
Data Mining and Knowledge Discovery (2020) 34:309–354
https://doi.org/10.1007/s10618-019-00661-z

On normalization and algorithm selection for unsupervised
outlier detection

Sevvandi Kandanaarachchi1 ·Mario A. Muñoz2 · Rob J. Hyndman1 ·
Kate Smith-Miles2

Received: 12 September 2018 / Accepted: 22 October 2019 / Published online: 21 November 2019
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2019

Abstract
This paper demonstrates that the performance of various outlier detection methods is
sensitive to both the characteristics of the dataset, and the data normalization scheme
employed. To understand these dependencies, we formally prove that normalization
affects the nearest neighbor structure, and density of the dataset; hence, affectingwhich
observations could be considered outliers. Then,we perform an instance space analysis
of combinations of normalization and detection methods. Such analysis enables the
visualization of the strengths and weaknesses of these combinations. Moreover, we
gain insights into which method combination might obtain the best performance for a
given dataset.

Keywords Unsupervised outlier detection · Effect of normalization on outlier
detection · Algorithm selection problem for outlier detection · Instance space
analysis · Instance space analysis for outlier detection

1 Introduction

An increasingly important challenge in a data-richworld is to efficiently detect outliers
that deviate from regular patterns in a dataset. The significance of detecting outliers
with high accuracy, minimizing costly false positives and dangerous false negatives, is
clear when we consider a few socially critical examples of outliers: fraudulent credit

Responsible editor: Srinivasan Parthasarathy.

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10618-
019-00661-z) contains supplementary material, which is available to authorized users.

B Sevvandi Kandanaarachchi
sevvandi.kandanaarachchi@monash.edu

1 Monash University, Clayton, VIC, Australia

2 School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-019-00661-z&domain=pdf
http://orcid.org/0000-0002-0337-0395
http://orcid.org/0000-0002-7254-2808
http://orcid.org/0000-0002-2140-5352
http://orcid.org/0000-0003-2718-7680
https://doi.org/10.1007/s10618-019-00661-z
https://doi.org/10.1007/s10618-019-00661-z

310 S. Kandanaarachchi et al.

card transactions among billions of legitimate ones, fetal anomalies in pregnancies,
chromosomal anomalies in tumors, emerging terrorist plots in social media, and early
signs of stock market crashes.

There are many outlier detection methods already available in the literature, with
new ones emerging at a steady rate (Zimek et al. 2012). The diversity of applications
makes it unlikely that a single method will out-perform all others in all scenarios
(Wolpert et al. 1995; Wolpert and Macready 1997; Culberson 1998; Ho and Pepyne
2002; Igel and Toussaint 2005). As such, it is advantageous to know their strengths and
weaknesses, and how specific properties of a dataset might affect their performance.
What propertieswould enable a givenmethod to performwell on one dataset but poorly
on another? How sensitive are the existing methods to variations in dataset charac-
teristics? How can we objectively evaluate a portfolio of detection methods to learn
these relationships? Given a problem, can we learn to predict the best-suited detection
method(s)? And given that normalization of a dataset is a typical pre-processing step
adopted by most detection applications, what impact does a normalization scheme
have on detection accuracy? These are some of the questions that motivate this work.

When evaluating outlier detection methods, we must consider the definition of an
outlier used by both the algorithm and a human who may have labeled training data.
Generically, Hawkins (1980) defines an outlier as an observation which deviates so
much from other observations as to arouse suspicion it was generated by a different
mechanism. Barnett and Lewis (1974) define an outlier as an observation (or a subset
of observations) which appears to be inconsistent with the remainder of that set of
data. Both these definitions indicate that outliers are quite different from non-outlying
observations. Barnett and Lewis (1974) also note that it is a a matter of subjective
judgment on the part of the observer whether or not some observation is picked out
for scrutiny. The subjectivity of outlier detection is not only due to human judgment but
extends to differences in how each method defines an outlier. Indeed, disagreements
between methods on the location of outliers may be due to differences on definitions,
whether they are related to nearest neighbor distances, density arguments or other
quantitative metrics. For example, Fig. 1 illustrates the lack of consensus between
three popular methods, namely KNN (Ramaswamy et al. 2000), LOF (Breunig et al.
2000) and COF (Tang et al. 2002). As such, to select the most suitable method, we
should exploit the knowledge gained from analyzing both the dataset characteristics
and the algorithm’s definition of an outlier.

Evaluation of unsupervised outlier detection methods has received growing atten-
tion in recent years. Campos et al. (2016) conducted an experimental evaluation of
12 methods based on nearest neighbors using the ELKI software suite (Achtert et al.
2008). While all the methods considered used a similar definition of an outlier, this
study contributed a repository of around 1000 benchmark datasets generated by modi-
fying 23 source ones that can be used for further analysis. It is common practice to test
detection methods on datasets with known ground truth labels, for example, classifi-
cation datasets where observations of the minority class have been down-sampled. We
extend their approach to dataset generation for our study. Goldstein and Uchida (2016)
conducted a comparative evaluation of 19 methods, which fall into three categories,
namely nearest neighbor based, clustering-based, and based on other algorithms such
as one class SVM and robust PCA. They have used 10 datasets for their evaluation.

123

On normalization and algorithm selection for outlier detection 311

-10 -5 0 5 10
-6

-4

-2

0

2

4

6

8

10

(a)
-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5 KNN
LOF
COF

(b)

Fig. 1 First outlier detected in two different datasets by three different methods: KNN (�), LOF (�) and
COF (�)

Their algorithms were released on the RapidMiner data mining software. Emmott
et al. (2013) studied the construction of benchmark datasets for outlier detection using
classification datasets. Emmott et al. (2015) conducted a meta-analysis of 12 meth-
ods, which fall into four categories; namely, nearest neighbors based, density-based,
model-based or projection-based. However, none of these studies address the critical
algorithm selection problem for outlier detection: given a dataset, which outlier detec-
tion method(s) is expected to give the best performance, and why? This is one of the
main contributions of our work.

The algorithm selection problem has been extensively studied in various research
communities (Rice 1976; Smith-Miles 2009) for challenges such as meta-learning in
machine learning (Brazdil et al. 2008), black-box optimization (Bischl et al. 2012),
and algorithm portfolio selection in SAT solvers (Leyton-Brown et al. 2003). Smith-
Miles and co-authors have extended theRice (1976) framework for algorithm selection
and developed a methodology known as instance space analysis to visualize and gain
insights into the strengths and weaknesses of algorithms across the broadest possible
set of test instances, rather than a finite set of common benchmarks (Smith-Miles
et al. 2014; Smith-Miles and Bowly 2015; Muñoz et al. 2018). In Kandanaarachchi
et al. (2019a), we extended the study by Campos et al. (2016) to explore how their
considered outlier detection methods, with a fixed normalization scheme, could be
analyzed from an instance space perspective. In the current paper, we augment this
proof-of-concept study, by considering a larger collection of outlier methods, using the
instance space framework to gain an understanding of the strengths and weaknesses
of these algorithms. Moreover, we recognize that an algorithm often includes the
normalization of the dataset. The complex relationship between normalization and
detection methods create a combined effect that is not well understood. Thus, a further
contribution of this paper is to comprehensively tackle the algorithm selection problem
for outlier detection in the context of the often-overlooked impact of normalization.

123

312 S. Kandanaarachchi et al.

Routinely, the min–max normalization method, which bounds each variable to the
interval [0, 1], is used in outlier detection (Campos et al. 2016; Goldstein and Uchida
2016). However, there are alternative methods. To the best of our knowledge, no pre-
vious study has focused on the effect that the choice of normalization method has on
outlier detection performance. As such, we explore this relationship and show that the
performance of outlier methods can change significantly depending on the normal-
ization method. This is a further contribution of our work. In addition, our R package
outselect (Kandanaarachchi 2018) contains dataset features and outlier method per-
formance values for all datasets and can be used to predict suitable outlier detection
methods for a new dataset, and plot it in the instance space. Furthermore, we make
available a repository of over 12,000 datasets (Kandanaarachchi et al. 2019b), which is
generated from approximately 200 source datasets, providing a comprehensive basis
for future evaluation of outlier detectionmethods.Moreover, the code used for instance
space analysis is available at Muñoz (2019).

This paper is organized as follows. We start by investigating the impact of nor-
malization on outlier detection methods in Sect. 2. First, we present mathematical
arguments in Sect. 2.1 to prove how normalization changes the nearest neighbors
and densities of the data, and hence why we expect that the impact of normalization
can be significant depending on the definition of an outlier adopted by an algorithm.
In Sect. 2.2, we present experimental evidence of this theoretical sensitivity through
the analysis of a set of over 12,000 datasets. We show that combinations of normal-
ization and detection methods have variable performance across datasets, suggesting
that some combinations can exploit the properties of the datasets, while others can-
not. This experimental and theoretical evidence then motivates the remainder of the
paper, where we adapt instance space analysis to gain insights into the strengths and
weaknesses of normalization and outlier detection method combinations. Section 3
first describes the methodological framework for the algorithm selection problem and
instance space analysis introduced by Smith-Miles et al. (2014). This section then
discusses a novel set of features that capture properties of outlier detection datasets
and shows how these features can be used to predict the performance of a detection
method. The instance space is then constructed, and objective assessment of outlier
detection method strengths and weaknesses is presented in the form of footprint anal-
ysis. The instance space shows that the datasets considered in this study are more
diverse and comprehensive than previous studies, and suitable outlier detection meth-
ods are identified for various parts of the instance space. Finally, in Sect. 4 we present
the conclusions of this work and future avenues of research.

2 Impact of normalization on outlier detection

One of the main pre-processing steps for many statistical learning tasks is normaliz-
ing the data. Normalization1 is especially important in unsupervised outlier detection
because different attributes of a dataset may have different measurement units. In fact,

1 Generally normalization refers to scaling each attribute to [0, 1] while standardization refers to scaling
each attribute to N (0, 1). For the sake of simplicity, and without loss of generality, we use the term
normalization to refer to both re-scalings in this paper.

123

On normalization and algorithm selection for outlier detection 313

Campos et al. (2016) show that outlier detection methods on normalized datasets give
higher performance values compared to the performance on un-normalized datasets.
Even though there seems to be a consensus in the research community that normal-
ization is a necessary pre-processing step for outlier detection, the effects of different
normalization methods on outlier detection have not been studied to the best of our
knowledge. As such, we investigate the effect of four normalization/standardization
methods of outlier detection.
Minimum and maximum normalization (Min–Max)

Each column x is transformed to x−min(x)
max(x)−min(x)

where min (x) and max (x) are the
minimum and maximum values of x respectively.

Mean and standard deviation normalization (Mean–SD)

Each column x is transformed to x−mean(x)
sd(x)

, where mean (x) and sd (x) are the
mean and standard deviation values of x respectively.

Median and the IQR normalization (Median–IQR)

Each column x is transformed to x−median(x)
IQR(x)

, where median (x) and IQR (x) are
the median and IQR of x respectively.

Median and median absolute deviation normalization (Median–MAD)

Here MAD (x) = median (|x − median (x)|) and each column x is transformed
to x−median(x)

MAD(x)
.

We note that Min–Max and Mean–SD are influenced by outliers while Median–
IQR and Median–MAD are more robust to outliers. A detailed account of the usage
of robust statistics in outlier detection is covered by Rousseeuw and Hubert (2017).

Generally, normalization scales axes differently causing some to compress and
others to expand, thus changing the nearest neighbor structure. As nearest neighbor
distances play an important role in many outlier detection techniques, such normal-
ization impacts outlier detection method results, as will be explained theoretically and
then demonstrated experimentally in the following sections.

2.1 Mathematical analysis

In this section we look at the effect of normalization on a dataset from a mathematical
view-point. Let D be a dataset containing N observations and d numerical attributes.
Let us denote the i th observation by xi where xi ∈ R

d . The four normalization
techniques described above can be written as

x∗
i = S−1 (xi − m) . (1)

Here x∗
i is the normalized observation, m is either the minimum, mean or median of

the data and S is a diagonal matrix containing column-wise range, standard deviation,
IQR or MAD. Let S = diag (s1, s2, s3, . . . , sd).

123

314 S. Kandanaarachchi et al.

Let dist (x, y) denote the Euclidean distance between the two points x and y, i.e.
dist (x, y) = ‖x − y‖, where we use the L2 norm. So we have

dist
(
x∗

i , x
∗
j

)
=

∥∥∥S−1 (
xi − x j

)∥∥∥ , (2)

giving us

dist2
(
x∗

i , x
∗
j

)
=

〈
S−1 (

xi − x j
)
, S−1 (

xi − x j
)〉

,

= (
xi − x j

)�
S−2 (

xi − x j
)
,

=
d∑

k=1

1

s2k

(
xik − x jk

)2
, (3)

where xik is the kth coordinate of xi . By defining

w =
(

1

s21
,
1

s22
, . . . ,

1

s2d

)�
and

yi j =
((

xi1 − x j1
)2

,
(
xi2 − x j2

)2
, . . . ,

(
xid − x jd

)2)�
, (4)

we can write the distance between x∗
i and x∗

j as

dist2
(
x∗

i , x
∗
j

)
= 〈

w, yi j

〉
. (5)

The advantage of this representation is that we can explore the effect of normaliza-
tion without restricting ourselves to the normalized space. That is, suppose we want
to compare two normalization methods given by matrices S1 and S2. By working with
the corresponding vectors w1 and w2 we can stay in the space of yi j for different
normalization methods. Here, the space where yi j lives is different from the space of
xi and x j . From Eq. (4) the components of yi j corresponds to the squared component
differences between xi and x j . As such the vector yi j cannot contain negative values,
i.e. yi j ∈ R

d+ where Rd+ is the positive orthant or hyperoctant in R
d . Similarly, w

has positive coordinates and w ∈ R
d+\{0}.

To understand more about the space of yi j , we give it separate notation. Let us
denote the space of yi j by Y and the space of observations by O . It is true that Y is
isomorphic toRd+ and O toRd . However, because the original observations in O × O
map to Y in a slightly different way when compared with the standard partitioning of
R

d+ from R
d , it makes sense to detach Y from R

d+ and O from R
d for a moment.

From (4) we have

yi j =
((

xi1 − x j1
)2

,
(
xi2 − x j2

)2
, . . . ,

(
xid − x jd

)2)�
,

=
((

xi1 + η1 − x j1 − η1
)2

,
(
xi2 + η2 − x j2 − η2

)2
, . . . ,

(
xid + ηd − x jd − ηd

)2)�
.

123

On normalization and algorithm selection for outlier detection 315

As such, if the points xi and x j give rise to yi j so does the points xi + η and x j + η

for any η ∈ R
d . Thus, the mapping from O × O to Y is translation-invariant. This

shows that Y is obtained from O × O in a different way to the standard partitioning
of Rd+ from R

d . However, we will not use the translation invariant property of Y in
the next sections.

2.1.1 Nearest neighbors

Let the kth nearest neighbor of a point x be denoted by nn (x, k) and the kth nearest
neighbor distance be denoted by nnd (x, k). With the above notation, let us write down
the expression for the nearest neighbor of a point x∗

i :

nn
(
x∗

i , 1
) = argmin

x j , j �=i

(
dist

(
x∗

i , x
∗
j

))
(6)

Let Ai1 = {1, 2, . . . , i − 1, i + 1, . . . , N }. Then using (5) we can re-write this as

nn
(
x∗

i , 1
) = argmin

x j , j∈Ai1

(
dist

(
x∗

i , x
∗
j

)2)

= argmin
x j , j∈Ai1

〈
w, yi j

〉
(7)

If x∗
l1
is the nearest neighbor of x∗

i we define Ai2 as Ai2 = Ai1\l1, giving us

nn
(
x∗

i , 2
) = argmin

x j , j∈Ai2

〈
w, yi j

〉
.

Similarly we can write

nn
(
x∗

i , k
) = argmin

x j , j∈Aik

〈
w, yi j

〉
, (8)

where x∗
�k−1

is the (k − 1)st nearest neighbor of x∗
i and Aik = Ai(k−1)\�k−1. Proceed-

ing in a similar way, the kth nearest neighbor distance can be written as

nnd
(
x∗

i , k
) = min

j∈Aik

√〈
w, yi j

〉
. (9)

As the outlier detection method KNN declares the points with the highest k-nearest
neighbor distance as outliers we write an expression for the point with the highest knn
distance:

point with highest knn distance = argmax
i

(
nnd

(
x∗

i , k
)) = argmax

i

(
min
j∈Aik

√〈
w, yi j

〉)
.

(10)

123

316 S. Kandanaarachchi et al.

yoa

ynm

w

θoa

θnm

Fig. 2 The vectors yoa , ynm , w with angles θoa and θnm

From (10)we can see thatw has a role in determining the data-point with the highest
knn distance. A differentw may produce a different data-point having the highest knn
distance. Therefore, the method of normalization plays an important role in nearest
neighbor computations.

Proposition 2.1 Let xo be an outlier and xn a non-outlier. Let xa and xm be xo and
xn’s respective k-nearest neighbors according to the normalization scheme defined
by w. Let θoa and θnm be the angles that yoa, ynm ∈ Y make with w. If

∥∥ yoa

∥∥
∥∥ ynm

∥∥ <
cos θnm

cos θoa
,

then

nnd
(
x∗

o, k
)

< nnd
(
x∗

n, k
)
,

where x∗
o and x∗

n are the normalized coordinates of xo and xn according to w. Thus
a non-outlier has a higher knn distance that an outlier with respect to w.

Proof From (9) the knn distance of x∗
o is

nnd
(
x∗

o, k
) = min

j∈Aok

√〈
w, yoj

〉
,

=
√〈

w, yoa

〉
, (11)

123

On normalization and algorithm selection for outlier detection 317

as xa is the k-nearest neighbour of xo. Similarly

nnd
(
x∗

n, k
) = min

j∈Ank

√〈
w, ynj

〉 =
√〈

w, ynm

〉
. (12)

From Eq. (11) we have

nnd
(
x∗

o, k
)2 = 〈

w, yoa

〉 = ‖w‖ ∥∥ yoa

∥∥ cos θoa, (13)

and from Eq. (12) we have

nnd
(
x∗

n, k
)2 = 〈

w, ynm

〉 = ‖w‖ ∥∥ ynm

∥∥ cos θnm . (14)

Dividing Eq. (13) from (14) we obtain

nnd
(
x∗

o, k
)2

nnd
(
x∗

n, k
)2 =

∥∥ yoa

∥∥ cos θoa∥∥ ynm

∥∥ cos θnm
< 1 (15)

by the condition of the proposition. This makes nnd
(
x∗

o, k
)

< nnd
(
x∗

n, k
)
. ��

As illustrated in Fig. 2 the angle between w and ynm has an effect in the ordering
of k-nearest neighbor distances. Thus, w can mask outliers and favor non-outliers,
reducing the performance of a detection method.

2.1.2 Density computations

Density can be defined as the number of data-points in a unit ball. Using this definition,
the density of point x∗

i is

density(x∗
i) = #

{
x∗

j :
∥∥∥x∗

j − x∗
i

∥∥∥ ≤ 1
}

(16)

where # denotes the number of points satisfying the given condition. Using the notation
defined in (4) and (5) we can rewrite this as

density
(
x∗

i

) = #

{
x∗

j :
∥∥∥x∗

j − x∗
i

∥∥∥
2 ≤ 1

}

= #

{
x∗

j : dist
(
x∗

j , x
∗
i

)2 ≤ 1

}

= #
{
yi j : 〈

w, yi j

〉 ≤ 1
}

(17)

Again we see that vector w which comes from the method of normalization plays
a role in determining the density of data-points. As many outlier detection methods
are based on density estimates, we see that normalization affects density-based outlier
detection methods as well.

123

318 S. Kandanaarachchi et al.

Fig. 3 Percentage of
observations that do not have the
same nearest neighbour after
normalizing using the above
four methods

0 10 20 30 40

Dimension

0

10

20

30

40

%
 o

f d
iff

er
en

t n
ea

re
st

 n
ei

gh
bo

ur
s

With outliers
Without outliers

We now show that this theoretical sensitivity is observed when using common
benchmark datasets and that the performance of outlier detection methods depends on
normalization as well as characteristics of the datasets.

2.2 Experimental evidence of impact of normalization

As an initial experiment, we generate a dataset of 100 data points of dimension d from
the uniform distribution, where d ranges from 1 to 40. Next, the data were scaled using
the four normalizationmethods. For each normalized dataset, the nearest neighbor was
computed for each observation, and we calculate the percentage of observations that
do not have the same nearest neighbor across the whole dataset. This percentage is the
quantity of interest. For each dimension d, we run the experiment for 100 repetitions
and compute this percentage. For a second experiment, we add one outlier to the
dataset and repeat the process. The graphs in Fig. 3 show the average percentage of
observations that do not have the same nearest neighbor from different normalizations
with and without the outlier added.

We observe that in both the above scenarios the percentage of observations that
have different nearest neighbors due to normalization increases with dimension. For
the case with no outliers, this percentage changes from 5 to 25% as the dimension
changes from 2 to 20. That is for a 20-dimensional dataset without outliers, the near-
est neighbors of 25% of the data depend on the method of normalization. Similarly,
for a 20-dimensional dataset with one outlier, the nearest neighbors of 30% of the
data depend on the normalization method. This observation has the important impli-
cation that as the dimensionality of the dataset increases while keeping the number
of observations constant, the nearest neighbors of a data-point are highly sensitive
to the method of normalization. Thus, given an outlier detection problem, the nor-
malization method, as well as the outlier detection technique, play an important role.
Of course, it is important to validate this hypothesis on other datasets, rather than

123

On normalization and algorithm selection for outlier detection 319

randomly generated data, to see if structured data from benchmark datasets is also
sensitive to normalization.

In the remainder of this section, we evaluate the impact of normalization on 14
outlier detectionmethods coupledwith the above-mentioned 4 normalizationmethods,
across a set of over 12,000 datasets described below.

2.2.1 Datasets

We generate outlier detection datasets by adopting the approach used in recent studies
(Campos et al. 2016; Goldstein and Uchida 2016), which takes a classification dataset
and down-samples the minority class to label outliers. Campos et al. (2016) started
with 23 datasets, fromwhich different variants are obtained mainly by down-sampling
the outlier class at rates 20%, 10%, 5%, 2% and transforming categorical variables
to numeric values. This process results in approximately 1000 datasets. Goldstein
and Uchida (2016) used 10 datasets for their evaluation study, with some overlap
with Campos et al. (2016). In order to obtain a more comprehensive and diverse
set of benchmark test datasets, we extend the approach to utilize a set of 170 base
classification datasets recently used by Muñoz et al. (2018) obtained primarily from
the UCI machine learning repository. These classification datasets were not intended
for outlier detection evaluation, and so the following issues need to be addressed to
generate meaningful outlier detection benchmarks:

1. Labeling of outliers: since outliers are rare events, its proportion is typically 5%
or less for most datasets. In contrast, classification datasets have sometimes more
than 2 classes and the proportion of observations belonging to each class is often
similar and much larger than 10%.

2. Categorical variables: while some classification algorithms such as random forests
and decision trees are capable of handling categorical variables, most outlier detec-
tion methods need distances or densities to find outliers, which requires only
numerical attributes.

3. Duplicate observations and missing values: the classification datasets contain data
challenges that we wish to eliminate at this stage to focus on understanding how
the underlyingmechanism of outlier detection behaves in the presence of complete
data.

Therefore, we modify the 170 classification datasets used in Muñoz et al. (2018)
to make them more applicable for outlier detection, as described below:

Down-sampling If a dataset has observations belonging to c classes, then each class,
in turn, is designated the outlier-class and observations belonging to that class are
down-sampled, while the observations belonging to the other c − 1 classes are
deemed non-outliers. We conduct the down-sampling such that the percentage of
outliers is p% for p ∈ {2, 5}. For a given outlier class and for each value of p,
the down-sampling is randomly carried out 10 times. Hence, for a given outlier
class there are 20 down-sampled files generated. This procedure is done for all
classes in the dataset, e.g. if a base classification dataset has 3 classes, then there
are 3 × 2 × 10 down-sampled files generated from that base dataset.

123

320 S. Kandanaarachchi et al.

Categorical variables While a range of techniques for transforming categorical
variables to numerical variables is available, there is little consensus on which
approach is best suited for a given task. For each source down-sampled dataset,
we create two versions: one with categorical variables removed, and one with cat-
egorical variables converted using the method of inverse data frequency (Campos
et al. 2016), which creates a new variable IDF (x) = ln (N/nx) where N is the
total number of observations in the dataset and nx is the number of times the cat-
egorical variable takes the value x . IDF maps the rarer values to higher numbers
and common values to lower numbers.
Duplicate observations As the nearest neighbor distance for a duplicate observa-
tion is zero, this can create division by zero errors causing numerical instability
when computing densities and other metrics. As such, we remove duplicate obser-
vations from the datasets.
Missing values We use the method in Campos et al. (2016) to treat missing values.
For each attribute in each dataset, the number of missing values is computed. If
an attribute has less than 10% of missing values, the observations containing the
missing values are removed, otherwise, the attribute is removed.

The above procedures were followed on the 170 base classification datasets used
in Muñoz et al. (2018). In addition, we augmented our benchmark collection to con-
sidering the 1000 datasets used in Campos et al. (2016) and selected the ones with
5% and 2% outliers (but not the ones with 10% and 20% outliers). With the datasets
from Campos et al. (2016), Goldstein and Uchida (2016), along with the datasets we
prepared from Muñoz et al. (2018), our final set of benchmarks for this experimental
study contains approximately 12,200 datasets suitable for outlier detection evaluation.

2.2.2 Outlier detection methods

We investigate 14 outlier detection methods: 12 outlier detection methods studied
in Campos et al. (2016), and an ensemble of LOF based outlier methods using the
ELKI software suite (Achtert et al. 2008), and isolation forest (iForest) using the R
implementation of Liu (2009). The methods are:

1. KNN: K nearest neighbours (Ramaswamy et al. 2000)
2. KNNW: KNN weight (Angiulli and Pizzuti 2002)
3. ODIN: Outlier Detection using In-degree Number (Hautamaki et al. 2004)
4. LOF: Local Outlier Factor (Breunig et al. 2000)
5. Simplified LOF: (Schubert et al. 2014b)
6. COF: Connectivity based Outlier Factor (Tang et al. 2002)
7. INFLO: Influenced Outlierness (Jin et al. 2006)
8. LOOP: Local Outlier Probabilities (Kriegel et al. 2009)
9. LDOF: Local Density based Outlier Factor (Zhang et al. 2009)

10. LDF: Local Density Factor (Latecki et al. 2007)
11. KDEOS: Kernel Density Estimation Outlier Score (Schubert et al. 2014a)
12. FAST ABOD: Fast Angle Based Outlier Detection (ABOD), faster version of

ABOD (Kriegel et al. 2008)
13. iForest: Isolation Forest (Liu et al. 2008)

123

On normalization and algorithm selection for outlier detection 321

14. An ensemble using LOF, LDOF and LOOP

For a brief description of the above methods we refer the reader to Campos et al.
(2016) and for a pictorial explanation of KNN, LOF, COF, INFLO, and LOOP, to
Goldstein and Uchida (2016).

2.2.3 Evaluation metric

Unlike classification or regression, outlier detection offers challenges infinding accept-
able evaluationmetrics. As outliers are rare, even if amethod does not detect outliers, it
still has a high level of overall accuracy. The lack of a universally accepted evaluation
metric is evident from the different standards adopted by different research commu-
nities. While it is common for outlier methods to rank observations ordered by the
level of outlierness (Breunig et al. 2000; Schubert et al. 2014b; Tang et al. 2002; Jin
et al. 2006), it is also common for methods to find outliers and declare them as binary
output—outlier or not (Hubert and Van der Veeken 2008; Wilkinson 2018; Talagala
et al. 2019; Billor et al. 2000). In the first instance, when the observations are ranked,
finding the outliers becomes the task of the user as a threshold is needed to separate
outliers from non-outliers. While this may be preferred for some applications, others
might prefer the second approach where observations are either declared outliers or
not.

While there is no single acceptedmetric to evaluate an outlier detectionmethod, two
popular evaluation metrics are 1. the area under the Receiver Operator Characteristic
(ROC) curve, and 2. The Precision–Recall (PR) curve. Of these two methods, it is fair
to say that the area under the ROC is more widely used than PR curves. Davis and
Goadrich (2006) discuss the relationship between ROC and PR curves, and show that
for a given dataset if a curve dominates in the ROC space, it also dominates in the
PR space. In addition to these two measures, it is also quite common to report false
positives and false negatives rather than an uninformative overall accuracy measure.
In addition to these, there are also other methods such as precision at n (Craswell
2009), average precision (Zhang and Zhang 2009) and excess-mass and mass–volume
curves (Goix 2016).

In our study, we use the area under ROC curve (AUC) as the evaluation metric
and define good performance as AUC ≥ 0.8 as part of our experimental setting.
Alternative performance metrics can be considered, such as Area under the Precision–
Recall curve—and we have tested these—but we have found that AUC provides the
most discriminating performance metric.

2.2.4 Other experimental settings

Our goal is to demonstrate that we can find regions of “good” performance for different
methods, for a given experimental setting, which includes algorithm parameters, an
evaluationmetric, a definition of good performance and classifiers used for later analy-
sis. Thuswe do not expend effort on parameter selection, which is a non-trivial study in
itself. In addition, there are many evaluation metrics, definitions of good performance
and classifiers that can be used. We fix each of these variables for our experimental

123

322 S. Kandanaarachchi et al.

setting, aiming to demonstrate that the instance space methodology can yield useful
insights into the relationships observedwithin a given experimental setting, rather than
seeking to generalize these relationships across many possible experimental settings.
Naturally, the methodology and analysis can be repeated for any chosen experimental
setting. For the analysis in Sect. 3.2 we use random forests and in Sects. 3.4 and 3.5
support vector machines for classification.

All outlier methods apart from iForest use a k-nearest neighborhood giving rise to a
common parameter k. Noting that no single k would be applicable for all methods and
datasets, we choose a tailored value of k based on the dataset and not on the method.
That is, for a given dataset, we choose the same k for all methods as follows:

k (dataset) = min (�N/20� , 100) , (18)

where N is the number of observations. Here the maximum of k = 100 is a means
of limiting the number of computations that can result from a large dataset. The
motivation for using �N/20�, which is 5% of the number of observations, is explained
as follows: As k relates to the the size of the neighborhood, choosing k = N would
make outliers and non-outliers indistinguishable for some methods such as KNN and
LOF, as we are considering too big neighborhoods. On the other hand choosing k = 1
may not be effective as it considers a too small neighborhood and would miss outliers
in small clusters. Thus, we need a small neighborhood, which is not very small. While
this choice of k may not be optimal for all algorithms, this is our choice of k in our
experimental setting.

2.2.5 Difficulty and diversity of instances

In order to understand the difficulty and diversity of instances, we compute scores
similar to Campos et al. (2016). For computational simplicity we use the following
definitions:

difficulty(x) = 1 − mean
αi

AUC (x, αi) ,

diversity(x) = sd
αi
AUC (x, αi) ,

where x is the dataset or instance, α is an algorithm and sd is the standard deviation.
Figure 4 shows the difficulty–diversity spacewith instances colour-coded by the source
dataset.

FromFig. 4we see that there aremany instances of high difficulty and high diversity,
indicating that some algorithms perform well on these instances. These instances are
the most useful for algorithm selection as these are generally hard instances, but some
algorithms perform well on these. The other set of instances that are also useful are
the low difficulty and high diversity instances. These are generally easy instances,
but certain algorithms do not perform well on these. As such, selecting a suitable
algorithm is important. The low difficulty and low diversity instances are generally
the easy instances for which any algorithm performs reasonably well. While these
instances are suitable for outlier detection, they do not lend insights into the strengths

123

On normalization and algorithm selection for outlier detection 323

Fig. 4 The difficulty and
diversity of instances with each
color representing datasets from
the same source (Color figure
online)

0 0.2 0.4 0.6 0.8 1

Difficulty

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

D
iv

er
si

ty

and weaknesses of algorithms. Similarly, the instances with high difficulty and low
diversity are the hard instances and they do not differentiate among the algorithms.
However, these instances highlight the need for new algorithms to be developed.

In addition, we also see the variety of instances generated from the same source
in terms of difficulty and diversity. It is interesting to note that instances from the
same source are not always clustered together. Therefore, we believe that the set of
instances have sufficient difficulty and diversity to create an interesting instance space
andgain insights into the strengths andweaknesses of combinations of outlier detection
methods and normalization schemes.

2.3 Hypothesis testing

2.3.1 Does normalizing achieve better results?

To test whether normalization achieves better results we perform Student’s t tests. We
compare the non-normalized performance values with the normalized performance
values for each combination of outlier and normalization methods. Table 1 shows the
results of this analysis. A + sign signifies that normalization achieves significantly
better results at the 5% level, while a − sign denotes significantly worse results. A 0
depicts that there is no significant difference as a result of normalizing.

FromTable 1we see that for all methods apart from iForest andKDEOS, normaliza-
tion has a positive impact, i.e. there is at least one normalization method that performs
significantly better than its non-normalized counterpart. For methods FAST ABOD,
INFLO, KNN, KNNW, LOOP, ODIN, and SIMLOF all normalization schemes per-
form better. The method iForest does not perform distance or density calculations to
find outliers and thus normalizing does not achieve a better or worse outcome.

123

324 S. Kandanaarachchi et al.

Table 1 Comparison of outlier methods with and without normalizing

Outlier method Min_Max Mean_SD Median_IQR Median_MAD

COF + + 0 0

Ensemble + + + 0

FAST ABOD + + + +
iForest 0 0 0 0

INFLO + + + +
KDEOS 0 − − 0

KNN + + + +
KNNW + + + +
LDF + + 0 0

LDOF + + + 0

LOF + + 0 0

LOOP + + + +
ODIN + + + +
SIMLOF + + + +
The symbols + and − indicates normalizing achieves significantly better and worse results respectively at
a level of 5% using Student’s t test, while 0 indicates no significant difference

2.3.2 Mixedmodels

To determine the effects of outlier and normalization methods on performance, we
use mixed-effects models. Mixed-effects models are typically used when there is
dependence in the data, such as in hierarchical structures. They are well suited for our
case since:

1. dependencies arise from dataset variants, as all datasets in our corpus are generated
from approximately 200 source datasets; and

2. the structure of the experiment involves the combination of normalization and
outlier detection methods, whereby each dataset is normalized using 4 methods,
and each outlier detection method is performed on all 4 normalized versions of
each dataset.

Thus, we have a structure where the outlier detection method, normalization method
and the source dataset play a combined role in influencing performance that we seek
to understand.

We use two mixed models to ascertain the significance of normalization. The first
model uses outlier detection methods and normalization methods as fixed effects, and
source datasets as a random effect.We do not have any interaction terms for thismodel.
We write the first model (using the R formula notation) as:

y ∼ Out + Norm + (1|Source) . (19)

Here y is the performance, Out is the outlier detection method, Norm is the normaliza-
tion method and Source is the source dataset. The term (1|Source) means that source

123

On normalization and algorithm selection for outlier detection 325

is a random effect and the intercept changes according to the source dataset. We can
also write this model in the following way:

yi jkl = λ + ci + d j + hk + εi jkl , (20)

where yi jkl is the performance of outlier detection method i using normalization
method j on a dataset variant l from source k. The term λ denotes the intercept, ci the
coefficient of the i th outlier detectionmethod,d j the coefficient of the j th normalization
method, hk the random effect due to the source dataset, and εi jkl the error term. While
the fixed effects coefficients ci and d j are parameters, the random effects coefficients
hk are modeled as random variables, i.e. hk ∼ N (0, σ 2

h). The errors εi jkl are assumed
to be normally distributed, i.e. εi jkl ∼ N (0, σ 2

ε).
The second model uses an additional interaction term as follows:

y ∼ Out ∗ Norm + (1|Source) . (21)

We can also write the second model as follows:

yi jkl = λ + gi j + hk + εi jkl . (22)

The difference between the first and the second model results from the interaction
term, which gives rise to a separate regression coefficient gi j for each pair of outlier
and normalizationmethods, rather than assuming their effects are additive. The second
model can be used to determine if normalization affects each outlier detection method
differently.

As the twomodels are nested,weperforma likelihood-ratio test and obtain a p-value
of 2.2 × 10−16 in favor of the second model making it clear that there are significant
interactions between normalization methods and outlier detection methods. In other
words, the effect of normalization is different from one outlier method to another.

Figure 5 shows the effect of normalizationmethods on each outlier detectionmethod
using plotting tools described in Breheny and Burchett (2017). The letters O, D, Q,
M and X denote the normalization methods None, Mean–SD, Median–IQR, Median–
MAD andMin–Max respectively. The plotted value for each normalization and outlier
method is yi j . = λ+gi j + h̄ from Eq. (22) where h̄ denotes the mode of hk , pertaining
to the source connectionist_vowel. For any other source, the values yi j . is a vertical
translation of values shown in Fig. 5. A higher value of yi j . denotes better performance
while a lower value denotes a poorer performance. The main quantity of interest of the
second model constitutes of the values yi j .. As such, we make the following remarks
about yi j . using Fig. 5.

1. KNNW has the highest yi j . values, making it the most effective outlier method on
average.

2. The four best outlier methods are KNNW, KNN, iForest, and FAST ABOD.
3. On average, iForest does not have a preferred normalization method.
4. KDEOS has the lowest yi j . values, making it the least effective outlier method on

average. The second least effective outlier method is INFLO.

123

326 S. Kandanaarachchi et al.

Fig. 5 Effect of normalization on outlier detection methods based on model (22). Here, yi j . = gi j + h̄
is plotted for normalization methods None (O), Mean–SD (D), Median–IQR (Q), Median–MAD (M) and
Min–Max (X) for each outlier method. Higher values indicate better performance

5. For most outlier methods, Min–Max and Mean–SD outperform Median–IQR and
Median–MAD.

6. For most outlier methods, Min–Max and Mean–SD give similar yi j . values, and
Median–IQR and Median–MAD also give similar yi j . values.

7. LOF, LOOP, and SIMLOF are quite similar in terms of yi j ..
8. The effect of the outliermethod on yi j .is greater than the effect of the normalization

method.

We repeated the above experiment using a subset of the datasets to alleviate any
bias resulting from datasets with more variants and obtained similar results.

As a result of these insights, we only consider normalizationmethodsMin–Max and
Median–IQR in the following sections, so as to elicit higher contrasts in performance
arising from normalization.

2.4 Preferred normalizationmethods

In this section, we investigate whether the Min–Max normalization method is signif-
icantly superior to Median–IQR. We perform this analysis because Min–Max is the
normalization scheme traditionally performed in outlier detection, and to ascertain
if we are justified in making this choice. For example, if 80% of the datasets prefer
Min–Max as the outlier method, then it is justifiable to use Min–Max as the standard
method, but not if it is only 50%.

We test the null hypothesis that Min–Max and Median–IQR are equally preferred.
If Min–Max is superior, the null hypothesis will be rejected and the 99% confidence
intervals will not include the 50%mark. Table 2 gives the percentage of datasets which
prefer Min–Max for each outlier detection method and the associated 99% confidence
intervals, and the p-values for the hypothesis test. We see that for most outlier methods

123

On normalization and algorithm selection for outlier detection 327

Table 2 Comparing Min–Max to Median–IQR

Outlier method Min–Max better performance (%) 99% Confidence interval p-value

COF 51.16 (49.99, 52.36) 1.001 × 10−2

Ensemble 49.97 (48.80, 51.13) 9.569 × 10−1

FAST ABOD 55.39 (54.23, 56.54) 4.169 × 10−33

iForest 50.08 (48.91, 51.24) 8.570 × 10−1

INFLO 49.03 (47.87, 50.20) 3.358 × 10−2

KDEOS 50.79 (49.62, 51.95) 8.067 × 10−2

KNN 57.06 (55.91, 58.21) 1.272 × 10−55

KNNW 56.39 (55.23, 57.54) 8.004 × 10−46

LDF 51.05 (49.89, 52.22) 1.922 × 10−2

LDOF 48.81 (47.64, 49.97) 8.557 × 10−3

LOF 50.92 (49.75, 52.08) 4.185 × 10−2

LOOP 50.43 (49.27, 51.59) 3.398 × 10−1

ODIN 51.70 (50.54, 52.86) 1.555 × 10−4

SIMLOF 50.87 (49.70, 52.03) 5.399 × 10−2

apart from FASTABOD, KNN, and KNNW, the confidence intervals include the 50%
mark, making it clear that Median–IQR is a strong contender for Min–Max. This
is confirmed by the p-values. Thus, if one were to naively choose Min–Max as the
normalization method, the probability of achieving better performance by choosing
Median–IQR is between 0.4 and 0.5. This again brings to light the importance of
normalization when performing outlier detection, and its complex relationship with
dataset characteristics.

2.4.1 Possible conditions for min–max suitability

FromTable 2we see thatKNN,KNNW,andFASTABODpreferMin–Max toMedian–
IQR. To give some intuition why Min–Max performs better for these methods, we
recall the normalization vector:

w =
(

1

s21
,
1

s22
, . . . ,

1

s2d

)T

,

and the kth nearest neighbor distance

nnd
(
x∗

i , k
) = min

j∈Aik

√〈
w, yi j

〉
,

and note that when a scaling parameter s� is high, the �th coordinate of the vector
w is low. For Min–Max as sl denotes the range, a high range in the �th axis will
result in a low �th coordinate in w, making w point away from the �th axis. For a

123

328 S. Kandanaarachchi et al.

-60 -40 -20 0 20 40 60
x1

-5

0

5

x 2

(a)

-60 -40 -20 0 20 40 60
x1

-5

0

5

x 2

DATA
OUTLIER

(b)

Fig. 6 The dataset above has a comparatively high range in the x1 axis compared to x2 axis. An outlier is
marked as (�). Using KNN we compute the performance using Min–Max and Median–IQR normalization
methods

given dataset, suppose the �th axis has the highest range. As nearest neighbors are
found using the above equation, if outliers have bigger values for the �th coordinate
compared to other coordinates, this would give rise to vectors yom with relatively
bigger �th coordinates and relatively smaller other coordinates. As the vector w has a
relatively small �th coordinate, unless the �th coordinate of yom is sufficiently large to
counteract its smaller w counterpart, this would result in low inner product values for
outliers, making Min–Max less effective. On the other hand if outliers have low �th

coordinates, this gives rise to vectors yom with other coordinates being larger than the
�th coordinate, making Min–Max more effective than Median–IQR. If a dataset has
more than 2 attributes, then there is a higher chance that the outliers are in a different
direction compared to the axis of highest range, making Min–Max perform better on
average than Median–IQR.

We illustrate this with a simple example. Figure 6 shows a two dimensional dataset
having the range 85 and 8 in the x1 and x2 axes respectively. In Fig. 6a we place an
outlier, depicted in red in the direction of the highest range (i.e., the x1 axis), and in
Fig. 6b in the direction of the x2 axis. The position of this outlier is slightly varied in
each iteration of the experiment. For each iteration, the dataset is normalized using
Min–Max and Median–IQR and we compute the KNN ranks with k = 1. Table 3
shows the results of these two experiments.

We see that when the outlier is placed in the x1 direction, which is the direction
of the highest range, Median–IQR performs better. And when the outlier is placed in
the other direction, Min–Max performs better. Thus when outliers occur in directions
other than that of the highest range, Min–Max performs better. However, for a dataset

123

On normalization and algorithm selection for outlier detection 329

Table 3 Two simple experiments to illustrate the difference between Min–Max and Median–IQR

Experiment 1 x1 value 45 46 47 48 49 50 51

AUC ROC—Min–Max 82.82 87.87 92.92 92.92 96.96 96.96 97.97

AUC ROC—Median–IQR 82.82 89.89 93.93 95.95 96.96 97.97 98.98

Experiment 2 x2 value 4.2 4.3 4.4 4.5 4.6 4.7 4.8

AUC ROC—Min–Max 63.13 55.05 59.09 64.14 77.27 86.36 90.90

AUC ROC—Median–IQR 55.05 53.03 53.03 61.11 74.24 77.27 83.33

withmany attributes, outliers may occur in directions of high variation. For such cases,
Median–IQR may give better results.

In addition, one may note that outliers in this example do not deviate a lot from
other observations. However, this occurrence is not uncommon when outlier datasets
are generated from classification datasets and ground truth is used in labeling outliers.

2.5 Sensitivity to normalization

By inspecting the performance results for a given outlier detection method we see that
for some datasets normalization has an effect on performance while for others it does
not. How can we determine if normalization affects outlier method performance for
a given dataset? If we think of “sensitivity to normalization” as an attribute, is it an
intrinsic attribute of the dataset, or is it an attribute of the combination of dataset and
outlier detection method? For example, if the performance of an outlier method α1 on
dataset x fluctuates due to normalization, will a different outlier method α2 on x give
fluctuating results as well? We start this investigation by offering a definition of the
dataset attribute “sensitivity to normalization”.

Definition 2.2 For a given outlier detection method α and a dataset x , we say that the
sensitivity to normalization is the difference between the maximum performance and
the minimum performance across all normalization schemes for that outlier detection
method, i.e.

sensitivity (x, α) = max
n∈N

AUC (x, α, n) − min
n∈N

AUC (x, α, n) ,

whereN denotes the set of normalization methods and AUC the area under the curve
for dataset x , using normalization method n and outlier method α. Furthermore, we
say that an outlier detection method is ξ−sensitive to normalization for that dataset,
if the difference between the maximum performance and the minimum performance
across all normalization schemes for that outlier detection method is greater than ξ .

Figure 7 shows the sensitivity to normalization for each outlier method in terms
of densities and box plots. We perform the Friedman test to find out if there is are
significant differences in outlier methods with respect to normalization sensitivity. To
adjust for dataset variants, we compute themedian sensitivity to normalization for each

123

330 S. Kandanaarachchi et al.

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

0.
0

0.
2

0.
4

0.
6

0.
8

Va
lu

e

density

M
et

ho
d

C
O

F
E

ns
em

bl
e

FA
S

T_
A

B
O

D
iF

or
es

t
IN

FL
O

K
D

E
O

S
K

N
N

K
N

N
W

LD
F

LD
O

F
LO

F
LO

O
P

O
D

IN
S

IM
LO

F

(a
)

C
O

F
E

ns
em

bl
e

FA
S

T_
A

B
O

D
iF

or
es

t
IN

FL
O

K
D

E
O

S
K

N
N

K
N

N
W

LD
F

LD
O

F
LO

F
LO

O
P

O
D

IN
S

IM
LO

F

0.
0

0.
2

0.
4

0.
6

0.
8

Va
lu

e

Method

(b
)

Fi
g.
7

Se
ns
iti
vi
ty

to
no
rm

al
iz
at
io
n
fo
r
ea
ch

ou
tli
er

m
et
ho
d.
T
he

se
ns
iti
vi
ty

to
no
rm

al
iz
at
io
n
va
lu
e
is
on

th
e

x
ax
is
fo
r
bo

th
gr
ap
hs

123

On normalization and algorithm selection for outlier detection 331

Nemenyi test average ranks

K
N

N
W

K
N

N
E

ns
em

bl
e

S
IM

LO
F

LO
O

P
O

D
IN

LD
O

F
LO

F
iF

or
es

t
IN

FL
O

FA
S

T_
A

B
O

D
C

O
F

LD
F

K
D

E
O

S

KDEOS − 10.20
LDF − 9.66
COF − 9.52

FAST_ABOD − 9.46
INFLO − 9.23
iForest − 8.93

LOF − 7.61
LDOF − 6.95
ODIN − 6.46

LOOP − 6.40
SIMLOF − 5.65

Ensemble − 5.62
KNN − 5.25

KNNW − 4.05

Fig. 8 Nemenyi test output. The average rank on the y axis with low ranks signifying robustness to nor-
malization methods and high ranks signifying sensitivity to normalization methods. The blue-colored cells
denote the methods that are not significantly different from the cell in black (Color figure online)

Table 4 Confidence intervals of Nemenyi test ranks

Outlier detection method Confidence intervals of ranks

KNNW (2.55, 5.54)

KNN (3.75, 6.74)

Ensemble (4.12, 7.12)

SIMLOF (4.15, 7.14)

LOOP (4.90, 7.89)

ODIN (4.96, 7.95)

LDOF (5.45, 8.44)

LOF (6.11, 9.10)

iForest (7.43, 10.42)

INFLO (7.73, 10.72)

FAST_ABOD (7.96, 10.95)

COF (8.02, 11.01)

LDF (8.16, 11.15)

KDEOS (8.70, 11.70)

source dataset for each outliermethod. The null hypothesis for this test is that there is no
difference in sensitivity to normalization between the outlier methods. The Friedman
test gives a p-value of 2.2×10−16, rejecting the null hypothesis. As the outliermethods
respond differently for sensitivity to normalization, we perform a Nemenyi post-hoc
test. The Nemenyi test ranks the outlier methods, with low ranking corresponding
to more robust methods and high ranking corresponding to more sensitive methods.
Figure 8 shows the average ranks of methods with vertical lines denoting methods
which are not significantly different from each other. Table 4 gives the 95% confidence
intervals of these ranks.

123

332 S. Kandanaarachchi et al.

Table 5 ξ -sensitivity to normalization for data sources

ξ Least sensitive Most sensitive

Dataset source Num. outlier methods Dataset source Num. outlier methods

0.05 Ring 0.1794 Annthyoid 13.909

0.10 Ring 0 Annthyoid 13.181

0.15 Abalone_ori 0 Wilt 12.454

0.20 Abalone_ori 0 Wilt 11.454

FromTable 4 and Fig. 8 we see that KDEOS is themethodmost sensitive to normal-
ization followed by LDF. The outlier detection methods KNNW is the least sensitive
to normalization with KNN and Ensemble methods achieving comparable results.
The method KNNW uses the average of KNN distances, and as such is more robust
to normalization methods. Similarly, Ensemble methods are also robust to normal-
ization as they use the combined output of many methods. Somewhat unexpectedly,
iForest appears in the middle of the list, even though it does not compute distances or
densities. This can be due to the random selection of attributes which is an integral
part of the iForest algorithm. Indeed from Fig. 5 we see that it does not have any
preferred normalization method. However, due to the random selection of attributes,
each normalization method can give rise to different performance values.

This outcome further validates the results of the second mixed model in Sect. 2.3
given by Eq. (21). In other words, we explicitly see evidence of normalization affecting
outlier detection methods differently.

Next, we investigate if certain source datasets are more sensitive to normalization
compared to others. For a fixed ξ we compute the number of outlier methods that
are ξ−sensitive for each dataset. For example, dataset x1 might be ξ -sensitive for 2
outlier methods and dataset x2 might be ξ -sensitive for 10 outlier methods. We want
to test if there are significant differences among the dataset sources with respect to
ξ -sensitivity to normalization. The null hypothesis is that there is no difference.

We group the number of ξ -sensitive outlier methods by its source dataset and
perform a Kruskal Wallis test. We perform this experiment for each value of ξ ∈
{0.05, 0.10, 0.15, 0.2}. For all 4 experiments we obtain p-values of 2.26 × 10−16,
rejecting the null hypothesis. Table 5 gives the least and the most ξ -sensitive dataset
source, with corresponding the average number of outlier methods that are sensitive to
normalization. As there are approximately 180 dataset sources, we do not perform a
post-hoc analysis to differentiate the pairwise differences between the dataset sources.

Table 5 shows that on average an Annthyoid dataset is ξ -sensitive to normaliza-
tion for nearly all outlier methods for ξ = 0.05 and a ring dataset is not sensitive
to normalization for any outlier method. Thus, the percentage of datasets that is ξ -
sensitive to normalization for n outlier methods is of interest to us. Figure 9 shows
the density distributions of the datasets that are ξ -sensitive to n outlier methods for
ξ ∈ {0.05, 0.10, 0.15, 0.20} and n ∈ {1, . . . , 14}.

From Fig. 9 we see that some datasets are sensitive to normalization for all outlier
methods. As shown in Table 5 this is likely due characteristics of the dataset than that

123

On normalization and algorithm selection for outlier detection 333

xi_05 xi_10 xi_15 xi_20

0 5 10 0 5 10 0 5 10 0 5 10

0

2000

4000

6000

Number of xi−sensitive outlier methods

N
um

be
r o

f d
at

as
et

s variable

xi_05

xi_10

xi_15

xi_20

Fig. 9 The number of datasets that is ξ -sensitive to normalization for n outlier methods for ξ ∈
{0.05, 0.10, 0.15, 0.20} and n ∈ {1, . . . , 14}

of the outlier method. Similarly, there are datasets that are only sensitive to one outlier
method. This is likely due to the outlier method characteristics than that of the dataset
as we know that some outlier methods are more sensitive to normalization than others
(Fig. 8). Thus the sensitivity to normalization of the datasets at each end of the density
graph in Fig. 9 is explained by either the dataset or the outlier method. However, this
explanation does not carry over for datasets that lie in the middle of the graph in Fig. 9.
For example there are some datasets that are sensitive to normalization for 6 outlier
methods. It is a combination of dataset and outlier method characteristics that make
these datasets sensitive to normalization. Thus there is a subtle interplay between the
datasets and the outlier methods in determining sensitivity to normalization.

This section has provided comprehensive evidence, both theoretical and experi-
mental, that normalization can have a significant impact on some outlier detection
methods, and that the complex interplay of dataset characteristics, outlier detection
method, and normalization schememakes it challenging to ensure the best algorithm is
selected for a given dataset. We now turn to recent advances in instance space analysis
to address the challenges of this algorithm selection problem.

3 Instance space analysis

The instance spacemodels the relationship between structural properties of an instance
to the performance of a group of algorithms. It was first proposed by Smith-Miles et al.
(2014), using as a foundation the Algorithm Selection Problem framework developed

123

334 S. Kandanaarachchi et al.

by Rice (1976). Through the analysis of the instance space it is possible to determine
the strengths and weaknesses of an algorithm; thus, facilitating objective assessments
of comparative algorithm power.

Figure 10 illustrates the framework underpinning the development of the instance
space. At its core, there are five component spaces. The first one is the ill-defined
problem space, P , which contains all the relevant problems in the application domain
(e.g. outlier detection). However, we only have instances and computational results
for a subset, I . Second is the algorithm space,A, which is composed of a portfolio of
algorithms applied to the problems in I . Third is the performance space, Y , which is
the set of metrics y(α, x), measuring the performance of an algorithm α ∈ A to solve a
problem x ∈ I . Fourth is the feature space, F , which contains multiple measures that
characterize the properties that can distinguish similarities and differences between
instances in I , and that may correlate with difficulty for various algorithms. These
features are represented by the vector f (x). The meta-data, composed of the features
and algorithm performance for all the instances in I , is used to learn the mapping
g(f (x), y(α, x)) that can be used to predict the performance of an algorithm, given a
feature vector summary of an instance. Finally, the instance space can be visualized
and algorithm performance inspected across the instance space, once we project an
instance x from a high-dimensional feature space to the two-dimensional instance
space. The methods used to learn the performance mapping, and to project from a
high-dimensional feature space to a 2D instance space are flexible. In this paper, we
adopt the approach from Muñoz et al. (2018) to obtain an optimal projection that
encourages linear trends in both features and algorithm performance to be visualized
across the resulting instance space.

Instance SpaceAnalysis involves a study of the instances described by their location
in the instance space, thus by their features, and the performance of algorithms in vari-
ous parts of the instance space. In particular, we are able to construct footprints for each
algorithm, defined as the region in instance spacewhere we statistically infer good per-
formance of the algorithm, for a user-defined criteria of good. Furthermore, instance
space allows us to: [(a)]visualize the distribution and diversity of existing benchmark
and real-world instances; [(b)] assess the adequacy of the features; [(c)] describe the
unique strengths and weaknesses of algorithms; [(d)] identify and measure the algo-
rithm’s footprint to objectively compare algorithms; [(e)] partition the instance space
into recommended regions for automated algorithm selection; and [(f)] distinguish
areas of the instance space where it may be useful to generate additional instances to
gain further insights. The unique advantage of visualizing algorithm performance in
the instance space, rather than as a small set of summary statistics averaged across a
large collection of instances, is the nuanced analysis that becomes possible to exam-
ine interesting variations in performance that may be hidden by tables of summary
statistics.

The meta-data from which we now construct the instance space is described by the
problem instances (see datasets in Sect. 2.2.1), the algorithms (see outlier detection
methods in Sect. 2.2.2), and the performance metric described in Sect. 2.2.3, as well
as a set of outlier detection dataset features we propose below.

123

On normalization and algorithm selection for outlier detection 335

x ∈ I
Problem
subset

f (x) ∈ F
Feature
space

y ∈ Y
Performance

space

α ∈ A
Algorithm

space

g (f (x)) ∈ R
2

Instance
space

x ∈ P
Problem
space

Footprints
in instance

space

Learn selection mapping
from the instance space

α∗ = S (g (f (x)))

Dimensionality reduction
and visualisation

α∗ = S (f (x))

Select α∗ to
maximise ‖y‖

y (x, α)
apply α to x

Feature selection f

Define algorithm
footprints ϕ (y (x, α))

Select or generate
a subset I ⊂ P

Infer algorithm
performance
for any x ∈ P

Fig. 10 Summary of the Instance Space methodology proposed by Smith-Miles et al. (2014), underpinned
by the Algorithm Selection framework (in the dotted box) by Rice (1976)

3.1 Features

Wecompute a broad set of candidate features, fromwhichwe select themost predictive
subset later in Sect. 3.3. While some features are more general, others are geared
toward outlier detection and use class labels in the feature computation. The reason
for using class labels is because outlier detection methods often disagree on outliers as
shown in Fig. 1. In particular, by taking ground truth in labeling outliers, each problem
has its own internal definition of an outlier. As such we need training data to know
what each problem calls an outlier so that we can recommend an appropriate outlier
method for that problem and future data from a similar source. This is common in
industrial applications, where we work with training data with labeled outliers with
the aim of finding methods to elicit these outliers (Leigh et al. 2019; Talagala et al.
2019). Furthermore, we use a supervised methodology to find suitable unsupervised
outlier detection methods, for a given dataset, but the recommended method remains

123

336 S. Kandanaarachchi et al.

unsupervised. A detailed description of these features is contained in the GitHub
repository Kandanaarachchi (2018), and the associated R package outselect has the
functionality to compute them. Broadly, we categorize the features as follows:

1. Standard meta-features—These range from simple and statistical features to
information-theoretic features. Examples of simple features include the number
of observations and attributes of a dataset, while statistical features describe prop-
erties such as skewness and kurtosis, and information-theoretic features are drawn
from concepts such as entropy.

2. Outlier features—These take into account the outlier structure of a dataset. In
addition to outliers, we also consider proxy-outliers. We define proxy-outliers
using distance, density, residuals, and graph-based metrics. Distance-based proxy-
outliers are the points with the top 3% KNN distances. Density-based proxy-
outliers are the points with the lowest 3% density estimates on an arbitrarily chosen
plane.Residual based proxy-outliers are points contributing to the highest residuals
of a linear model where the dependent variable is arbitrarily selected and the other
variables are used as predictors. Graph-based proxy-outliers are the points with
the lowest degree when the dataset is transformed into a graph. For a given dataset
if proxy-outliers and outliers agree, then we can expect outlier methods that are
associated with the proxy-outlier definition to perform well on that dataset. Proxy-
outlier based features are important because we solicit features that explain outlier
method performance.
Features based on proxy-outliers fall into the category of landmarking features,
which has been popular inmeta-learning studies (Pfahringer et al. 2000; Peng et al.
2002; Smith-Miles 2009). The concept of landmarking is to obtain a rough picture
of the problem space with the aid of some simple tools.
The outlier features can be further classified as follows:

(a) Density-based features: For this collection of features, we compute densities
on arbitrary subspaces using DBSCAN, kernel density estimates, and local
density methods. An example feature is the ratio of density estimates between
proxy-outliers and non-proxy-outliers.

(b) Residual based features: These features are based on residuals of linearmodels,
where a variable is randomly selected as the dependent variable and others as
independent variables. An example feature is the ratio of the median residual
value of outliers to that of non-outliers.

(c) Graph-based features: These features are based on graph-theoretic properties
such as vertex degree and shortest path. We generate a graph associated with
each dataset using distances between points. From this graph, we compute the
degree of vertices, shortest path between points and connected components.
An example feature is the ratio of standard deviation of degree of all vertices
to that of proxy-outliers.

(d) Normalization based features: These features are derived from quantities
described in Sect. 2.1.

From this list of features, those that are based on density, residuals, and graphs
depend on nearest neighbors and as such are sensitive to the method of normalization.

123

On normalization and algorithm selection for outlier detection 337

Table 6 Types of features calculated

Feature category Number of features Normalization methods Total features

Standard meta-learning 25 NA 25

Density based 77 2 154

Residual based 35 2 70

Graph based 41 2 82

Normalization based 15 NA 15

Total 346

Hencewe calculate features for each of the two selected normalizationmethods thatwe
have earlier shown are not correlated, namelyMin–Max andMedian–IQR. The choice
of these two is justified since: 1. Min–Max is the most commonly used normalization
method for outlier detection, 2. Median–IQR is one of the methods which is robust
to outliers. By combining density, residual and graph-based features computed on
datasets normalized by 2 different methods with standard features and normalization
based features we end up with a total of 346 candidate features. Table 6 provides a
summary of features by category.

In our previous work (Kandanaarachchi et al. 2019a) we validated these features by
showing that they can predict the performance of some outlier methods with min–max
normalization. Given the different focus of this paper, we now demonstrate that we
can predict sensitivity to normalization with a reasonable accuracy.

3.2 Predicting sensitivity to normalization

We demonstrated in Sect. 2 that some combinations of datasets and outlier methods
are sensitive to normalization, but can we predict these combinations? That is, given a
dataset and an outlier method, canwe predict if the dataset is sensitive to normalization
with respect to that outlier method and if it is sensitive, which normalization method
should be used? To investigate this question we use features discussed in Sect. 3.1.
Using tenfold cross-validation (Bischl et al. 2012), we train and test 12 random forest
classifiers (Liaw and Wiener 2002), one for each outlier method, with all 346 features
as input to predict the binary output of ξ -sensitivity to normalization with ξ = 0.05.
The results are given in Table 7. As shown in Table 7 prediction accuracy of sensitivity
to normalization ranges from 71 to 80% with FAST ABOD, which was the method
most sensitive to normalization, achieving the highest prediction accuracy. Also, it
is insightful to compare these prediction accuracies with the actual percentages of
datasets that are sensitive to normalization, which is given in column 2 of Table 7. In
general, we can correctly predict if a dataset is sensitive to normalization with respect
to an outlier detection method with an accuracy greater than 70%, suggesting that the
feature set must contain some useful summaries of relevant dataset properties.

Next, we investigate which normalization method gives better performance if a
dataset is sensitive to normalization for a given outlier detection method. We only
consider the normalization methods Min–Max and Median–IQR, and datasets that

123

338 S. Kandanaarachchi et al.

Table 7 Prediction results for ξ -sensitivity to normalization with ξ = 0.05 using tenfold cross validation

Outlier detection
method

Actual percentage
sensitive to normal-
ization (%)

Prediction accuracy
of sensitivity to nor-
malization (%)

COF 67.36 77.23

Ensemble 53.38 74.88

FAST ABOD 77.43 80.02

iForest 78.97 80.62

INFLO 62.74 75.07

KDEOS 68.51 76.75

KNN 50.59 73.08

KNNW 54.13 73.22

LDF 63.90 71.63

LDOF 57.64 73.65

LOF 59.82 74.27

LOOP 55.42 73.66

ODIN 57.27 73.30

SIMLOF 53.74 73.92

are ξ -sensitive to normalization for each outlier method with ξ = 0.05, 0.10, and
0.15. Using features of ξ -sensitive datasets as input to a random forest classifier using
fivefold cross-validation, we predict the normalization method that gives better per-
formance with results shown in Table 8. From this table we observe that prediction
accuracy generally increases with ξ . This is to be expected because it is easier for the
classifier to predict the preferred normalization method as the sensitivity to normal-
ization increases. Also, prediction accuracy is higher for KNN, KNNW and FAST
ABOD than for other outlier methods.

From the results of the mixed models in Sect. 2.3 we know that normalization
methods affect outlier methods differently. As such, one of the reasons for high fluc-
tuations in prediction accuracy seen in Table 8 might be because the set of features
does not sufficiently explain these effects for all outlier methods equally. Indeed, the
features were pooled with the intent of discovering strengths andweaknesses of outlier
detection methods, not of normalization methods. Only a handful of features focus on
normalization as seen in Table 6.When comparingwith Table 7which predicts the sen-
sitivity to normalization, Table 8 has higher contrasts in terms of accuracy. However,
from both these tables we see that we can reasonably predict if a dataset is sensitive
to normalization given an outlier method, and if it is sensitive to normalization which
normalization method to recommend.

In effect,we are proposing a strategy to select the normalizationmethod tomaximize
performance. First for a preferred outlier method, we find if a dataset is sensitive to
normalization using features and a classifier. If it is sensitive, then we find which
normalization method gives better performance. One may ask how one selects the
preferred outlier method. This question will be answered in detail in Sect. 3.3.

123

On normalization and algorithm selection for outlier detection 339

Table 8 Best normalization method prediction accuracy

Outlier detection method ξ = 0.05 (%) ξ = 0.10 (%) ξ = 0.15 (%)

COF 59.15 62.35 62.95

Ensemble 61.01 67.46 69.64

FAST ABOD 77.40 80.14 83.45

iForest 51.42 50.86 51.19

INFLO 60.34 62.45 62.65

KDEOS 59.37 63.24 68.96

KNN 71.75 75.73 76.04

KNNW 74.82 76.65 84.49

LDF 60.44 63.89 68.42

LDOF 67.25 68.16 70.87

LOF 65.65 60.37 58.83

LOOP 60.95 66.65 67.16

ODIN 60.44 62.35 67.67

SIMLOF 65.38 62.85 67.59

3.3 Constructing an outlier detection instance space

Critical to fitting the instance space is the identification of a portfolio of complemen-
tary algorithms (i.e. with uncorrelated performance), and the selection of a subset
of features that are distinctive (i.e. uncorrelated with each other) and predictive (i.e.
correlated with algorithm performance). This is not only to reduce the computational
cost of fitting the space but also because we want to focus on modeling the most
meaningful relationships. Our first step is to reduce the number of candidate algo-
rithms. As such, from this point forward we define an algorithm as the combination of
a normalization scheme and a detection method. Considering the two normalization
methods deemed significantly different in Sect. 2.3.2, i.e., Min–Max and Median–
IQR, and the 14 detection methods listed in Sect. 2.2.2, we consider 28 candidate
algorithms. Using as dissimilarity measure 1 − ∣∣ρα,β

∣∣, where ρα,β is the correlation
between the performance of two algorithms, we find the following eight groups using
clustering (Maechler et al. 2018). From each one, we select the algorithm in italics,
such that each family of detection and normalization methods is represented.

Group 1 COFMedian IQR—Ensemble Median IQR—INFLOMedian IQR—LDOF
Median IQR—LOF Median IQR—LOOP Median IQR—ODIN Median
IQR—SIMLOF Median IQR

Group 2 COF Min Max—Ensemble Min Max—INFLO Min Max—LDOF Min
Max—LOF Min Max—LOOPMinMax—ODINMinMax—SIMLOFMin
Max

Group 3 FASTABODMedian IQR—KNN Median IQR—KNNMinMax—KNNW
Median IQR—KNNW Min Max—LDF Median IQR

Group 4 FAST ABOD Min Max
Group 5 iForest Median IQR—iForest Min Max

123

340 S. Kandanaarachchi et al.

Group 6 KDEOS Median IQR
Group 7 KDEOS Min Max
Group 8 LDF Min Max

In Sect. 3.2 and Kandanaarachchi et al. (2019a) we provided evidence that the
proposed features are predictive of both normalization effects and outlier detection
method performance.Hence, our next step is to reduce the initial set of 346 features into
a smaller set. For this purpose,we employ a subset of 3142 instances forwhich there are
three well-performing algorithms or less, i.e., AUC ≥ 0.8. This choice is somewhat
arbitrary, motivated by the fact that we are less interested to study datasets, where
many algorithms perform well or poorly, given our aim, is to understand strengths
and weaknesses of outlier detection methods. We will later project the full set of
datasets into the constructed instance space, but consider this reduced set sufficient
for performance prediction and instance space construction. The details of feature
selection procedure are presented in Kandanaarachchi et al. (2019a). In summary:

1. Pre-process the data by bounding large and infinite values between their median
plus or minus five times their interquartile range. Not-a-number values are con-
verted to zero.

2. Normalize and standardize each feature through Box–Cox and Z transformations.
3. Discard those features which only have a limited number of unique values or

are not one of the top three features by correlation with the performance of any
algorithm.

4. Identify groups of highly correlated features using a clustering algorithm with
the dissimilarity measure being 1 − |ρ|, where ρ is the correlation between two
features.

5. Selecting one feature from each group, find the combination that, once projected
into 2D, allows the most accurate prediction of the performance of all algorithms.

As a result, we obtain a set of seven features from which we construct the instance
space. We then use the Prediction Based Linear Dimensionality Reduction (PBLDR)
method (Muñoz et al. 2018) to find a projection from 7D to 2D, such that algorithm
performance and feature values increase linearly from one edge of the instance space
to the opposite; hence, assisting the visualization of directions of hardness and feature
correlation. To find the projection, we make use of BFGS as optimization algorithm.
However, given that PBLDR has infinite solutions, we calculate 30 different pro-
jections and select the one with the highest topological preservation, defined as the
correlation between high- and low-dimensional distances. The final projection matrix
is defined by Eq. 23, which transforms the 7D feature vector into a 2D vector Z. The
L2–norm of each row from this matrix provides an indication of the most influential
features in the space, with the top three being OPO_GDeg_Out_Mean_3 (0.4190),

123

On normalization and algorithm selection for outlier detection 341

Fig. 11 Instance space including
the full set of more than 12,000
instances, discriminated by their
source

OPO_Res_Out_Mean_3 (0.4180) and OPO_Out_LocDenOut_2_3 (0.3333).

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.2334 −0.2324
0.0798 −0.3236

−0.3712 −0.1945
0.2201 −0.0993
0.2089 −0.1657
0.2907 −0.3003

−0.0125 −0.2422

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

� ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

OPO_GComp_PO_Mean_1
OPO_Out_LocDenOut_2_3
OPO_GDeg_Out_Mean_3
OPO_Res_ResOut_95P_1
OPO_Res_ResOut_Mean_3
OPO_Res_Out_Mean_3
MEAN_PROD_IQR

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23)

Figure 11 illustrates the resulting instance space, including the full set of more than
12,000 instances, discriminated by their source. The sets by Campos et al. (2016) and
Goldstein and Uchida (2016) are mostly located in the lower right area of the space;
whereas the set produced by down-sampling, the UCI repository provides greater
coverage of the instance space and hence more diversity of features. Finally, Figs. 12
and 13 show the distribution of feature values and outlier method performance across
the instance space respectively, based only on the subset of 3142 instances. The scale
has been adjusted to the [0, 1] range. To understand the construction of the instance
space, we now briefly describe the details of each selected feature, their weights in the
projection matrix and their trends across the instance space.

OPO_GComp_PO_Mean_1This feature captures informationof the inner-points
of the dataset. While there is not much correlation between this feature with any of
the outlier methods, it is the only one that increases from top-right to bottom-left,
as observed in Fig. 12e. It is calculated as follows:

1. Normalize the dataset using Min–Max.
2. Generate a graph from the dataset using distances between points using Csardi

and Nepusz (2006). Suppose data point v1 is the nearest neighbour of data

123

342 S. Kandanaarachchi et al.

-4
-2

0
2

4

z 1

-4-3-2-101234

z2

O
PO

_R
es

_R
es

O
ut

_M
ea

n_
3

(a
)

-4
-2

0
2

4

z 1

-4-3-2-101234
O

PO
_R

es
_O

ut
_M

ea
n_

3

(b
)

-4
-2

0
2

4

z 1

-4-3-2-101234
O

PO
_R

es
_R

es
O

ut
_M

ax
_3

(c
)

-4
-2

0
2

4

z 1

-4-3-2-101234
O

PO
_G

D
eg

_O
ut

_M
ea

n_
3

00.
2

0.
4

0.
6

0.
8

1

(d
)

-4
-2

0
2

4

z 1

-4-3-2-101234

z2

O
PO

_G
C

om
p_

PO
_M

ea
n

(e
)

-4
-2

0
2

4

z 1

-4-3-2-101234
O

PO
_O

ut
_L

oc
D

en
O

ut
_3

(f
)

-4
-2

0
2

4

z 1

-4-3-2-101234
M

EA
N

_P
R

O
D

_I
Q

R

00.
2

0.
4

0.
6

0.
8

1

(g
)

Fi
g.
12

D
is
tr
ib
ut
io
n
of

no
rm

al
iz
ed

fe
at
ur
es

on
th
e
pr
oj
ec
te
d
in
st
an
ce

sp
ac
e

123

On normalization and algorithm selection for outlier detection 343

-4
-2

0
2

4
z 1

-4-3-2-101234

z2

En
se

m
bl

e
M

ed
ia

n
IQ

R

(a
)

-4
-2

0
2

4
z 1

-4-3-2-101234
LO

F
M

in
 M

ax

(b
)

-4
-2

0
2

4
z 1

-4-3-2-101234
K

N
N

 M
ed

ia
n

IQ
R

(c
)

-4
-2

0
2

4
z 1

-4-3-2-101234
FA

ST
 A

B
O

D
 M

in
 M

ax

00.
2

0.
4

0.
6

0.
8

1

(d
)

-4
-2

0
2

4
z 1

-4-3-2-101234

z2

iF
or

es
t M

ed
ia

n
IQ

R

(e
)

-4
-2

0
2

4
z 1

-4-3-2-101234
K

D
EO

S
M

ed
ia

n
IQ

R

(f
)

-4
-2

0
2

4
z 1

-4-3-2-101234
K

D
EO

S
M

in
 M

ax

(g
)

-4
-2

0
2

4
z 1

-4-3-2-101234
LD

F
M

in
 M

ax

00.
2

0.
4

0.
6

0.
8

1

(h
)

Fi
g.
13

Sc
al
ed

ar
ea

un
de
r
th
e
cu
rv
e
fo
r
ea
ch

ou
tli
er

de
te
ct
io
n
m
et
ho
d
on

th
e
in
st
an
ce

sp
ac
e

123

344 S. Kandanaarachchi et al.

point v2. Then the associated graph will have vertices v1 and v2 connected
with an edge.

3. Compute the connected components and the degree of vertices of this graph.
4. Define the potential inner points ω as points with the top 3% of degree values.
5. Find the associated connected components having these inner points ω and

find the number of vertices γ in each connected component.
6. OPO_GComp_PO_Mean_1 = mean(γ [ω])/mean(γ [ω̄]), where ω̄ denotes

the non-inner points.

OPO_Out_LocDenOut_2_3 This feature computes a ratio of subspace density
proxy-outliers to actual outliers. It is calculated as follows:

1. The dataset is normalized using Median–IQR.
2. Compute Principle Components of the dataset
3. Compute kernel density estimates for the two dimensional subspaces, spanned

by the principle component pairs (1, 2), (2, 3), (3, 4) etc …stopping with the
10th principle component.

4. For each point, consider a neighbourhood N .
5. For each point, define the local density as the density of that point divided by

the average density of the points in the neighbourhood.
6. Define the density based proxy-outliers as the points with the smallest 3%

density values.
7. Let ω = number of density proxy-outliers that are actual outliers/number of

density proxy-outliers.
8. OPO_Out_LocDenOut_2_3 = mean(ω) where ω is computed for each prin-

ciple component subspace defined above.

This feature decreases with z2 values in Fig. 12f. This feature correlates inversely
with KDEOS.
OPO_GDeg_Out_Mean_3 is a ratio of the mean degree of outliers to mean degree
of non-outliers. As shown in Fig. 12d, low values of this feature indicate that
outliers have a lower degree compared to non-outliers and are depicted in blue. It
is calculated as follows:

1. Normalize the dataset using Median–IQR.
2. Generate a graph from the dataset as in OPO_GComp_PO_Mean_1.
3. Compute the degree θ of each vertex v.
4. Let ω be the set of outliers.
5. OPO_GDeg_Out_Mean_3 = mean(θ [ω])/mean(θ [ω̄])where ω̄ denotes non-

outliers.

This feature captures the performance of FASTABOD because outliers that have a
lower degree are generally isolated and as such will make smaller angles with their
neighbors. Thus we see the algorithm FAST ABOD performing well on datasets
that have low values of OPO_GDeg_Out_Mean_3. Even thoughwe are not finding
the angle between points, the associated graph degree has a correlation with the
performance.

123

On normalization and algorithm selection for outlier detection 345

OPO_Res_ResOut_Mean_3 is the ratio between the mean of residuals of proxy-
outliers to the mean of residuals of non-proxy-outliers. It is shown in Fig. 12a and
it is calculated as follows:

1. Normalise the dataset x using Median–IQR.
2. Randomly choose a set of non-binary attributes s from x .
3. For each attribute a in s, fit a linear model l with a as the dependent variable

and others as the independent variables.
4. For each model l, compute the residuals r . Define the residual based proxy-

outliers ω as the residuals with the top 3% absolute residual values.
5. For each model l, compute κ = mean(r [ω])/mean(r [ω̄]), where ω̄ denotes

non proxy-outliers.
6. The feature is the average of κ .

If certain points of a dataset have large residuals for many linear models, we
can expect these points to be outliers. If they are indeed outliers according to
ground truth, it should be relatively easy to find these outliers for many methods,
since they have large residuals. As such, datasets that have outliers that have large
residuals, i.e. large values of OPO_Res_ResOut_Mean_3 are easy instances for
many methods as seen by Fig. 12a. However, datasets that have non-outliers with
large residuals have also large values ofOPO_Res_ResOut_Mean_3. These are not
easy datasets. These datasets are colored in yellow, in the bottom half of Fig. 12a.
OPO_Res_ResOut_95P_1 is a similar to OPO_Res_ResOut_Mean_3, with the
exception that κ = Perc(r [ω], 95)/Perc(r [ω̄], 95), where Perc(·, 95) denotes
the 95th percentile and the dataset is normalized using Min–Max. It is shown in
Fig. 12c.
OPO_Res_Out_Mean_3 is the ratio between the mean of residuals of outliers
to the mean of residuals of non-outliers. It is shown in Fig. 12b and it is calcu-
lated following a similar approach to that of OPO_Res_ResOut_Mean_3 with the
exception that ω denotes actual outliers instead of proxy-outliers. Hence, if the
outliers have large residuals then it is an easy dataset for many methods.
MEAN_PROD_IQR Here we try to see if outliers are masked by non-outliers.

As in Proposition 2.1 we compute
nnd(x∗

o,k)
2

nnd(x∗
n ,k)

2 = 〈w, yoa〉
〈w, ynm 〉 for outliers and non-

outliers using Eqs. (12) and (13) for the normalization vector w obtained by using
Median–IQR. The feature MEAN_PROD_IQR is the mean of this quantity, which
is computed for many outliers and non-outliers. High values of this feature indicate
that outliers are not masked by non-outliers using that normalization scheme and
low values indicate the opposite.

With this information and thorough inspection of the figures, we can conclude
that of these seven features, three are related to residual-based ratios. This shows
the relationship between residuals and outliers in terms of determining easy datasets
for multiple outlier methods. Moreover, we can distinguish three broad groups of
algorithms. The first one, composed of the Ensemble, LOF and FASTABOD variants,
the second one, composed of KNN and iForest variants and the third one consisting
of KDEOS variants. The performance of the first group increases from left to right of
the space, which is well described by OPO_GDeg_Out_Mean_3. On the other hand,

123

346 S. Kandanaarachchi et al.

Table 9 Footprint analysis of the algorithms

AUC ≥ 0.8 Best algorithm

αN (%) dN (%) p (%) αN (%) dN (%) p (%)

Ensemble median IQR 3.4 150.2 93.7 0.4 434.6 86.8

LOF min Max 3.3 318.2 91.2 1.1 350.4 89.1

KNN median IQR 8.5 194.6 93.4 4.0 169.5 86.4

FAST ABOD min max 12.0 246.6 89.4 9.2 248.6 81.5

iForest median IQR 3.1 336.2 94.5 1.8 293.6 85.2

KDEOS median IQR 2.3 81.0 96.6 1.6 78.0 85.0

KDEOS min max 1.0 66.0 95.0 3.6 34.4 76.9

LDF min max 1.8 357.8 94.1 1.7 410.7 84.1

αN is the area, dN the density and p the purity. The footprint areas (and their density and purity) are shown
where algorithm performance is AUC ≥ 0.8

the performance of the second group increases from the top to the bottom of the space,
which is well described by OPO_Res_ResOut_Mean_3. The performance of KDEOS
variants is described by OPO_Out_LocDenOut_2_3.

3.4 Footprint analysis of algorithm strengths and weaknesses

We define a footprint as an area of the instance space where an algorithm is expected to
perform well based on inference from empirical performance analysis (Smith-Miles
and Tan 2012). To construct a footprint, we follow a simplified version of the approach
first introduced by Smith-Miles and Tan (2012): (a) we take a sub-sample of 50%of the
instances, including those in the convex hull; (b)we calculate aDelaunay triangulation;
(c) we calculate the density and purity of each triangle; and, (d) we discard any triangle
that does not fulfill the density and purity thresholds. The density threshold, ρ, is set to
10, and the purity threshold, π , is set to 75%. We then remove any contradictions that
could appear when two different conclusions could be drawn from the same section of
the instance space due to overlapping footprints, e.g., when comparing two algorithms.
This is achieved by comparing the density and purity of the contradicting sections.
The algorithm whose contradicting section has higher density and purity gets to keep
it.

Table 9 presents the results from the footprint analysis. The best algorithm is the
one with the largest area under the ROC curve for the given instance. The results
are expressed as a percentage of the total area (14.7379) and density (213.1922) of
the convex hull that encloses all instances. The table demonstrates that the dominant
algorithm is FAST ABOD, with a footprint covering 9.2% of the space. KDEOS and
LDF have regions of unique strength. If we only consider their average performance,
as discussed in Sect. 2.3.2, we could think that both are unremarkable. However, their
footprints are the third and fifth largest with 3.6% and 1.7% respectively.

123

On normalization and algorithm selection for outlier detection 347

3.5 Automated algorithm selection in the instance space

One of the main advantages of the instance space is that we can see regions of strength
for someoutliermethods. In addition, the instance space can also be used for automated
algorithm selection for untested instances. Given the instance space coordinates of an
untested instance, we can find outlier methods suited for it by exploring the instance
space. In fact, machine learning methods can be used to partition the instance space
into regions where different outlier methods are dominant.

We use support vector machines (SVM) for this partitioning. For each one of the
eight algorithms, we train an SVMwith the label AUC ≥ 0.8 as output and the instance
space coordinates as the input, using 10-fold cross-validation. Table 10 shows the
results for each algorithm, plus the results of an idealized oracle that always picks the
right algorithm, and our selector that combines the decisions made by the 8 SVMs.
The average ROC and its standard deviation are the expected performance if we were
to use each algorithm across all instances. The probability of good is the fraction of
instances for which AUC ≥ 0.8. We also present the values of SVMs accuracies,
precision, and recall, as well as their parameters {C, γ }. The results show that our
selector has better performance, both in terms of precision and average ROC than
using always FAST ABOD, which is the best performing algorithm. However, the
difference in the performance to the Oracle indicates that the selector could be further
improved.

The regions of strength resulting from this experiment are given in Fig. 14. From
Fig. 14 we see an overlap of many regions. By combining these regions of strength we
obtain a partitioning of the instance space shown in Fig. 15. To break ties, we use the
prediction probability of the SVM and choose the method with the highest precision.
One can also use a different approach such as the sensitivity to normalization criteria
to break ties.

For datasets in the top-left part of Fig. 15, the precision of the SVM is quite low.
This highlights the opportunity for new outlier methods that perform well in this part
of the space to be developed. In addition, we see that KDEOS, which was the overall
least effective method (see Fig. 5) has a niche in the instance space where no outlier
method performs well. This insight was missed by the standard statistical analysis.

4 Conclusions

In this study, we have comprehensively investigated the effect of normalization and the
algorithm selection problem for 14 unsupervised outlier methods. Normalization is a
topic that has not received much attention in the literature. We show its relevance to
outlier detectionmathematically and further illustrate experimentally that performance
of an outliermethodmay significantly change depending on the normalizationmethod.
In fact we show that the effect of normalization changes from one outlier method
to another. Furthermore, certain datasets and outlier methods are more sensitive to
normalization than others, creating a subtle interplay between the datasets and the
outlier methods that affects their sensitivity to normalization.

123

348 S. Kandanaarachchi et al.

Ta
bl
e
10

Pe
rf
or
m
an
ce

of
SV

M
pr
ed
ic
tio

n
m
od
el
s
ba
se
d
on

in
st
an
ce

sp
ac
e
lo
ca
tio

n
of

te
st
se
ts

O
ut
lie
r
de
te
ct
io
n
m
et
ho
d

A
ve
ra
ge

R
O
C

SD
R
O
C

Pr
ob
ab
ili
ty

of
go
od

C
V
ac
cu
ra
cy

C
V
pr
ec
is
io
n

C
V
re
ca
ll

C
γ

E
ns
em

bl
e
M
ed
ia
n–

IQ
R

0.
67

6
0.
13

2
0.
15

4
61

.8
24

.2
69

.2
0.
05

9
0.
05

8

L
O
F
M
in
–M

ax
0.
69

4
0.
15

7
0.
28

3
58

.4
35

.2
55

.9
0.
06

1
0.
05

7

K
N
N
M
ed
ia
n–

IQ
R

0.
70

2
0.
15

5
0.
29

5
67

.3
46

.7
76

.6
0.
03

3
0.
03

2

FA
ST

A
B
O
D
M
in
–M

ax
0.
73

0
0.
18

1
0.
45

1
64

.3
58

.2
74

.2
0.
04

5
0.
06

1

iF
or
es
tM

ed
ia
n–

IQ
R

0.
69

7
0.
14

6
0.
26

4
52

.5
32

.1
71

.4
0.
05

2
0.
06

0

K
D
E
O
S
M
ed
ia
n–

IQ
R

0.
53

6
0.
15

9
0.
06

9
72

.4
17

.0
77

.3
0.
03

8
0.
04

2

K
D
E
O
S
M
in
–M

ax
0.
55

2
0.
15

6
0.
06

6
93

.4
–

–
0.
03

1
0.
04

6

L
D
F
M
in
–M

ax
0.
67

0
0.
16

7
0.
21

7
59

.5
27

.8
53

.7
0.
03

4
0.
03

2

O
ra
cl
e

0.
87

0
0.
04

9
1.
00

0

Se
le
ct
or

0.
75

6
0.
15

1
0.
50

0
50

.0
36

.9

123

On normalization and algorithm selection for outlier detection 349

Fi
g.
14

R
eg
io
ns

of
st
re
ng

th
fo
r
ea
ch

al
go

ri
th
m

ac
co
rd
in
g
to

th
e
SV

M
pr
ed
ic
tio

ns

123

350 S. Kandanaarachchi et al.

Fig. 15 A partition of the instance space showing recommended outlier detection methods

One main conclusion of this research is that normalization should not be treated
as a fixed strategy, and a normalization method should be selected to maximize per-
formance. To aid with this selection, we have proposed an approach whereby we first
predict the sensitivity to normalization of a dataset, and then the normalizationmethod
best suited for a given outlier detection method. Our models predict with reasonable
accuracy, with some outlier methods having higher accuracy than others.

In addition to normalization, we also investigated the algorithm selection problem
for 8 different normalization-outlier method combinations. These algorithms were
chosen via a clustering process so that the selected algorithms were different from
each other. Using dataset features, we predict the best algorithm—normalization-
outlier method combination with reasonable accuracy. We achieve better results than
using any single algorithm consistently. This shows the validity of the “no free lunch”
concept, where no single algorithm is suited for all problems. Furthermore, we have
investigated the strengths and weaknesses of algorithms using the instance space and
computed their algorithm footprints.Wehave shown that the algorithmKDEOS,which
gave the lowest average performance has a niche in the instance space where none
of the other algorithms perform well. This is the kind of insight that is hidden from
standard summary statistical reporting in tables of results.

Our R package outselect can be used to find suitable outlier algorithms for new
datasets and plot them in the instance space. This is another contribution of this work
to the broader community. Additionally, this work can be used by future researchers
when a new outlier detection method is developed in the following way: 1. Evaluate
the sensitivity to normalization for the new outlier method. 2. Evaluate the newmethod
using the corpus of datasetsmade available. This enables thorough testing of the outlier
method as we have approximately 12,000 datasets of diverse characteristics. 3. Using
the instance space, find the strengths and weaknesses of the new outlier method. This
is useful because a new outlier method can potentially generate a footprint in parts
of the instance space not yet occupied by any other method, i.e. it can have unique
strengths benefiting many datasets and applications. On the other hand the instance

123

On normalization and algorithm selection for outlier detection 351

space can also insightfully reveal if a new outlier method is actually similar to existing
outlier methods.

We note that we cannot claim our instance space to be the definitive instance space
for all unsupervised outlier algorithms and datasets. Indeed, our instance space is a
function of the datasets, normalization and outlier algorithms and the features we
have chosen according to our experimental settings. Similar to extrapolating a curve,
additional datasets, algorithms, and features have the potential to change the instance
space. Future research avenues to broaden the instance space include incorporating
other classes of outlier algorithms such as subspace methods, clustering-based meth-
ods, and PCAbasedmethods. Indeed, normalization can be also thought of as a process
of selecting appropriate weights for dataset attributes, which links to feature selection
and subspace outlier detection. The transition between normalization and subspace
outlier detection is an interesting avenue of research that is worth pursuing. In addi-
tion, the instance space can be expanded by generating evenmore intentionally diverse
instances. Furthermore, the outlier methods we have considered, apart from iForest,
use distances and densities which are computed using numerical features. As such, we
converted the non-numeric attributes to numeric in our analysis. Another avenue of
research is to expand the instance space to use datasets with non-numeric attributes.

The instance space methodology has been studied in other applications such as
time series forecasting (Kang et al. 2017) and classification (Muñoz et al. 2018).
As part of the project MATILDA (Smith-Miles 2019), a comprehensive set of tools
to support instance space analysis is available at https://matilda.unimelb.edu.au/. All
meta-data and code to reproduce the results presented in this paper are available
for download at https://matilda.unimelb.edu.au/matilda/problems/learning/anomaly_
detection, enabling this study to be expanded over time as new outlier detection algo-
rithms are proposed.

Supplementary Material

R package outselect This package contains the functionality to reproduce graphs and
computation in this manuscript, apart from the instance space generation.
Instance space scripts The code used for instance space analysis is available at the
GitHub repository Muñoz (2019).
Datasets Datasets are available at Kandanaarachchi et al. (2019b).
Scripts The script Supp_Mat_1.R contains the R code that uses outselect in Sections 2
and 3. The script Supp_Mat_2.R contains the R code for Section 2, using area under
the pre cision recall curve instead of area under ROC.
Other R-packages We have used the following R-packages either in this paper or
within the package outselect: randomForest (Liaw andWiener 2002), infotheo (Meyer
2014),moments (Komsta andNovomestky 2015), ks (Duong 2018), igraph (Csardi and
Nepusz 2006), e1071 (Meyer et al. 2018), ggplot2 (Wickham 2016), quantmod (Ryan
and Ulrich 2018), dbscan (Hahsler and Piekenbrock 2018), FNN (Beygelzimer et al.
2018), cluster (Maechler et al. 2018), lme4 (Bates et al. 2015), reshape and reshape2
(Wickham 2007), multcomp (Hothorn et al. 2008), tsutils (Kourentzes 2019), visreg

123

https://matilda.unimelb.edu.au/
https://matilda.unimelb.edu.au/matilda/problems/learning/anomaly_detection
https://matilda.unimelb.edu.au/matilda/problems/learning/anomaly_detection

352 S. Kandanaarachchi et al.

(Breheny and Burchett 2017), latex2exp (Meschiari 2015) and pROC (Robin et al.
2011).

Acknowledgements Funding was provided by the Australian Research Council through the Australian
Laureate Fellowship FL140100012, and Linkage Project LP160101885. This research was supported in
part by the Monash eResearch Centre and eSolutions-Research Support Services through the MonARCH
HPC Cluster.

References

Achtert E, Kriegel H-P, Zimek A (2008) Elki: a software system for evaluation of subspace clustering
algorithms. In: International conference on scientific and statistical database management. Springer,
pp 580–585

Angiulli F, Pizzuti C (2002) Fast outlier detection in high dimensional spaces. In: European conference on
principles of data mining and knowledge discovery. Springer, pp 15–27

Barnett V, Lewis T (1974) Outliers in statistical data. Wiley, Hoboken
Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat

Softw 67(1):1–48
Beygelzimer A, Kakadet S, Langford J, Arya S, Mount D, Li S (2018) FNN: Fast nearest neighbor search

algorithms and applications. R package version 1.1.2.2. https://CRAN.R-project.org/package=FNN
Billor N, Hadi AS, Velleman PF (2000) Bacon: blocked adaptive computationally efficient outlier nomina-

tors. Comput Stat Data Anal 34(3):279–298
Bischl B, Mersmann O, Trautmann H, Preuß M (2012) Algorithm selection based on exploratory landscape

analysis and cost-sensitive learning. In: Proceedings of the 14th annual conference on genetic and
evolutionary computation. ACM, pp 313–320

Brazdil P, Giraud-Carrier C, Soares C, Vilalta R (2008)Metalearning: applications to data mining. Springer,
Berlin

Breheny P, Burchett W (2017) Visualization of regression models using visreg. R J 9(2):56–71
Breunig MM, Kriegel H-P, Ng RT, Sander J (2000) LOF: identifying density-based local outliers. In: ACM

sigmod record, vol 29. ACM, pp 93–104
Campos GO, Zimek A, Sander J, Campello RJ, Micenková B, Schubert E, Assent I, Houle ME (2016) On

the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study. Data Min
Knowl Discov 30(4):891–927

Craswell N (2009) Precision at n. Springer, Boston, pp 2127–2128
Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJ Complex

Syst 1695(5):1–9
Culberson JC (1998) On the futility of blind search: an algorithmic view of “no free lunch”. Evol Comput

6(2):109–127
Davis J, Goadrich M (2006) The relationship between Precision–Recall and ROC curves. In: Proceedings

of the 23rd international conference on machine learning. ACM, pp 233–240
Duong T (2018) ks: Kernel smoothing. R package version 1.11.3. https://CRAN.R-project.org/package=ks
Emmott A, Das S, Dietterich T, Fern A, Wong W-K (2015) A meta-analysis of the anomaly detection

problem. ArXiv preprint arXiv:1503.01158
Emmott AF, Das S, Dietterich T, Fern A, Wong W-K (2013) Systematic construction of anomaly detection

benchmarks from real data. In: Proceedings of the ACM SIGKDD workshop on outlier detection and
description. ACM, pp 16–21

Goix N (2016) How to evaluate the quality of unsupervised anomaly detection algorithms? arXiv preprint
arXiv:1607.01152

Goldstein M, Uchida S (2016) A comparative evaluation of unsupervised anomaly detection algorithms for
multivariate data. PLoS ONE 11(4):e0152173

Hahsler M, Piekenbrock M (2018) dbscan: Density based clustering of applications with noise (DBSCAN)
and related algorithms. R package version 1.1-3. https://CRAN.R-project.org/package=dbscan

Hautamaki V, Karkkainen I, Franti P (2004) Outlier detection using k-nearest neighbour graph. In: Pro-
ceedings of the 17th international conference on pattern recognition, ICPR 2004, vol 3. IEEE, pp
430–433

123

https://CRAN.R-project.org/package=FNN
https://CRAN.R-project.org/package=ks
http://arxiv.org/abs/1503.01158
http://arxiv.org/abs/1607.01152
https://CRAN.R-project.org/package=dbscan

On normalization and algorithm selection for outlier detection 353

Hawkins DM (1980) Identification of outliers, vol 11. Springer, Berlin
Ho Y-C, Pepyne DL (2002) Simple explanation of the no-free-lunch theorem and its implications. J Optim

Theory Appl 115(3):549–570
Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J

50(3):346–363
Hubert M, Van der Veeken S (2008) Outlier detection for skewed data. J Chemom 22(3–4):235–246
Igel C, Toussaint M (2005) A no-free-lunch theorem for non-uniform distributions of target functions. J

Math Modell Algorithms 3(4):313–322
Jin W, Tung AK, Han J, Wang W (2006) Ranking outliers using symmetric neighborhood relationship. In:

Pacific-Asia conference on knowledge discovery and data mining. Springer, pp 577–593
Kandanaarachchi S (2018) Outselect: algorithm selection for unsupervised outlier detection. R package

version 0.0.0.9000. https://github.com/sevvandi/outselect
Kandanaarachchi S, Munoz MA, Smith-Miles K (2019) Instance space analysis for unsupervised outlier

detection. In: Proceedings of the 1st workshop on evaluation and experimental design in data mining
and machine learning co-located with siam international conference on data mining (SDM 2019),
Calgary, Alberta, Canada, May 4th, 2019, pp 32–41. http://ceur-ws.org/Vol-2436/article_4.pdf

Kandanaarachchi S, Muñoz MA, Smith-Miles K, Hyndman R (2019) Datasets for outlier detection. https://
monash.figshare.com/articles/Datasets_12338_zip/7705127/4

Kang Y, Hyndman R, Smith-Miles K (2017) Visualising forecasting algorithm performance using time
series instance spaces. Int J Forecast 33(2):345–358

Komsta L, Novomestky F (2015) Moments: moments, cumulants, skewness, kurtosis and related tests. R
package version 0.14. https://CRAN.R-project.org/package=moments

Kourentzes N (2019) tsutils: time series exploration, modelling and forecasting. R package version 0.9.0.
https://CRAN.R-project.org/package=tsutils

Kriegel H-P, Kröger P, Schubert E, Zimek A (2009) LoOP: local outlier probabilities. In: Proceedings of
the 18th ACM conference on information and knowledge management. ACM, pp 1649–1652

Kriegel H-P, Schubert M, Zimek A (2008) Angle-based outlier detection in high-dimensional data. In:
Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data
mining. ACM, pp 444–452

Latecki LJ, Lazarevic A, Pokrajac D (2007) Outlier detection with kernel density functions. In: International
workshop on machine learning and data mining in pattern recognition. Springer, pp 61–75

Leigh C, Alsibai O, Hyndman RJ, Kandanaarachchi S, King OC, McGree JM, Neelamraju C, Strauss J,
Talagala PD, Turner RD et al (2019) A framework for automated anomaly detection in high frequency
water-quality data from in situ sensors. Sci Total Environ 664:885–898

Leyton-BrownK,NudelmanE,AndrewG,McFadden J, ShohamY(2003)Aportfolio approach to algorithm
selection. In: 2003 International joint conference on artificial intelligence (IJCAI), vol 3. pp 1542–1543

Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2(3):18–22
Liu FT (2009) Isolationforest: Isolation forest. R package version 0.0-26/r4. https://R-Forge.R-project.org/

projects/iforest/
Liu FT, Ting KM, Zhou Z-H (2008) Isolation forest. In: 2008 Eighth IEEE international conference on data

mining. IEEE, pp 413–422
Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2018) Cluster: cluster analysis basics and

extensions. R package version 2.0.7-1
Meschiari S (2015) latex2exp: Use LaTeX expressions in plots. R package version 0.4.0. https://CRAN.R-

project.org/package=latex2exp
Meyer D, Dimitriadou E, Hornik K,Weingessel A, Leisch F (2018) e1071:Misc functions of the department

of statistics, probability theory group (formerly: E1071), TU Wien. R package version 1.7-0. https://
CRAN.R-project.org/package=e1071

Meyer PE (2014) Infotheo: information-theoretic measures. R package version 1.2.0. https://CRAN.R-
project.org/package=infotheo

MuñozMA (2019) Instance space analysis: a toolkit for the assessment of algorithmic power. https://github.
com/andremun/InstanceSpace

Muñoz MA, Villanova L, Baatar D, Smith-Miles K (2018) Instance spaces for machine learning classifica-
tion. Mach Learn 107(1):109–147

Peng Y, Flach PA, Soares C, Brazdil P (2002) Improved dataset characterisation for meta-learning. In:
International conference on discovery science. Springer, pp 141–152

123

https://github.com/sevvandi/outselect
http://ceur-ws.org/Vol-2436/article_4.pdf
https://monash.figshare.com/articles/Datasets_12338_zip/7705127/4
https://monash.figshare.com/articles/Datasets_12338_zip/7705127/4
https://CRAN.R-project.org/package=moments
https://CRAN.R-project.org/package=tsutils
https://R-Forge.R-project.org/projects/iforest/
https://R-Forge.R-project.org/projects/iforest/
https://CRAN.R-project.org/package=latex2exp
https://CRAN.R-project.org/package=latex2exp
https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=infotheo
https://CRAN.R-project.org/package=infotheo
https://github.com/andremun/InstanceSpace
https://github.com/andremun/InstanceSpace

354 S. Kandanaarachchi et al.

Pfahringer B, Bensusan H, Giraud-Carrier CG (2000) Meta-learning by landmarking various learning
algorithms. In: International conference on machine learning (ICML), pp 743–750

Ramaswamy S, Rastogi R, Shim K (2000) Efficient algorithms for mining outliers from large data sets. In:
ACM sigmod record, vol 29. ACM, pp 427–438

Rice J (1976) The algorithm selection problem. In: Advances in computers, vol 15. Elsevier, pp 65–118
Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M (2011) pROC: an open-source

package for R and S+ to analyze and compare ROC curves. BMC Bioinform 12:77
Rousseeuw PJ, Hubert M (2017) Anomaly detection by robust statistics. Wiley Interdiscip Rev Data Min

Knowl Discov 8:e1236
Ryan JA, Ulrich JM (2018) quantmod: Quantitative financial modelling framework. R package version

0.4-13. https://CRAN.R-project.org/package=quantmod
Schubert E, Zimek A, Kriegel H-P (2014a) Generalized outlier detection with flexible kernel density esti-

mates. In: Proceedings of the 2014 SIAM international conference on data mining. SIAM, pp 542–550
Schubert E, Zimek A, Kriegel H-P (2014b) ‘Local outlier detection reconsidered: a generalized view on

locality with applications to spatial, video, and network outlier detection’. Data Min Knowl Discov
28(1):190–237

Smith-Miles K (2019) MATILDA: melbourne algorithm test instance library with data analytics. https://
matilda.unimelb.edu.au

Smith-Miles KA (2009) Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM
Comput Surv (CSUR) 41(1):6

Smith-MilesK,BaatarD,WrefordB, LewisR (2014) Towards objectivemeasures of algorithmperformance
across instance space. Comput Oper Res 45:12–24

Smith-Miles K, Bowly S (2015) Generating new test instances by evolving in instance space. Comput Oper
Res 63:102–113

Smith-Miles K, Tan TT (2012) Measuring algorithm footprints in instance space. In: 2012 IEEE congress
on evolutionary computation. IEEE, pp 3446–3453

Talagala PD, Hyndman RJ, Smith-Miles K, Kandanaarachchi S, Munoz MA (2019) Anomaly detection
in streaming nonstationary temporal data. J Comput Graph Stat. https://doi.org/10.1080/10618600.
2019.1617160

Tang J, Chen Z, Fu AW-C, Cheung DW (2002) Enhancing effectiveness of outlier detections for low density
patterns. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, pp 535–548

Wickham H (2007) Reshaping data with the reshape package. J Stat Softw 21(12):1–20
Wickham H (2016) ggplot2: Elegant graphics for data analysis. Springer, New York. http://ggplot2.org
Wilkinson L (2018) Visualizing big data outliers through distributed aggregation. IEEE Trans Vis Comput

Graph 24(1):256–266
Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evolut Comput

1(1):67–82
Wolpert DH, Macready WG et al (1995) No free lunch theorems for search. Technical report, SFI-TR-95-

02-010, Santa Fe Institute
Zhang E, Zhang Y (2009) Average precision. In: Encyclopedia of database systems. Springer, Berlin, pp

192–193
Zhang K, Hutter M, Jin H (2009) A new local distance-based outlier detection approach for scattered

real-world data. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, pp
813–822

Zimek A, Schubert E, Kriegel H-P (2012) A survey on unsupervised outlier detection in high-dimensional
numerical data. Stat Anal Data Min ASA Data Sci J 5(5):363–387

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://CRAN.R-project.org/package=quantmod
https://matilda.unimelb.edu.au
https://matilda.unimelb.edu.au
https://doi.org/10.1080/10618600.2019.1617160
https://doi.org/10.1080/10618600.2019.1617160
http://ggplot2.org

	On normalization and algorithm selection for unsupervised outlier detection
	Abstract
	1 Introduction
	2 Impact of normalization on outlier detection
	2.1 Mathematical analysis
	2.1.1 Nearest neighbors
	2.1.2 Density computations

	2.2 Experimental evidence of impact of normalization
	2.2.1 Datasets
	2.2.2 Outlier detection methods
	2.2.3 Evaluation metric
	2.2.4 Other experimental settings
	2.2.5 Difficulty and diversity of instances

	2.3 Hypothesis testing
	2.3.1 Does normalizing achieve better results?
	2.3.2 Mixed models

	2.4 Preferred normalization methods
	2.4.1 Possible conditions for min–max suitability

	2.5 Sensitivity to normalization

	3 Instance space analysis
	3.1 Features
	3.2 Predicting sensitivity to normalization
	3.3 Constructing an outlier detection instance space
	3.4 Footprint analysis of algorithm strengths and weaknesses
	3.5 Automated algorithm selection in the instance space

	4 Conclusions
	Supplementary Material

	Acknowledgements
	References

