
popular in time-series related tasks, such as forecasting [26],
classification [27], clustering [28], similarity queries [29] and
anomaly detection [30]. In our approach, the time-domain anal-
ysis is performed in both the raw and RMS signals. However, the
frequency-domain analysis is only performed on raw data, as the
RMS signal has filtered out most high-frequency components.
The details are presented in the following sections.

1) Time-Domain Features: We computed a total of 112
time-domain features for each window. These features can be
categorized into four types: STL, statistical, auto-correlation
and current acceleration. STL stands for Seasonal and Trend
decomposition using LOESS (LOcally Estimated Scatter-plot
Smoothing) [31]. From each one of the eight signals, we compute
13 features, i.e., 4 STL, 3 statistical and 6 auto-correlation fea-
tures, giving a total of 104. Eight additional current acceleration
features are taken from the RMS LF current only. The first three
types were calculated using the R package tsfeatures [32],
while the last type was developed from consultation with the
PBSP staff. In the following sections we describe the details of
each feature.

a) STL decomposition based features: The STL decompo-
sition takes the original signal z;, and identifies three com-
ponents that represent certain behaviours. These are the trend
component, f;, which represents the long-term progression of
the signal and any repeated but non-periodic fluctuation; the
seasonal component, s;, which represents a periodic fluctu-
ation; and the remainder component, e;, which is expected
to be the normally distributed random noise that remains af-
ter the other two components have been removed. The orig-
inal signal can be reconstructed by adding these three com-
ponents, i.e., x; = f; + s¢ + e;. Fig. 2 illustrates the STL
decomposition of the HF Voltage signal first illustrated in
Fig. 2. Once decomposed, the ‘trend’ feature is calculated as
follows:

var (e)

trend = max <O, min <1, 1— var(ft—l—et)>) , (D

where var denotes the variance. As such, ‘trend’ lies within the
[0, 1] range, with ‘O’ indicating a weak trend and ‘1” a strong
one.
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Fig. 3. STL decomposition of the RMS HF Voltage component from of test
VT426, initially illustrated in Fig. 2.

The ‘spike’ feature is a measure of the abrupt deviations
from the normal values. It is calculated using the Leave-one-out
(LOO) method applied to the remainder component. In other
words, from a signal {e1,...,es, ..., en}, we create N new
signals each one missing an entry. For example, we denote
LOO(e;) as the signal missing e;. Let v,, be the variance of
LOO(e;). Then ‘spike’ is defined as:

spike = var ({vet}ivzl) . (2)

High ‘spike’ values suggest the occurrence of obvious spikes in
the time series, while low values indicate non-spiked data.

Two more features, ‘e_acfl’ and ‘e_acf10,” are derived from
an auto-correlation analysis of the remainder component, which
aims to capture any additional structure as observed in Fig. 3.
The former correspond to the first auto-correlation coefficient,
i.e., between e; and e;_1, while the latter is the sum of the
first ten squared auto-correlation coefficients. Low values of
both ‘e_acfl’ and ‘e_acfl10’ suggest that e, is similar to white
noise, while high values indicate the existence of structures not
captured already by the STL decomposition.

b) Features derived from statistical analysis: The second type
of features are derived from statistical analysis of x;. Three
features are obtained through this approach. These are ‘curva-
ture,” ‘linearity’ and ‘entropy’. The first two are second and first
order coefficients resulting from fitting a quadratic polynomial
model to the signal, i.e., z; = ant? + a1t + ag, while ‘entropy’
corresponds to the differential entropy computed as:

- [ Foneg (F) an, 3

where f (M) is an estimate of the spectral density of the data. An
entropy value close to ‘0’ represents a high signal content, while
a value close to ‘1’ represents a high noise content.

IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 36, NO. 3, JUNE 2021

VT079 - RMS rolling 10ms

06 T T T
<odf
t
2
302+
1000 2000 3000 4000 5000 6000 7000
15 %10
o
2 10f
©
=
3
- 5f
j =
N
0 L I 1 1 1 1
1000 2000 3000 4000 5000 6000 7000
Time
Fig. 4. LF current of test VIT079. (top) RMS signal and (bottom) second
derivative.

c¢) Features derived from auto-correlation: The third type of
features are derived from auto-correlation analysis of x, its first
difference, ©; = x; — x;—1 and second difference, &; = Ty —
T¢_1. These are ‘x_acfl, ‘x_acf10,” ‘diffl_acfl, ‘diff1_acf10,
‘diff2_acf1’ and ‘diff2_acf10,” where ‘x’ indicates the original
signal, ‘diff1’and ‘diff2’ represent the first and second differ-
ences « and &, ‘acfl’ corresponds to the first auto-correlation
coefficient, while ‘acf10’ corresponds to the sum of the first ten
squared auto-correlation coefficients. High values of ‘acfl’ and
‘acf10’ indicate the existence of complex periodical structure in
the auto-correlation results, while low values indicate that the
original signal or its differences are similar to white noise.

d) Features derived from current acceleration: The final type
of time-domain features were derived from analysing the ac-
celeration of the RMS current. As observed in Fig. 1 above,
the RMS current quickly increases during Phase 1 reaching
a peak, where the acceleration becomes negative and the risk
of ignition is the highest. To identify this pattern, we estimate
the instantaneous value of the second derivative using local
polynomial regression which employs kernel smoothing [33].
To compute the second derivative, local polynomial regression
fits a quadratic or a higher order polynomial of choice to each
point using a neighbourhood around that point. Then the sec-
ond derivative of the fitted polynomial is computed for each
point [34].

Fig. 4 shows both the RMS LF current and its second deriva-
tive calculated using this method. To characterise the distribution
of this signal, we take eight summary statistics as features:
its mean, median, maximum, standard deviation, interquartile
range, and {90, 95, 98} percentiles. High second derivative val-
ues correspond to large increases in RMS Current, potentially
causing ignition. Thus, the second derivative properties may
help discriminate between the ignition and non-ignition test
outcomes.

2) Frequency-Domain Features: Both Marxsen [2], [3] and
Gomes et al. [4] observed that high-frequency voltage noise
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Fig. 5. Spectrum of the high-frequency voltage signal during test VT426.

correspond to a fault signature, which is caused by fast changes
in the fault impedance. In normal conditions, powerline net-
works do not contain internal high-frequency sources; hence,
they are deemed ‘quiet’. Fig. 5 illustrates the spectrum of the
HF voltage signal during test VT426, whose RMS current signal
was illustrated in Fig. 1. In the spectra, the 50 Hz fundamental
frequency can be observed as a solid band at the top, Phase 1
occurs from 5.4 s to 19.7 s, and the Flashover corresponds to the
high energy burst at 57.4 s.

We use a simple approach to characterize the signal spectra
into 128 features, 32 from each one of the four raw signals.
First, we compute the amplitude of one-sided Fast Fourier
Transform (FFT) on the signal values from each window.
The resulting spectrum is then divided into four equally-wide
bands: lower [0, 0.25 x f5], medium [0.25 x f5, 0.50 x f;],
high [0.50 x f,, 0.75 x f4] and upper [0.75 X fs, fs], where
fs corresponds to the sampling frequency. To characterize the
distribution of the amplitude at each band, we compute its mean,
median, maximum, standard deviation, interquartile range, and
{90, 95, 98} percentiles.

D. Classification Framework

1) Labelling the Data: As described in Section III-B, we are
interested in characterising the risk of ignition during Phase 1.
Predicting the exact time that ignition occurs is out of the scope
of this paper, as it is unknown but takes place from Phase 2
onward. Given that the rate in which the irreversible physical
changes that the vegetation sample suffers is unknown, we
assume a linear increase of the risk for simplicity. Let us define
the start, middle and end points of Phase 1 as g, tp.5 and ¢;
respectively, whereby ¢y corresponds to the point where there
is 0% risk, tg.5 corresponds to 50% risk; and ¢; corresponds
to 100% risk. Then, for each test where ignition develops, we
label each observation between t and t( 5 as low-risk or ‘0, and
between t( 5 and ¢; as high-risk or ‘1’. Any other test where no
ignition develops is labeled as ‘0’. Our aim is to facilitate both
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Fig. 6. Histogram of the duration of Phase 1 in seconds.
TABLE 1
ACTUAL AND PREDICTED CLASS LABELS, WITH THE RF RESULT AT EACH
SECOND OF PHASE 1 FOR VT386, FOR WHICH WE ACHIEVE
AN ACCURACY OF 0.875

Time (s) RF result

0 0.134
0 0.258
0 0.456
1
1
1
1
1

Vijk o Vijk

0.504
0.602
0.540
0.702
0.734

(e e R N N S
_————0 O OO

early detection and prevention of ignition. Note that for each
test, Phase 1 duration falls between 50 s with a median of 8 s,
and a mean of 10.18 s as illustrated in Fig. 6. The majority of
tests reach Phase 2 within 10 s. Such a wide distribution may be
due to the moisture content, the diameter of the sample, or the
presence of leaves. Therefore, each test has different number of
observations from each class.

2) Random Forests Model: To classify the data, we train a
Random Forest (RF) model [35], a type of classification model
composed of an ensemble of decision trees. Each independent
tree is trained with a unique bootstrap sample of the data, that is,
from a dataset of IV observations, we sample with replacement
N observations. As such, the resulting bootstrap sample has
roughly 60% unique observations, and the remaining are repeats.
The observations not in the bootstrap sample are known as out-
of-sample (OOS) data. Because each tree is trained with different
data, their response will differ for any new observation. The
result from the ensemble is the class selected by the majority of
the trees. For our model, we used the R implementation of the
algorithm [36] with 500 decision trees.

RF models, beside being very easy to use, also provide an
estimation of the importance of each feature using the OOS
data, as follows. First, the error of the model on the OOS data is
estimated. Then, taking one variable at the time, the values of the
OOS data are randomly permuted and the error is re-estimated.
The change in error determines the importance of the variable,
with larger changes indicating higher importance. The results are
averaged across all trees and divided by the standard deviation
over the entire ensemble, resulting in a standardized measure.

3) Model Validation: We used 10-fold cross-validation type
experiment to validate the classifier. Each one of the 1038 fault
tests on the three geometries described in Section II-B was
placed into one of ten subsets. That is, nine subsets are used
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TABLE II
CROSS VALIDATION ACCURACY AND PERCENTAGE OF FALSE POSITIVES, FOR FAULT TESTS WITH A PHASE 1 DURATION TIME GREATER THAN ¢ SECONDS

Fold t=0 t=4 =6 t=38
o FPR o FPR o FPR oy FPR
1 0.870 0.031 0.888 0.028 0.899 0.018 0.908 0.000
2 0.774 0.060 0.821 0.065 0.739 0.063 0.817 0.081
3 0.850 0.031 0.837 0.039 0.882 0.000 0.988 0.000
4 0.811 0.039 0.838 0.048 0.853 0.039 0.849 0.036
5 0.860 0.030 0.909 0.027 0.918 0.020 0.979 0.000
6 0.856 0.029 0.942 0.021 0.953 0.027 0.878 0.094
7 0.828 0.049 0.882 0.034 0.883 0.020 0.849 0.026
8 0.848 0.043 0.838 0.014 0.871 0.007 0.806 0.016
9 0.827 0.012 0.842 0.013 0.816 0.000 0.903 0.000
10 0.803 0.036 0.816 0.049 0.742 0.035 0.724 0.036
Mean 0.833 0.036 0.861 0.034 0.856 0.023 0.870 0.029
Std. dev. 0.030 0.013 0.042 0.017 0.071 0.019 0.080 0.034

for training and the remaining one for testing, repeating this for
each one of the subsets. The fraction of ‘1’ outputs from each
decision tree corresponds to the RF result, i.e. the proportion of
decision trees predicting ignition. Using a cutoff of 0.500, we
label the result as ignition or non-ignition. For each fault test,
we compare the actual with the predicted labels and compute
the classification accuracy for that test, as follows. Let y; ; .. be
the actual label for the observation at time ¢ of fault test 5 from
fold k, 9; ;1 the predicted label, 1(-) be the indicator function,
T 1 the Phase 1 duration of fault test j from fold %, and N,
the number of fault tests on each fold. Then, the test accuracy is
defined as:

T
1 & .
Qjk = 77— Z 1 (Yijk = Yisjk) 4)
T =

For example, Table I shows the results for the VT386 test for
which we achieve an accuracy of 0.875. For this test, ignition
started at some point after the end of Phase 1 at 8 s. However, we
predict risk of ignition at 4 s facilitating early detection. Because
of the uneven duration of Phase 1, as observed in Fig. 6, we define
the accuracy for each fold using Eq (5).

1 &
O Nk = Ak ( )

It is worth noting that there are 263 fault tests with a Phase |
duration lasting less than 5 s, of which some failed to ignite.
To understand how our model performs on longer tests, we also
calculate the accuracy for tests with Phase 1 duration at least 4 s,
6sor8s.

4) Feature Selection: As we computed 240 features in total
(112 time- and 128 frequency-domain), some may be redundant.
To eliminate these redundancies, simplify the model and speed
up computation, we group them based on their dissimilarity
defined as 1 — |p|, where p is their Pearson correlation. For
this purpose, we employ the Partition Around Medoids (PAM)
clustering algorithm, which divides the features into & clusters
around the medoids, i.e., the observations from the cluster
whose average dissimilarity to all the objects in the cluster is
minimal. We use the R implementation of this algorithm [37].
To determine the value of k, we use the silhouette score [38]

which measures how similar items are within a cluster compared
with items in other clusters. A value close to ‘1’ indicates good
clustering, while a value close to ‘—1’ indicates poor clustering.
As such, we select the lowest value of k£ whose difference to the
maximum silhouette score value is the smallest.

Once grouped, we proceed to select one feature from each
cluster and train a RF model. We select the feature combination
which provides the model with the highest cross-validated accu-
racy. However, the possible number of feature combinations for
k clusters with the i cluster containing n; features is Hle ng,
which can be a very large number. Therefore, we test 1000
randomly selected feature combinations. Once a good feature
combination is identified and the RF model trained, we estimate
the importance of each feature to determine the risk of ignition
using the RF importance score.

IV. RESULTS
A. Analysis Using Low and High Frequency Data

Table II shows the results from applying the methodology
described in Section III, using the complete set of 240 features.
We see that the accuracy per fold ay, improves as ¢ increases.
For example, we can predict ignition with an average accuracy
of 0.8614 for an experiment that had a first phase duration of
4 seconds or greater. In addition to classification accuracy, we
also include the proportion of false positives (FPR) in Table II,
i.e. the fraction of tests falsely predicted as resulting in ignition.
The proportion of false positives remain stable between 2% to
3% forall t € {0,4,6,8}.

The results of the silhouette analysis for k clusters, k €
{2,239} gives the average silhouette score shown in Fig. 7.
The maximum average silhouette score of 0.5677 is obtained
with k& = 78 clusters. However, an average silhouette score of
0.5165 is achieved using k = 36, which is less than half of 78
clusters. As such, we will use k£ = 36 in our computations. For
the 36 cluster configuration, each cluster contains some number
of features. If we denote the number of features in the 5" cluster
by n;, then the sequence {n; }?il denotes the number of features
in each cluster. Fig. 8 shows a histogram of this sequence, i.e.
the number of clusters with n features for n € {1,...,28} for
k = 36. If we use all feature combinations in the 36 clusters we

Authorized licensed use limited to: University of Melbourne. Downloaded on May 24,2021 at 00:50:57 UTC from IEEE Xplore. Restrictions apply.



KANDANAARACHCHI et al.: EARLY DETECTION OF VEGETATION IGNITION DUE TO POWERLINE FAULTS

0.6

Silhouette
o 4
N »

50 100 150 200 250
# Clusters

Fig. 7. The average silhouette score of a silhouette analysis using different
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Fig. 8. Frequency of the number of features per cluster for &k = 36.

TABLE III
SUMMARY STATISTICS OF A SERIES OF RANDOM FOREST MODELS USING 1000
FEATURE COMBINATIONS FOR k& = 36

Summary Statistic ACC

Minimum 0.810
First Quartile 0.822
Median 0.826
Mean 0.826
Third Quartile 0.829
Maximum 0.838

TABLE IV

LIST OF 36 FEATURES THAT YIELD THE HIGHEST 10 FOLD CV ACCURACY

Signal Feature Name

LF Current Raw

spike, linearity, diff2_acfl, Iband_max, Iband_q95,
hband_mean, hband_q98

LF Current RMS
HF Current Raw

linearity, curvature, x_acf1, diffl_acf1, dev2_q90
diff1_acfl1, diff2_acf10, hband_max
spike, x_acfl, diff2_acf1

HF Current RMS
LF Voltage Raw

curvature, entropy, mband_max, hband_sd,
hband_q98

LF Voltage RMS
HF Voltage Raw

entropy, x_acf10

curvature, x_acfl, diff1_acf10, mband_iqr,
mband_max, uband_iqr, uband_max

HF Voltage RMS  trend, linearity, curvature, x_acf10

obtain a total number of 4.232882 x 1023 feature combinations,
therefore we only test 1000 randomly selected combinations.
The performance summary of this model is given in Table III.
The feature combination that yielded the highest 10 fold cross
validation accuracy is given in Table IV.

The features in Table IV that are joined by underscores have
a reference to the data used in the feature in its first part and a
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Fig. 9. The importance of features representing the 36 clusters according to

the Random Forest model.

reference to the computation of the feature in its second part.
For example diff2_acf1 gives the first auto-correlation term of
the twice differenced time series. If we examine the first part
of these joined features, the terms x_, diffl_ and diff2_ refer
to the original, once differenced and twice differenced time
series. The terms Iband_, mband_, hband_ and uband_ refers
to the four frequency bands, lower, medium, high and upper.
The term dev2_ refers to the second derivative of the LF current
RMS signal. As to the second part of these joined features, the
terms _acfl and _acf10 refer to the first auto-correlation term
and the sum of the first ten auto-correlation terms. The terms
_q90, _q95, _q98 and _max refer to the respective percentiles
and the maximum. The terms _sd, and _iqr refers to the standard
deviation and IQR.

The relative importance of these 36 features according to the
Random Forest model is given in Fig. 9. We see that features
from current signals are generally ranked higher than those from
voltage signals, with the top five having a higher importance
score than the rest. These are:

1) Iband_max_LF current_Raw is the maximum of the

lower frequency band of the LF raw current

2) diff2_acfl_LF_current_Raw is the first auto-correlation

coefficient of the second order differences of the LF raw
current

3) linearity_LF_current_ RMS

4) curvature_LF_current_ RMS

5) spike_LF_current_Raw

These five features are based on the LF current signals.
Features such as ‘curvature’ and ‘linearity’ measure rates of
growth in the current, while ‘spikiness’ indicates sudden jumps
in the current. As such, ignition is mostly determined by a sudden
acceleration on the rate of current growth.

B. Analysis Using Low Frequency Data Only

One of the challenges faced in a non-experimental, real setting
is accessing HF currents and voltages. Sensing is often made
at the substation by SCADA or PMU systems, which tend to
be located away from the fault. Due to the attenuation of HF
components the signals received may not resemble those used
to train the RF classifier. On the other hand, placing HF sensors at
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TABLE V
CROSS VALIDATION ACCURACY AND PERCENTAGE OF FALSE POSITIVES, FOR FAULT TESTS WITH A PHASE 1 DURATION TIME GREATER THAN ¢ SECONDS USING
ONLY LOW FREQUENCY CURRENT AND VOLTAGES

Fold t=0 t=4 t=06 t=28
o FPR o7 FPR o7 FPR o FPR
1 0.864 0.044 0.849 0.050 0.867 0.038 0.865 0.022
2 0.784 0.060 0.819 0.066 0.748 0.052 0.799 0.097
3 0.847 0.039 0.838 0.048 0.854 0.025 0.930 0.056
4 0.807 0.044 0.820 0.056 0.833 0.052 0.797 0.071
5 0.868 0.032 0.915 0.022 0.899 0.039 0.958 0.000
6 0.848 0.042 0.918 0.026 0.931 0.036 0.878 0.093
7 0.814 0.068 0.872 0.052 0.889 0.026 0.858 0.033
8 0.839 0.049 0.841 0.004 0.862 0.007 0.787 0.015
9 0.819 0.022 0.810 0.043 0.812 0.026 0.837 0.083
10 0.794 0.045 0.804 0.058 0.707 0.059 0.688 0.053
Mean 0.828 0.044 0.849 0.043 0.840 0.036 0.840 0.052
Std. dev. 0.027 0.012 0.038 0.018 0.065 0.014 0.073 0.030
Difference in Mean 0.005 0.012 0.016 0.030
0.6 TABLE VII

Silhouette
o o
N -

0 . . . . . .
0 20 40 60 80 100 120

# Clusters
Fig. 10.  The average silhouette score using only low frequency signal features.
TABLE VI

COMPARISON OF SUMMARY STATISTICS OF A SERIES OF RANDOM FOREST
MODELS USING 1000 Low FREQUENCY FEATURE COMBINATIONS FOR k& = 18

Summary Statistic ACC

Minimum 0.809
First Quartile 0.820
Median 0.823
Mean 0.823
Third Quartile 0.827
Maximum 0.837

closer intervals could be economically infeasible. To address this
issue, we repeat the analysis from Section IV-A using only the
LF data, which can be sensed at less frequent intervals. Table V
gives the RF 10-fold cross validation accuracy results using all
the LF features, with the bottom row presenting the difference
in mean of these results and those of Table II. We observe that
the maximum difference of 0.030 occurs for t = 8 s, whereas
the minimum difference of 0.005 occurs for ¢ = 0. Using the
complete set of 240 features gave a maximum accuracy of 87%
as seen from Table II. This was reduced to 84% when we used
only low frequency features to predict ignition.

Fig. 10 shows the average silhouette score for k& € {2,125},
with the first peak at £ = 18, which we use from now onward.
Table VI gives the equivalent of Table III using LF voltage
and current features, i.e. the RF summary statistics of 1000
feature combinations using k£ = 18. We see that the difference
in performance using low frequency features and £ = 36 on all

LIST OF 18 FEATURES THAT YIELD THE HIGHEST 10 FOLD CV ACCURACY

Signal Feature Name
LF Current Raw
LF Current RMS

LF Voltage Raw

Iband_sd, spike, trend, linearity, mband_sd

dev2_iqr, curvature, linearity, spike, diff1_acf10,

e_acf10, uband_sd, mband_sd, diff2_acf10,
linearity

LF Voltage RMS  x_acf10, entropy, curvature
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Fig. 11.  The importance of features representing the 18 clusters according to
the Random Forest model.

features is less that 1%. Similarly Fig. 11 shows the importance
of the 18 features using the RF model. The five most impor-
tant features of this cluster are: (a) Iband_sd_LF_current_Raw
(b) dev2_iqr_LF_current_RMS (c) spike_LF_current_Raw (d)
curvature_LF_current_ RMS (e) linearity_LF_current_ RMS.
Comparing these 5 features with those obtained using
in Section IV-A, we note that 3 of them (spike, curva-
ture and linearity) are common. Furthermore, the features
Iband_sd_LF_current_Raw and Iband_max_LF_current_Raw
are related because we can expect the standard deviation to
increase when the maximum increases. Thus, there is a strong
agreement between these two sets of best 5 features.
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V. CONCLUSION

In this paper, we proposed a methodology for prevention of
wildfires, through the accurate prediction and early detection of
the ignition risk resulting from HIFs. Our methodology relies
on a set of over 200 simple features commonly used anomaly
detection, derived from both the time- and frequency-domain
analysis. The features also include a new subset based on
the instantaneous estimation of the second derivative of the
RMS current, using local polynomial regression. We tested our
methodology on the large PBSP dataset, which is stored in the
proprietary .pnrf file format, widely used on data acquisi-
tion tasks but uncommon for the broader Machine Learning
community. As such, we provided the pnrfr package [16], a
wrapper of the PNRF Toolkit Reader software by HBM for the
R programming language; hence, it is limited to the Windows
Operating System at the moment. However, for the researchers
working with . pnr f datasets, this package gives them access to
abroad array of state-of-the-art methods for classifying complex
data available in R. The results from our tests demonstrate that
we are able to: (a) detect the probability of ignition with high
accuracy and well before its occurrence; and (b) use only a
smaller subset of 36 features, reducing the computational burden
for real time implementation. We identified that the features
associated with current had the largest influence in determining
the risk of ignition and further narrowed down the features of
importance. Finally, we compared the results using only LF data,
as HF data may be difficult to capture in the field. We observed a
statistically significantly reduction in average accuracy of 1.5%.

There are limitations to our research. For example, the data
employed was collected in a laboratory setting, where many
conditions are tightly controlled. As such, we have not explored
many of the intricacies that an on-the-field, real-time implemen-
tation would require, including the efficient and cost-effective
collection of HF data. Moreover, we have no evidence that the
selected features would describe the fault signatures at voltages
other than 12.7 kV phase-to-earth and 22 kV phase-to-phase, nor
whether the signatures would be significantly different for a dif-
ferent set of vegetation samples. Despite this, our methodology
readily generalises to other experimental conditions whenever
more comprehensive data becomes available. Therefore, these
issues are left for further research.

One of the objectives of the Powerline Bushfire Safety Pro-
gram (PBSP) was to identify the worst species for fire starts
from powerline faults and understand their ignition processes.
As such, the PBSP dataset comprised experiments using dif-
ferent types of vegetation native to the Australian forests and
grasslands. As our focus was estimating the risk of ignition,
our experiments disregarded the information on the vegetation
species. Another avenue for further research is to examine the
effects that the species have on ignition, and possibly predicting
which one has produced the fault.
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