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Abstract

In this paper we present a novel method for finding unknown parameters for an
unknown morphogen. We postulate the existence of an unknown morphogen in a
given three-dimensional domain due to the spontaneous arrangement of a down-
stream species on the domain boundary for which data is known. Assuming a modified
Helmbholtz model for the morphogen and that it is produced from a single source in the
domain, our method accurately estimates the source location and other model param-
eters. Notably, our method does not require the forward solution of the model to be
computed which can often be a challenge for three-dimensional PDE model parameter
fitting. Instead, an extension is made from the problem domain to an infinite domain
and the analytic nature of the fundamental solution is exploited. We explore in this
manuscript strategies for best conditioning the problem and rigorously explore the
accuracy of the method on two test problems. Our tests focus on the effect of source
location on accuracy but also the robustness of the algorithm to experimental noise.
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1 Introduction

The distribution of morphogens in space and time are the key determining factor
for a wide array of morphological patterning and developmental programs in biology
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(Tabata and Takei 2004). The ubiquity with which morphogen distributions are applied
in biological processes cannot be overstated. Morphogen distributions are often associ-
ated with cellular responses to extracellular chemical gradients (Gurdon and Bourillot
2001). However, in a broad sense, morphogens are commonly also applied to models
with a variety of different scales and contexts—from intracellular chemical systems
(Howard 2012) to resources on ecological scales (Tilman 1984). The majority of stud-
ies focus on the effects of the morphogen rather than the morphogen itself. It is assumed
in most models that the properties of the morphogen are known so that predictions
can be made about downstream consequences. In cases where it is only the conse-
quences that are known, determining the properties of the unknown morphogen can
be challenging. It is this latter challenge that we address in this manuscript. That is, we
assume a morphogen exists but its parameters are unknown. We wish to determine—or
at least estimate—these parameters based on the assumption of a simple morphogen
model and using only observed downstream data.

We focus our attention on one of the most common mechanisms for morphogen
gradient formation in biology—Ilinear diffusion and decay (Wartlick et al. 2009). We
will make a pseudo-steady state assumption and thus are interested in determining
the parameters and source of a modified Helmholtz model using downstream data.
Specifically, we consider a source of morphogen inside some domain 2. Nothing
about this morphogen is known; its source location, production rate, degradation rate
or diffusion constant. We assume that the morphogen is absorbed by the boundary 92
and promotes the accumulation of a downstream variable A on the boundary that is
measureable by experiment. Examples of systems in biology where this would directly
apply include parameterisation of recruiting or substrate proteins at cell membranes
(Remorino 2017) or long range signalling molecules which are absorbed/detected at
the boundary between tissues or at cell membranes (Camley 2018). In the former
case, A would be the recruited molecular species and in the latter case A would be a
measure of cellular responses to the spatially dependent signal such as proliferation,
migration, chemical secretion, morphological changes etc. Here, our motivation is
the determination of properties of an upstream promoter of actin formation which
forms the actin cap within the cortex of oocytes. These actin caps (A) drive polar body
formation during meiosis events but it is unknown what initially causes the caps to form
(Dehapiot et al. 2013). This work constitutes an initial step forward in addressing this
major biological problem. In biological applications, the data for the measurable A is
often limited by the technology required to observe it. In three-dimensional problems,
it is common in biomedical experiments for data to be presented in slices in the form
of stacked 2D images. This constraint poses a challenge for accurate quadrature of the
data where it is required.

There is a large body of work dedicated to solving inverse problems. In the case
of inverse problems involving linear PDE models, the forward problem is usually a
uniquely solvable and well-posed problem of finding u when Lgu = f where Ly
is some linear partial differential operator that may or may not depend on unknown
parameters 6. The model is closed with some boundary conditions which may also
depend on unknown parameters and forcing functions. The task of an inverse problem
is to instead find any unknown parameters or forcing functions of the model (e.g.
6 or f) when only data A determined by the forward solution u = ug, r is known,
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for example with some known relationship A = A(u). Of these types of inverse
problems, the majority deals with finding forcing functions such as f assuming that the
parameters which define Lg are known (for example—source identification problems
(Yan et al. 2008), boundary parameter identification problems (Fasino and Inglese
1999), or inverse geometric problems where the unknown is the boundary manifold
itself Marin and Karageorghis 2009). The strategy that is most commonly employed
to solve these problems is to find the unknowns which minimize a measure of the
EITorT €9 f = |A — A(ug, )| (Stuart 2010). This is often a least squares optimisation
(minimisation of 63) , where the sum is taken over the observed data). This solution
methodology (direct fitting) has two major drawbacks. The first is that for each iteration
of the optimisation step (which evaluates the error ¢ r of a trial set of unknowns),
the forward solution of the model with the trial parameters u = ug s is required.
When numerical methods are also required to solve the forward PDE model, this can
be hugely computationally intensive (especially in 3D and/or irregular domains). The
second major drawback is that inverse problems like this are often ill-posed according
to the criteria of Hadamard (1923). Research into direct fitting methods such as these
focus on addressing these two issues either by improving the optimisation step or
introducing regularisation techniques (Engl et al. 1996).

Some inverse problem methods, such as the method of fundamental solutions
(MFS), employ known fundamental solutions to avoid the problem of having to iterate
the forward solution (Karageorghis et al. 2010). The MFS introduces sources outside
of the domain in order that boundary conditions are satisfied. For example, the method
of images for the heat equation is an example of an MFS. Since the fundamental solu-
tions are known, the PDE does not have to be solved. Instead, the sources that lie
outside of the domain introduce new unknowns.

In this manuscript, we explore a novel method for inverting the modified Helmholtz
model with unknown parameters. The model is, in part, loosely inspired by MFS. We
use fundamental solutions so that the forward solution to the model is not required in
the optimisation step. Whilst we do not introduce new unknown parameters into the
optimisation step, our method comes at the cost of having to integrate data numerically
over the domain boundary. This can introduce complications which are thoroughly
explored in this manuscript. We present strategies for alleviating these complications. It
is not within the scope of this paper to discuss or compare methodologies for quadrature
or optimisation as these are, in themselves, the topic of whole fields of study. We state
the novel method as a general strategy and in examples use simple subalgorithms for
surface quadrature and optimisation suitable to the context. We use the method to
solve for diffusion, decay and production parameters of a morphogen u as well as
its source location based on data A (the flux of morphogen) on the boundary of the
domain. Our focus is on identifying the parameters of the morphogen itself and we
assume for simplicity that the source of morphogen is concentrated to a single—albeit
unknown—Ilocation in space so that the problem reduces to finding three coordinates in
space as well as parameters such as production rate and decay rate. To help motivate
our methodology, after presenting the problem statement and introducing the test
problems, we demonstrate the infeasibility of using direct fitting methods using a
black box optimisation solver to solve this problem. The strength of our method lies
in the fact that the forward PDE model never has to be solved. We are therefore not

@ Springer



M. B. Flegg et al.

concerned with computational efficiency but rather we rigorously test the accuracy
of our method against the test problems. Since the posedness of this inverse problem
is solution-dependent, we investigate the effect of ‘true’ solutions on accuracy of the
method. We also investigate for the more challenging test problem the effect of noise
in the data (due to, for example, experimental, environmental or instrumentation error)
on the estimated parameters.

2 Mathematical foundation

2.1 Problem statement

Consider a morphogen (concentration U) being produced at an unknown location rg
inside some compact domain with piecewise smooth boundary 2 at an unknown rate
%0 > 0. We shall focus in three dimensional space but outline the theory as a general
strategy. This morphogen decays at an unknown rate Ko > 0 and diffuses with an
unknown diffusion constant Dy until it interacts with the boundary of the domain 92
at which point itis absorbed and turned into a new chemical (concentration A) which is
bound to the boundary of the domain. Assuming a balance between production and lin-
eardecay of Aonthe boundary, in steady state, A = —vVU -ii for some proportionality
constant v. Here, 1 is the outward-facing normal on 352 and V is the spatial gradient.

We assume that this morphogen reaches steady state quickly and that a static dis-
tribution is established. The steady state equation for U is the modified Helmholtz
equation

—Do AU(r) +&2U(r) = ko83 (r —rp), 1€ 2, 1)
Ur)=0, reas, )

where 83 is the three-dimensional Dirac delta distribution. The number of unknown

parameters is reduced by non-dimensionalising. We define Kg = k§L2 / D, A =

vioL2/D,U = UL? and A = AL*/v, where L is the characteristic spatial scale of
£2 and is used to nondimensionalise space. The dimensionless model is

— AU(r) +k3U () = 2083 (r —10), T €2, A3)
Ur)=0, reis. “4)

The boundary-bound species is given in terms of U,

Ar)=—-VU(r)-n, reoif. ®)
In (3)-(5), £2 has been normalised into £2 to have order 1 size. The number of unknown
parameters in the model (3)—(5) is 5; kg, Ao and the three coordinates associated with
ro. Whilst it is possible to scale out the parameter Ao by dividing through U and

A, we have not done this explicitly here in the problem statement because Aq is an
unknown constant. On the other hand, we have scaled Dy explicitly out of the problem
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to avoid the fact that any solution to the inverse problem of finding all of the unknown
parameters offers an infinite number of solutions simply by multiplication of Do, Ko
and X by an arbitrary constant. This is due to the arbitrariness of the constant v. We
therefore attempt to find a unique solution (where a unique solution exists) which is
normalised with respect to Dy.

The problem that we address in this manuscript is an inverse problem but also a
parameter fitting problem. How should the unknown parameters of (3)—(5), ko, Ao
and rq, be determined given data in the form of A(r) as defined by (5) distributed
over 052 ? Whilst we will discuss this problem with sufficient generality that it may be
extended to general data formats, we will focus most of our attention on solving this
problem in cases where data for A is known in the form of regular or sliced 3D data
and we also acknowledge that this strategy requires careful consideration depending
on the geometry of §2 and availability of data A. Breaking 3D volumes up into 2D
regular slices is a common format for biomedical 3D image data (MRI, histology, etc).
We define sliced data as data which is known at high resolution ‘pixels’ on parallel
planes separated by some finite (and usually significant) distance /. In general, we
denote that A(r) is known only at discrete points/pixels r = rp, p = 1,..., Np,

on the surface 352. We will use the notation A » = A(t)) and A= { A }N” For
the remainder of this manuscript, the overbar notation indicates the association with
either (1) the discrete numerical data A (rather than the underlying continuous data
A) or (2) a discrete numerical/computational analogue of the indicated continuous
function/operation acting upon this data. It is important to remember that operations
with an overbar are numerical approximate operations and are subject to numerical
error.

We will demonstrate our numerical algorithm on two main test problems which
are designed so that the data may be generated exactly by solving analytically the
forward problem (3)—(5) with known parameters. These test problems are outlined in
the following two subsections.

2.1.1 Test problem 1: the unit cube

To demonstrate the accuracy of our proposed algorithm on the simplest domain, Test
problem 1 will make use of the special case 2 = (—1/2, 1/2)3 = C, a unit cube
centred at the origin.

For this proof-of-concept test problem, we will use a simple regular lattice on which
raw data A is known. That is, for each of the six faces of the cube, the square surface
is subdivided into Ny x N regular squares and A p = A(rp) is evaluated at r), for
p = ,ON{; 2: the centres of each of these small squares. For Test problem 1,
we naturally use Cartesian coordinates r = (x, y, z) (with all relevant indices and
markings associated with their corresponding position vector).

Test problem 1 also has an analytically-tractable forward solution which we use to
generate test data. The solution to (3)—(4) can be found using the method of images:

o0 o0

Sri
U(r)—)\o Z Z Z sls]skexp K0| I‘,,],k|)7 (6)

4 ‘(Sr, 7, k‘

i=—00 j=—00 k=—00
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where 8r; j x =T — T j i, S, is —1 if m is odd and 1 if m is even and, in Cartesian
coordinates, r; j x = (i, j, k) + (i X0, §; Y0, Sx20). The summation in (6) is taken over
all combinations of integer indices i, j, and k from —oo to oo, however, for practical
computation and noting that the summand decays rapidly whenr € C as |i|, | j|, and
|k| become large, this summation is truncated (we found truncating at i, j, k = 20
to be ample for very high accuracy—even when k9 = 0). The flux A can be found
directly using (5) and (6)

OO A
(kolox; j k| + D)(Or; k- 1)
A(r) =X E 5iS Sk ivj : ij exp(—koldri s (7)
(ijb)=—00 6%, j k|

where 1 is the outward-facing normal to C and depends on the face of dC on which
r lies.

2.1.2 Test problem 2: the unit ball

Test problem 2 is the special case where §2 = B, a unit ball centred at the origin.
As a sphere presents a significantly more complex computational challenge, we shall
dedicate the bulk of the analysis of our proposed algorithm on this problem, a compu-
tational analysis which thoroughly tests for accuracy and robustness. There are three
reasons for choosing this test problem: (1) the forward problem of calculating A given
a set of parameters {xq, Ao, o} has an analytic solution so that our results may be
compared with known solutions, (2) our biological motivation for the methodology
presented in this manuscript is as a pilot study for a more ambitious task of finding
multiple point sources of morphogen within (roughly) spherical biological cells using
experimental 2D slice images and (3) more generally, spherical/rounded domains are
common in biological applications involving morphogens (tumours, cells, developing
tissues, etc.).

For Test problem 2, we will naturally use spherical coordinates. All position vectors
r are represented with coordinates (r, ¢, #) where r = |r| and ¢ and 6 are the polar
and azimuthal angles of r, respectively (coordinates for position vectors with indices
and other markings also have these associated markings). We consider experimental
data A to be provided on the boundary of a series of N 2D circular images of ‘slices’
through the volume 2. That is, we consider that known flux data is A p = A(rp)
forp =1,..., N;Ng on 0B where Ny > N, is the nominally large number of data
points around the circular circumference of each image. We shall also use the notation
r, =r; jforalli =1,..., N;andallj =1, ..., Ng corresponding to the ith slice and
Jjthazimuthal data point. Slices are evenly spaced from pole to pole of the ball (the poles
are defined by the orientation of the slices) whilst the Ny data points in the azimuthal
direction are evenly spaced (albeit at a much higher resolution) around the 2D disk
made by each slice. That is, z; = cos(¢;) = —1, =1 +2/(N, — 1), =1 +4/(N, —
1), ..., 1 respectively and 9_]- = 0,27 /Nyp,4m /Ny, ..., 2w (Ng — 1)/ Ng respectively.
Presenting the data A in this (sliced) way on 82 significantly complicates defining
quadrature rules which accurately approximate integrals over the surface, however this
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(a) Z

Fig. 1 Diagrams of test problem geometries §2 for a Test problem 1 and b test problem 2. Indicated on
each diagram is the position of a known source rq and distribution of data on the surface 9£2. At each
point rp, the data A p = A(rp) is simulated by Egs. (7) and (9) respectively. The problem addressed in this
manuscript is how can one find ry and the unknown parameters «q and Aq given only A at the points F p

is a challenge that is common when biomedical imaging data is provided for modelling
purposes.

It is possible to derive the solution to (3)—(4) by separation of variables in spherical
coordinates, for Test problem 2:

Ur) = Z—A >
=0

Q2r+1) (ll(K0r<)k1 (kors) — 0 )ll(Kor)ll(Koro)> Py (cosap), (8)

ki(

i1 (ko)
where . = min(r, o), r~ = max(r, ro) and cos ¢ is the cosine of the angle between
r and ro. The functions Py, i; and k; are the /th Legendre polynomial and /th order
modified spherical Bessel functions of the first and second kind, respectively. The flux
A can be computed directly from (5) and (8).

A(r) = Z Ql+1) ”((0 ‘))) P (cos ap) . ©9)

We generate test data A p = A(r)) for which we know the true parameters {«o, Ao, Io}
using (9). Figure 1 is a diagram of the domains for both Test problem 1 and 2 together
with their notation.

2.1.3 Black box optimisation method
We used a variant of the Covariance Matrix Adaptation Evolutionary Strategy (CMA-

ES) algorithm to find a numerical solution to the inverse problem. CMA-ES is a
stochastic, population-based search algorithm for R” spaces. At each iteration step,
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new solutions are generated by sampling a multivariate normal distribution A/ (., C),
where u is the current solution and C is a n x n covariance matrix. The best solutions
are used to update the distribution for the next iteration. In particular, C is adapted in
such a way that its eigenvectors align with the direction of the gradient. As such, CMA-
ES can be considered a stochastic equivalent to a quasi-Newton method, because C
fills the same role of the inverse Hessian of retaining information about the curvature
of the space (Hansen and Ostermeier 2001).

The variant employed in this paper, known as BIPOP-CMA-ES, uses randomized
restarts whenever the method converges to a local optima (Hansen 2009). At each
restart, the algorithm uses one of two regimes to modify the size of the population of
solutions, aiming to improve its global or local search capabilities. This approach has
been shown to be outperform several state-of-the-art algorithms on poorly conditioned
non-separable functions (Hansen et al. 2010). As such, this algorithm is a suitable
candidate for tackling our inverse fitting problem.

2.2 Computational intractability of common parameter fitting techniques

At first glance, the closed-form solutions to the forward problem (6) and (8) respec-
tively suggests an obvious method to determine the parameters rp, Ao and xo given
A, = A(r)p).

For example, a brute force least-squares optimisation could take the form of

Np

. _ ~ 2
{k0, 20, ro} = argmin Z (AEpik, 2, p) — Ap)~,
{rc. 2, p} p=1

where A(rp; «, A, p) are the actin values predicted by the model (5) at the pixel
points rp,. Alternatively, Bayesian methods have been used to parameterise dynamical
systems models in biology, including Approximate Bayesian Computation (Toni et al.
2009) however these need to be used with care for deterministic models (Alahmadi
et al. 2020). The common bottleneck for all of these methods is that they require
the repeated computation of A(rp; «, A, p), data predicted by the model given the 5
parameters («, A and 3 coordinates of p). This is not practical for the class of problems
considered in this paper.

The obvious method to finding A(r,; «, A, p) is to solve the PDE (3) directly. This
is very computationally inefficient, especially in 3D. Alternatively, one can simulate
trajectories of the SDE which has a Fokker—Planck equation given by the modified
Helmholtz model to estimate A(F,; «, A, p). That is, one starts with many initial
random walkers starting at p. Each walker moves a distance ~/63£ (where & ~ A/(0, 1)
is a unit variance normally distributed random number with mean zero) in a random
direction (in 3D) and has a probability « § of decay for each walking step. The parameter
8 should be chosen to be small for improved accuracy. When the walkers are incident on
052 they are removed and the probability density of walkers on 952 is an approximation
for A(rp; «, A, p)/A. In either case, evaluating A(r,; k, A, p) is very costly in most
situations. In the test examples in this manuscript, we use special cases of £2 where

@ Springer



Parameter estimation for a point-source diffusion-decay...

A(r,; k, A, p) has analytic forms and even in these cases, repeated evaluation is costly
when using direct fitting methods.

As a demonstration of the computational cost of solving the problem when
A(ry; Kk, A, p) is repeatedly required, we shall present the least-squares fitting of data
to the model A(Tp; «, A, p) using a state-of-the-art black-box optimisation technique
described in Sect. 2.1.3. This black-box optimisation algorithm is also as part of our
method which is the focus of the manuscript but in that case is used on a different
optimisation problem.

Since the least-squares fitting method will converge depending on the initial guess,
we ran 30 instances of the optimisation process, from 30 different random initialisa-
tions (selected within a reasonable truncated subset of the constraints of the parameter
space). We ran this optimisation for demonstrative purposes only on Test problem
2 (2 = B), using data A generated by setting N. = 15, Ny = 150, ro = 0.8,
¢o =m/6,0) = /3, ko0 = /2 and A9 = 1. As the optimisation process works by
iteratively sampling the model outputs using updated parameter estimates which even-
tually converge on close approximations of the true parameter values, a large number
model output evaluations may be needed for a good approximations. We evaluate the
errors associated with a given set of parameters estimates by taking the absolute value
(Euclidean distance in the case of rg) of the difference between the estimate and the
true parameter. We then find the relative error by normalising the absolute error with
respect to the initial error averaged over the 30 iterations of the optimisation process
so that the mean of the initial relative errors for each parameter is 1.

In Fig. 2, we plot the mean (and interquartile range) over the 30 reinitialisations
of the relative error in each of the three parameters «, A and p as a function of the
cumulative number of times the complete model data A(rp; «, A, p) was computed
(that is, the number of times a solution to (3)—(5) needs to be computed). As can be seen
clearly from Fig. 2, there is a substantial period of exploration of the parameter space.
Between approximately 1000 and 20,000 solutions to (3)—(5) are required (depending
on the initial guess) for the optimisation process to explore the solution space before
converging towards the true value. Whilst the accuracy is eventually assured using this
algorithm the real cost of its use for this problem is the number of times the model
needs to be computed. For the test cases in this manuscript, this computation amounts
to evaluating large sums which have analytic expressions but these are special cases.
In the vast majority of real-world applications, each new model computation involves
the numerical solution of the full 3D model (3)—(5). In most cases, 20,000 model
solutions would be prohibitively costly from a computational perspective.

It should be noted that this is purely for motivational purposes only and whilst
other methods might improve on computational costs, these types of direct methods
are limited when calculation or estimation of A(rp; «, A, p) is difficult. Furthermore,
due to the ill-conditioned nature of this inverse problem, if A cannot be estimated with
extreme accuracy, large inaccuracies in the fitted parameters will result.

Our proposed method does not require the calculation of the forward problem at
all and therefore is not affected by the limitations of the direct methods. Instead, our
method assumes that the data A can be numerically integrated easily. Because the
limitations of our method and traditional direct methods are so different, they cannot
be easily compared and their suitability depends on the context of the problem.
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Fig. 2 The error associated with an estimated solution, normalised to the mean error of the initial guess,
of a standard least squares fit of model A(rp; k, A, p) to data A p as a function of the number of times the
forward model solutions A(rp; «, A, p) are evaluated. For each point, the interquartile range distributed
over 30 reinitialisations of the optimisation algorithm is presented. The normalised errors are plotted for
the parameters «, A and the source location. The first two of these parameters uses the absolute difference
to measure error where as the latter uses the Euclidean norm

Furthermore, even if a closed-form solution such as (9) is available, it may be dif-
ficult to compute model outputs, even when the parameters are known (or guessed).
For example in (9), since 0 < ryp < 1, it is possible to show that the series in (9)
converges but it may not be obvious where this series should be truncated and fur-
thermore, as more terms are taken, the quotient i; (koro) /i; (ko) may rapidly be subject
to substantial floating point errors and various asymptotic approximations need to be
used. In our case, in order to generate data, we use the asymptotic approximation
i1 (koro) /ir (ko) ~ ré for large [ to avoid floating point errors as / increases and trun-
cate the sum when the summand becomes insignificantly small (Paris 1984). We found
that [ = 20 is sufficiently high to truncate the sum except in cases where «p > 1 or
0 < (1 —rg) < 1. Since both of these cases result in highly localised § function-like
distributions of A, we truncate our solution space to exclude such extremes. The posed-
ness of the problem depends on both the domain £2 and the true values {kq, Ag, I'o}
from which A is generated. For example, whilst the example used to generate Fig. 2 has
aclearly unique optimal solution (towards which all 30 initialisations converge) this is
only because k is not too large or small, ¢ is not near the extremes, etc. In other situa-
tions, the problem may be more ill-posed which will effect convergence and accuracy.
In fact, there are cases in which A is not uniquely defined by model parameters. For
example, for Test problem 2, if rg is at the origin, Eq. (9) gives A = Lo/ (4mip(ko)), a
constant at all points on d B and thus there are an infinite number of solutions for the
parameter pair {kq, Ao} (despite that in each solution ry is at the origin). As we shall
see later and as it was alluded to in Fig. 2, the position vector ro can be consistently
determined with more accuracy than either Ao or k.

In this manuscript, we will propose a method for solving this inverse fitting problem
without needing to solve the forward modified Helmholtz model (3), irrespective of the
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geometry of £2. In the next section we outline some of the mathematical background
required for this algorithm.

2.3 Theory in the limit of continuous data

Consider the closed modified Helmholtz model defined by (3)—(5) with a compact
domain §2 embedded in the Euclidean three-dimensional space R3 (2 ¢ R?) with
piecewise smooth boundary 92 and unknown parameters xo € [0, 00), Ag € (0, 00)
and ro € £2, where 2 is the closure of the set £2.

Consider an extension of the domain from £2 to R3. At the same time, to simplify
working, we define the normalised solution # = U /A¢ and the normalised flux ¢ =
A/Ao. We extend the domain such that the solution # remains continuous everywhere
and also satisfies the PDE (3) outside of £2.

— Au(r) + K2u(r) =8 (r —rg), T e (R3\39) : (10)
u(r) =0, reads2. (11

Note that this extension to R seems uninteresting at this point since u = 0 forr ¢ £2
due to the fact the only source is inside the Dirichlet boundary condition 2. Next, we
define the (free) Green’s function for the system in R? using an unknown parameter
k € [0, 00) (not necessarily equal to k) as the solution to

—AG(r;¥) +kK2G (r;¥) =83 —1), reR’, reR’, (12)

which can be computed analytically and is well-known as the fundamental solution
of the modified Helmholtz equation:

exp (—« |r—r'|)

G(r;r') = (13)

4 Ir — 1’|

We define the integral transform 7, which takes a(r) defined onr € 952 and generates
a new function 7, (r; @) defined on r € R3

Te(r;a) = # Ge(r;r)a(r) dS’, reR’, (14)
002

where the integral is taken over the surface 92 with respect to the coordinates of r’.
Using (5) and the divergence theorem,

To(r;a) = —/// V' (Ge(e; ¥)Vu()) dv/, (15)
2
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where V'’ is the gradient taken with respect to coordinates of r’ and the integral is taken
overr’ € £2. The integrand in (15) can be rewritten:

T (r;a) = /// V' (u@)V'Gi(r; ) + (16)
1?)
— Ge(r; ) AN u@) +u@@) AG(r;¥)dV’, (17)

where A’ is the Laplacian with respect to coordinates of r/, and we note that
AG,(r;r) = NG, (r;r') due to labelling symmetry in (13). Of the three terms
in the integrand, the first integrates to zero after application of the divergence theo-
rem and noting (11). For the second and third terms, we can substitute (10) and (12)

respectively
Lo = [ o) (8¢ o) - Guw)
2
T u) (KZGK(I‘; ') — 83(r — r/)) av’ (18)
= G, (r: 1) — u(r) + (K2 - Kg) i(r: k), (19)
where

ur; ) = /// Ge(r;xHu(’) dv'. (20)
2

Since, by construction, u(r) = 0 for all r € R3\2, if r € R3\2 and x = «o,
(19) reduces to 7, (r; a) = G, (r; rg). This is important because G, has a succinct
analytical form (13) which is independent of the domain £2 and we expect this analytic
form for all points outside the domain £2. Using (13) and (19), for r € R3\£2, we
define the function f;

fr;a, k, p) =log(@nT(r;a)|r—p|) +«|r—p| (21)
_ [r — pl
=k (Ir — p| — |r —rp|) + log
Ir — 1o
(K2 — Kg) u(r; «)
+ log (l + W ) (22)

The function f is computed from a and parameter estimates x and p (21). What we
have shown here is that if the parameters match that of the model which generated the
dataa (k = kg and p = rg), f(r;a,k, p) =0 forall r ¢ £2. The function f has no
real biological significance. Roughly speaking it measures the difference between the
parameters « and p and their true values by its variation between different points r.

Importantly, a is unknown since the value of ¢, which is used to normalise the
known flux A, is unknown. Note however that since a = A /A, by the definitions (14)
and (21)
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fx; Ak, p) = f(r;a, k, p)+log(ho). (23)

That is, evaluating f using an unnormalised flux A and correct guesses k = k¢ and
o = rg returns log(Ao), a constant, for all r ¢ 2 irrespective of the morphology of
the domain £2. Thus, instead of fitting the data A to the model A which requires the
solution of a PDE model in 3D, we simply fit f(r; A, Kk, p) — log(A) = 0 using (21)
and (23). The cost of this simplification, however, is that it requires the numerical
computation of 7 (r; A) for some point(s) r ¢ £2 which is not as trivial as it may
seem and relies on the data A being collected in a manner which allows for accurate
quadrature. As we shall also see, accurate quadrature may be assisted by strategic
choices for r.

3 Computational method
3.1 Foundations of the inversion algorithm

Inspired by the result (22) and (23), the main strategy of our algorithm is to perform
the following constrained optimisation

N
{k0, Lo, ro} = argmin Z w; (f(ri; A, k, p) — log(1))?, (24)

{K,)L,,O} i=1
for weights wl/ and some chosen set of points r; ¢ 2,i=1,..., N, constrained by

k € [0,00), A € (0,00) and p € £2. Dealing with discrete data, in practice we are
only capable of computing

N

) - - 2
{ko, Ao, T} & etrgml? Z w; (f(ri; Ak, p) — log(k)) . (25)
A

In (25), we use the bar notation f to represent a numerical approximation to f utilising
numerical integration schemes in the transformation 7, (r; A) (in turn, a numerical
approximation of 7, (r; A) as defined by (14)—see Sect. 3.2);

fxi; Ak, p) =log (4n T (x;; A) |r; — pl) +x Ir; — pl. (26)

The choice of r; is, at least in principle, arbitrary but the best choice, in practice,
is not obvious. Since the domain is not one-dimensional, choosing r; in a regular
deterministic way with constant weights w! leads to biases in the evaluation of the
objective function depending on the location of p. That s, as p changes, so too does the
density of points r; as a function of distance |r — p| which appears in (26)—note that
T.(ri; A) is dependent only on |r; — p| near the optimum set of parameters [see (19)].
We will therefore choose r; in a random but constrained way (outlined in Sect. 3.3).
We ensure that the weights w; are dependent on r; according to their distance from p
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such that the weighting is independent of the density of points as a function of distance
from p. We first label each r; in order of closest to furthest from p and choose

dy —dj, i=1,
dv —dy-1, i=N, 27
di+1 —di—1, otherwise

Wi

2(dy —dy)

/
w; = Tiw; =

where d; = |r; — p|. Here, w; does not explicitly depend on r;. By using (27) we are
using the trapezoidal method to find the average value of the weighted summand as a
function of distance from p, thereby making the scheme as unbiased as possible due
to clustering of points r; a distance from an unknown point p. The weights w; will
be used to better condition the optimisation (25) against inaccurate objective function
minimums caused by numerical error in the calculation of f.

The optimisation (295) itself can, in principle, be performed using any number of
techniques but we use the BIPOP-CMS-ES algorithm described earlier in Sect. 2.2. In
the proceeding subsections we discuss two remaining outstanding issues that need to
be addressed in order to perform the optimisation (25) appropriately. These issues are;
how best to apply quadrature to the data A [see (14)] to calculate 'Z_} (r; A) (Sect. 3.2),
as well as the choice of the weights w;, and the choice of r; ¢ £2 to obtain the most
reliable parameter estimates (Sect. 3.3).

The summary of the inversion/fitting algorithm is as follows. Start with some com-
pact volume §2 and data A » which is assumed by the model to be the solution A to
(3)—(5) evaluated at data points r, € 92 for some unknown parameters ko, Ao and
ro. We can obtain a good approximation for the unknown parameters by taking the
following steps

1. Determine quadrature rules for accurate numerical integration over d2 using only
the points r,. For the two test problems in this manuscript, we discuss this in
Sect. 3.2.

2. Generate N points r; which lie outside of the volume 2. Care should be taken to
generate suitable points and a discussion of this can be found in Sect. 3.3. We find
that N = 30 is sufficiently large in most cases.

3. For a given guess of the parameters kg, Ao and r¢ (labelled «, A and p) evaluate the
cost/objective function [see (25)]. This objective function is constructed as follows

(a) Ateach point r; use the quadrature rule from Step 1 to calculate 7_}(1‘,-; A), a
numerical approximation to the transform described in (14).

(b) Calculate at each point r; the value of w; (f(ri; A, k, p) — log()»))2 where f
is defined in (26) and w; is discussed in Sect. 3.3.

(c) Arrange the points r; in order of smallest |r; — p| to largest and either use (27) to
change w; to w] and sum from i = 1 toi = N to obtain the objective function

found in (25) or simply find the average value of w; (f_(ri; Ak, p) — log()\))2
as a function of |r; — p| using a reliable integration technique [we use the
trapezoidal method to generate (27)].

4. Optimise the objective/cost function [see (25)] to find an approximation of the
parameters kg, Ao and ro. The landscape of the objective function in the parameter
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space may not be ‘nice’ and a sophisticated optimisation algorithm may be nec-
essary. The BIPOP-CMA-ES we use in this manuscript is commonly used when
no analytical expression is available for the objective function. This is the case
when considering a general domain morphology £2 and is the main reason we use
it here.

3.2 Calculation of 7, {A}
Performing the numerical transformation 7, based on (14) numerically and accurately
for use in f in (25) depends heavily on the format of the data.

In Test problem 1 (see Sect. 2.1.1), a regular square grid is used for the raw data on
052 and numerical integration can be achieved simply using a Riemann sum. Specifi-
cally,

- _ L -
To(r; A) = mZGK(r; t)A, reR’ (28)
s p:]

In Test problem 2 (see Sect. 2.1.2), the data is arranged in slices. In this case, it
makes sense to split the integration into its azimuthal and polar parts.

T A) = / e, & Dysing o, (29)
0
1
= / lfK(r, ¢'; A) d(cos ¢'), (30)
N
= Z W, (r, §; A), reR3, where 31
i=l1
—_ —_ 271 —_ —_ —_— —_ —_ —_
Ve(r, @' A) = /0 G (r; ¥ (0, ¢ )NAW@', ¢) db, (32)
Ny
2z =//n! I\ Acal L
=" "G ¥ (0}. $)AG;. ¢, (33)
No

where W; are weights associated with a chosen quadrature. Importantly, we emphasize
that quadrature on surfaces are a large field of study. Whilst general methods exist
(Reegeretal. 2016), we recommend that care should be taken in choosing a method that
is best for data provided. As always, an overbar indicates a numerical approximation
has been used. The numerical integral (32) can be done with a low order numerical
integration scheme since Ny is large. We found the Riemann sum (33) over each raw
data point on each slice sufficient for (32) however, in principle, this can be done in
other ways. The summation in (33) is taken over all data points in the slice with polar
angle ¢’. The numerical integration (30) requires a higher order scheme since N, may
be small. Using a trapezoidal rule for this integration (W; = W/* = 1/N_ ifi = 1 or
i = N otherwise W; = Witr = 2/N,) gives accurate results when 7, (r, ¢; A) is small
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near ¢ = 0 and ¢ = 7 (when the unknown source is not nearly aligned with the z-
axis). To improve robustness of our algorithm in these extreme cases, we instead apply
Gregory corrections to these weights W; = Witr + Wl.G. The Gregory corrections WiG
are calculated by performing forward and backward finite difference approximation
to the error terms of the Euler—Maclaurin formula (Bocher et al. 1994). Specifically,
we use weights W; corresponding to the order 6 Gregory formula as defined by Javed
and Trefethen (2015) and find that this gives accurate results in most (non- extreme)
circumstances. Such a rule, in principle, integrates the smooth function y, (r, ¢; A)
with an accuracy of O((2/N, )7) (Brass and Petras 2011; Hildebrand 1987). Note
that choosing a really large order for the Gregory corrections can lead to significant
numerical instability.

We have outlined here our quadrature rules for evaluating 7, [an approximation of
(14)] for each of our test problems, however for other geometries, suitable quadrature
rules should be carefully considered §2.

3.3 Choice of weights w; and sample pointsr; ¢ Q
We define the error €, associated with calculation of 7:
€c(r; A) = T (r; A) — T (r: A). (34)

Substitution of ’]_7( into the RHS objective function of (25) and using (26) gives

Zr,w, (fri: Ak, p) —logn)?

i=1
N M\ 2
I S PO €xris A) €
= E T w; (f(l‘z,A,K, p) — log(A) + T +(9<<7-7(> )) . (35)

We require therefore that |e, /7| < 1 for good approximation. The accuracy of the
optimisation is achieved with the use of a number of heuristically defined strategies
which ignore higher order terms in (35) and are outlined in the following subsections.

3.3.1 Constraining k from above and choosing r; sufficiently close to 8Q

Given the integrand in (14) and noting (13), if r; is either chosen too far from 92 or
« is large, 7, (r;; A) becomes vanishingly small and is subject to wild floating point
errors. In this situation the size of the term |¢, /7, | cannot be guaranteed. We therefore
constrain further our optimisation (25) to ‘reasonable’ « values. To get a handle on
‘reasonable’ « values, we note that the diffusion and decay of the morphogen from
a source point inside §2 reduces the concentration (in the absence of boundary inter-
ference) according to the distribution (13) and is therefore dependent most strongly
(exponentially) on the quantity kd where d is the distance from the source. Since we
non-dimensionalise §2 so that distances d are O(1), values of x any larger than 5 result
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in highly localised distributions of A on 9$2. It is not only unlikely that A will have
the resolution to resolve these distributions, but also highly localised A results in a
very ill-posed parameter fit. We therefore restrict our search of « to values less than
Kmax = . Furthermore, distances from 92 to r; should also necessarily decay ’Z_} in
the same way and thus we restrict r; to being no further away from 942 than 1 at its
nearest point.

3.3.2 Choosing r; sufficiently far from 8 and away from regions of sparse data
pointsr,

The integrand of 7, (r;; A), see (14), becomes singular if r; approaches 9£2. Regard-
less of the accuracy of numerical integration, we therefore expect |e, (r; A)| to be
large compared to T, (r;; A) if the distance between r; and 9£2 is on the order of the
spacing between data points r), (for example, slice separation in Test problem 2). In
our numerical examples, we allow the minimum distance between r; and 952 to be
no less than 0.3. Together with the constraint raised in Sect. 3.3.1, all of the points r;
are chosen within the interval of distances 0.3 to 1 of the closest point on 2. For
Test problem 1 this means r; lie inside a box of thickness 0.7 surrounding £2, whilst
for Test problem 2 r; lie inside a spherical shell of thickness 0.7 surrounding §2. To
further improve results, it is important that r; be chosen close to higher densities of
data points T . In the case of the cube (Test problem 1), we restrict further the choice
of r; to only those points which have at least one Cartesian coordinate in the range of
coordinates of £2—between — 1/2 and 1/2 (no points in the corners of the currently
permitted region). In the case of the sphere (Test problem 2), we restrict points r; to
lie within an interval of z values—between z = & 0.5—so that they are not near poles
where data is more sparse.

The choice of N can increase the optimisation computational time if it is too large but
needs to be large enough that a reasonable distribution of points is sampled. We found
N = 30 to be enough for sufficiently smooth objective functions limiting numerical
fluctuations in the solution due to the stochastic choice of r; in relation to the data
points I ,. Within their constrained regions, all of the r; points are chosen with density
proportional to the square of the distance from the centre of mass of the domain 2.
This was done so that, in 3D, points that are further away from a source (uniformly
distributed) inside the domain £2 are not biased—or at least bias is minimised.

3.3.3 Choosing weights w;

The problem posed in this manuscript is ill-posed. The practical reason is that for a
given distribution A(r) on 952 generated by particular ro, ko and A, large deviations
in ro coupled with complementary changes in ko and Ao can generate only small
deviations in the observed A(r). For example a deviation of rp away from the surface
052 may be, at least approximately, compensated for by a decrease in k¢, an increase in
Ao, or combination thereof. There exists, therefore, a shallow valley in the parameter
space for the objective function in (24). Without appropriate weights w;, ‘good’—in
terms of fitness—but inaccurate solutions to (24) are likely to be found as the solution to
(25). These incorrect solutions arise because of the error term €, in (35). Our argument

@ Springer



M. B. Flegg et al.

for choosing appropriate weights w; is heuristic as the rigorous error analysis of this
problem is prohibitively challenging. In Fig. 3, we present contour plots of the cost
function landscapes. These landscapes are for Test problem 2 and assume the correct
values for ¢9 and 8y. The value of Ag is chosen for each pair of rg and «g so that
the cost function is minimised. For each of the figures ro = 0.7, 8y = /4, 1o = 2,
ko = 1, N, = 15, N9 = 100, N = 200 and, for demonstrative purposes, we choose
¢o = 7 /8 which leads to problematic ill-posedness in the problem. Figure 3a presents
the contours of the cost function where no weights are used (w; = 1). The landscape
is presented dependent on p = |p| and « and represent the value of the objective
function when the other parameters are optimised. It is important to note that whilst
€/T in (35) may or may not be small which allows for neglecting of high order
terms, the perturbation to the objective function can lead to large errors in the optimal
parameters. This is especially the case because €, /7, depends on k. It is important to
note that as k — o0, TK — 0, and thus the optimisation (25) biases small values of
k along the valley in the cost function landscape. This can be clearly seen in Fig. 3a
where it is clear that the optimal parameter set involves a value of r¢ which is too high
and a value of k = O (instead of 1). Assuming that second order error terms in (35)
are much smaller than the first order terms, we have

N
> i (F@i: A, k. p) — log())’

i=1

al i€k i'A ?
=3 u [ Var (fri Ak, p) — log(ny) + Yie i A g
i T (ri; A)

One might propose that choosing w; = 7. (r;)% will help rectify this problem.
Whilst it is clear that this may help regularise the problem in the neighbourhood of the
true value, using this weight (see Fig. 3b) we note that a global minimum is achieved if
k — oo. This is because as k gets large €, vanishes and so does 7. That said, a local
minimum can be seen near the true parameter values in Fig. 3b. We noticed numerically
for Test problem 2 that the rate at which €, vanishes as k gets asymptotically large is
at an exponential rate of d = (1 — p). By multiplying the weights by an exponential
term which grows at a rate d with respect to k we can further improve the conditioning
of this problem. We define d(p) heuristically as the minimum distance between p and
052 and choose the weights

w; = exp (2kd(p)) Te (r;; A). 37)

Whilst this choice of weights does not give perfect results and has not been rigorously
derived, we observe that they result in global minimums in the truncated parameter
space of the cost function which are not biased towards the extremes with respect to k
except in the special case where also d(p) is small (see Fig. 3c). We shall investigate
the accuracy of using (37) in (25) as a way of approximating the true solution (24) in
Sect. 4.
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Fig.3 Contours of the cost function for the optimisation problem (25) against p and « for Test problem 2
with weights a w; = 1, b w; = ’Z_}(ri)z, and ¢ w; = exp (2kd(p)) ’Z_}(ri)z. In each subfigure, contours
represent level curves of the cost function whose values are a geometric progression with ratio of 4. The
brightness of each line indicates the relative magnitude of the level curve; small values of the cost function
are indicated by darker lines. In each case presented in this figure, the true values of r( and «q are indicated
with a red ‘X’. For comparison, the minimum of the cost function over p and « in the truncated parameter
space displayed in the figure is indicated with a red ‘O’. In a, b we find errors in the computation of the
objective function force the minimal computed value to have small and large « values respectively, whilst
in ¢ the problem is regularised and the optimal parameters coincide with the true ones (color figure online)

4 Experimental results

Here we present experimental results which test the accuracy and robustness of the
algorithm proposed in Sect. 3. To do this we require a measure of error. This is done
for each of the parameters k¢, Ao and rp. Using the notation {«y, X0, To} to describe the
output of the algorithm—the LHS of (25), we will present all errors as the normalised
difference between true and estimated parameters

Ko — Ko

E, = ; (38)

Ko
)_»0 — X

E;, =
A 2o

, (39)
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Ey = |[ro — roll, (40)

Notice that in the case of rg, the error is not normalised. This is because ry should be
normalised with respect to its characteristic scale which is the spatial scale of £2; in
our case where the model has been nondimensionalised this is 1.

4.1 Test problem1: =C
4.1.1 ro-Dependent accuracy in fitted parameters

We focus our attention on the importance of r in relation to 92 and distribution of r,
on the accuracy of the proposed fitting algorithm from Sect. 3. The parameters Ao and
ko are not very interesting in this regard. The parameter A is just a scaling constant
whilst ¢ dictates the decay rate in space and for the most part simply parametrises
the effect of changing rg. For all the test cases in Sect. 4.1 kg = A9 = 2 was used.
Due to the regularity of the data points r, for this test problem, there are a number of
symmetries in Test problem 1 that may be exploited. To explore the full domainrg € C
we explore just the points in the subset C’ = {(x9, y0, 20)|0 < z0 < yo < x¢ < 1/2}.
All other points ry € C give indistinguishable results to those for a particular point in
C’. This can be demonstrated simply by relabelling the axes. Initially we present results
for a fixed value of x9 = 0.35. On the surface xo = 0.35, the region of interest forms
a triangular region on a cube of length 2x( concentric with the cube C as indicated in
Fig. 4a. We choose an array of points rp on this triangle (represented with red dots).
We use ng = 8 points in both the yg and z¢ direction indicated in Fig. 4. For each point
ro, together with kg = Ag = 2, data A, is generated on the cube surface 9C using (7)
on a regular grid of Ny = 15 points in each direction (h = 1/15 separation between
grid points). The algorithm described in Sect. 3 is applied for each source point ro with
10 reinitialisations of the optimisation process. The errors E,, E; and E} as described
by (38)—(40) are summarised in Fig. 4b—d respectively using a logarithmic (natural,
base ¢) color map. There are three main points to take from these figures. The first
is that reconstruction of parameters seems to be less robust closer to 952 but also far
away from 92 (that is near the centre of the domain). We shall soon provide further
validation of this observation, we observe that there is an optimal source position at
an intermediate position between the centre and boundary of the domain for which
estimating the parameters (especially ko and Ag) of the model becomes easier. The
second observation is that the reconstruction of ry is much more robust overall than
either ko or Lo. The reason for this is that increases in both «¢ and 1 can lead to very
similar data with only small changes in r¢ and therefore it is difficult to be sure of
the values of the (kg, Ag) pair. The last observation is that stochasticity in both the
optimisation algorithm and method by which r; are chosen can produce noticeable
stochasticity in the results, however it is clear that good results are obtained for all
experiments (the worst error over the whole experiment was found in the predicted «q
of about 10% error).

To more explicitly explore the nature of the reconstructed parameters as a function
of distance from dC, we define an approximation of the average errors E,, E) and E;
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-8

Fig. 4 A plot of errors b Ey, ¢ E; and d Ey for Test problem 1. The errors are calculated on data with
Ny = 15, kg = Ao = 2 and rq at the red point positions which lie on a cube with x9 = 0.35 and
0 < zp < yo < xp as indicated by the diagram in (a) (color figure online)

over all points 7o which lie on the cube of length 2x( centred at the origin. We define
these average errors as a function of 0 < xp < 1/2

_ 2Egr(x0) + >, Eo.v(x0) +4  Egs(x0) +8)_, Eom(x0)
B 4(ng — 1)

(Eg)(x0) , (41)

where 0 represents either «, A orr and Ey ; = Eg evaluated at various classes of point
ro in the triangle 0 < zo9 < yo < x¢ that were displayed in Fig. 4a. The i in this context
is either r, v, s or m which reference the points at the right angle, the other two vertices,
the sides, and the middle/internal points respectively. The sums in (41) are the sums
over each of these classifications of points r( respectively. The reason for the different
coefficients in (41) is due to the multiplicity of these points and their representative
domain on the full surface of the cube with side length 2x. It will be important to note
that in the presentation of all average results, we take the natural logarithm of the mean
error (Ey) and also plot the interquartile range of the distribution of this error over the
triangular region associated with a given xo. Whilst the interquartile range takes into
consideration some stochastic effects and its use usually implies noise, it is rather more
accurately representative of the range of variation of the error over the cube surface.
Presented in Fig. 5 is the average error (41) at different values of xo together with the
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Fig. 5 A plot of the natural log of errors (red) (E, ), (orange) (Ej) and (blue) (Ey) for Test problem 1
averaged over a cube concentric with C and side length 2x( using (41)—see Fig. 4a for reference. For every
set of data Ny = 15 and kg = Ao = 2. The errorbars indicate the interquartile range of error over the cube
surface. At each value of x( the data points for both (E;) and (Ej ) have been slightly offset horizontally
so that the bars which indicate the interquartile range can be easily distinguished (color figure online)

interquartile range. It is clear that error is higher near the centre of the domain and
near the edge of the domain 952 and more robust in intermediate values of xg. This
is due to the fact that when the source is close to the surface 0§2, A is a sharp spike
which suffers from high errors during numerical integration whilst sources near the
middle of the domain undergo the maximum amount of decay internally and therefore
require larger perturbations to change A significantly.

4.1.2 Convergence of fitted parameters in the high resolution limit

To test the accuracy of the method outlined in Sect. 3 as the resolution of the data A is
improved, we calculate the error (41) holding 2xp = 0.7 and vary the resolution of the
points r, on 9C. We use Ny = {5, 6, 8, 10, 13, 15, 20, %2} points in each dimension
on each surface of the cube to evaluate the input data A. In Fig. 6, the log of errors
associated with each of these resolutions is displayed as a function of 2 = 1/Nj, the
spacing between data points. It is clear, given the logarithmic scale of (Ey) and the
relatively linear trend in Fig. 6, that the convergence of the method to giving exact
solutions has roughly a power law relationship with 4. This is unsurprising as in the
limit 2 — 0, (25) becomes (24) and the results of Sect. 2.3 related to continuous data
hold.
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Fig. 6 A plot of the natural log of errors (red) (E ), (orange) (Ej) and (blue) (Ey) for Test problem 1
averaged over a cube concentric with C and side length 2xy = 0.7 using (41)—see Fig. 4a for reference.
For every set of data kg = Ag = 2 and Ny is varied over the values {5, 6, 8, 10, 13, 15, 20, 32}. The errors
are plotted against 1 = 1/N; so that they show data spacing rather than total amount of data. The errorbars
indicate the interquartile range of error over the cube surface. At each value of / the data points for both
(E,) and (E, ) have been slightly offset horizontally so that the bars which indicate the interquartile range
can be easily distinguished (color figure online)

4.2 Test problem2: =B
4.2.1 ro-Dependent accuracy in fitted parameters

As was done for Test problem 1, we focus first on the dependence of the source
location within £2 on the accuracy of the fitting algorithm. We use the following default
parameters in our parameter sensitivity analysis; 7o = 0.7,60p = 7w /5,k0 = 1, 0 = 2,
N, = 15, and Ny = 100. We do not investigate variation in «o or Ao explicitly here.
The variation of A is uninteresting as it’s effect is simply to change the scale of the
morphogen concentrations U and A whereas varying ko has a phenomenologically
similar consequence to changing . The default number of slices N, = 15 was chosen
to highlight errors when there is a significant sparsity in the data in the z-direction.
Finally, 8y was chosen arbitrarily since the problem has rotational symmetry about the
z-axis (assuming large Ny and the accuracy does not depend on the value of 6.

In Fig. 7, the errors Ey, E, and E; are presented as a function of ¢q on the interval
(0, /2) whilst holding ryp = 0.7 constant. The error significantly depends on ¢g.
Small values of ¢pp—sources pointed towards the poles—result in data A which vary
most rapidly near the poles where there is a severe lack of data given equally spaced
slices of B. Without data near where A is most dynamic, the quadrature of the domain
052 is inaccurate. In Fig. 7, we include best fit lines for each of the three errors to show
that (visually) each of the errors improve roughly at the same rate, subject also to some
stochasticity in the method, as ¢ is changed to align with the x-y plane. This figure
also reveals an oscillation of the error as it decreases from ¢g = 0 to ¢g = 7 /2. This
effect is due to the relative position of ¢g compared with the ¢ coordinates associated
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Fig.7 Errors (red) Ey, (orange) E; and (blue) Ey for Test problem 2 where ro = 0.7, 6 = 7n /5, kg = 1,
Ao =2, N; = 15, and Ng = 100. Best fit lines are included for visualisation purposes and are colored the
same as the algorithm output (color figure online)

with each slice and whether or not the peak of A lies on a slice or between slices. The
sampling of A near its peak significantly affects the accuracy of determining 7. The
values of ¢y between /2 and 7 have been omitted due to reflection symmetry with
those values on the interval O to 7 /2.

We define the average errors over the concentric inner sphere of radius ro analo-
gously to the concentric inner cube in Test problem 1.

i

(Eg)(ro) =/0 Eg(ro, ¢o) d(cos(¢o)), (42)
In Eg(ro, ¢o,i—1) + Eg(ro, ¢o,i)

=> — 20 (cos(o,i—1) —cos(go,)) ., (43)

i=2

where, in this specific context, the subscript 8 represents any of the three parameters
Kk, A orr (not to be confused with 6, the coordinate of r). The value Ny, is the number
of errors measured as a function of ¢ (for Fig. 7 and all graphs herein Ny, = 30)
and the ith value of ¢¢ (monotonically increasing from O to 7 /2) is ¢ ;. In (43) we
use a trapezoidal method to evaluate the integral (42). The interquartile range which
is represented in plots of average error is calculated over the sphere rather than just as
a distribution over ¢ to give a true measure of the interquartile range over the domain
surface 052.

In Fig. 8, a plot of the natural log of (Ep) is displayed against the radius ro. As
with Test problem 1 (Fig. 5), the accuracy of the algorithm seems to be greatest not
at the surface 952 nor at the centre of the domain §2 but in some region in between.
Reasons for this behaviour have already been discussed. That being said, accuracy in
cases where the parameters o (and by association k) are not extreme tend to give
accurate results even when only 15 slices of data A are used.
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Fig. 8 A plot of the natural log of errors (red) (Ej), (orange) (E; ) and (blue) (Ey) for Test problem 2,
averaged over a sphere concentric with B and radius r( using (43). For every set of data kg = 1, 1o = 2
and N; = 15. The errorbars represent the interquartile range of the error over the sphere. At each value
of rq the data points for both (E; ) and (Ej) have been slightly offset horizontally so that the bars which
indicate interquartile range can be easily distinguished (color figure online)

4.2.2 Convergence of fitted parameters in the high resolution limit

To validate that the algorithm for Test problem 2 results in more accurate results if
given more data (slices) we display in Fig. 9 the natural log of the average error as a
function of number of slices. Unsurprisingly, it is clear that increasing the number of
slices by decreasing the slice thickness gives results which seemingly converge on the
true solution.

4.2.3 Robustness in the presence of noisy data

Being an ill-posed fitting/inverse problem, it is possible that the algorithm might
suffer from large inaccuracies in the presence of noise. Since we are proposing that this
method is likely to be useful in biomedical applications, it is important to establish that
the results are robust in the presence of data with noise. To simulate noisy input data,
instead of input data A p at each point r,, we replace with a log-normally distributed
value Ap with mean p = Ap and variance o2 = (Apa))z. That is, w is the noise o to
signal A, ratio at each point r,. We shall test the loss in accuracy of our algorithm
applying it to A p as though it were A p- We use the default parameters used for Fig. 7
and, in Fig. 10, we present the natural log of the average error (Ey) for noise to signal
ratios w between 0 and 1. The most striking behaviour that can be observed here is that
the algorithm suffers in accuracy for the introduction of a small amount of noise but
as this noise is increased the marginal loss of accuracy is reduced. This robustness to
noisy data stems from the way that the method described in this manuscript integrates
over the data. Each node r), is integrated first with respect to azimuthal angle 6 in the
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Fig.9 A plot of the natural log of errors (red) (Ey ), (orange) (E} ) and (blue) (Ey) for Test problem 2 aver-
aged over a sphere concentric with B and radius rg = 0.7 using (43). Forevery setof datakg = 1and Ag = 2.
The error is plotted as a function of slice separation/thickness 2/N; for N, = {10, 12, 15, 17, 20, 25, 30}.
The errorbar width represents the interquartile range of error over the sphere. At each value of ry the
data points for both (E)) and (E,) have been slightly offset horizontally so that the bars which indicate
interquartile range can be easily distinguished (color figure online)
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Fig. 10 A plot of natural log of errors (red) (Ey ), (orange) (E; ) and (blue) (Ey) for Test problem 2 averaged
over a sphere concentric with B and radius ry = 0.7 using (43). For every set of data kg = 1, 19 = 2,
N, = 15,and Nyp = 100. The error is plotted as a function of noise to signal ratio w as defined in Sect. 4.2.3.
The errorbar width represents the interquartile range of the data over the sphere. At each value of r( the
data points for both (E) ) and (E\) have been slightly offset horizontally so that the bars which interquartile
range can be easily distinguished (color figure online)

calculation of 7, (32). Since there are many data points on each slice, integrating over
6 smooths a lot of the noise.
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5 Conclusions

In this manuscript we present a novel method for finding a morphogen point source in
some three-dimensional domain using data describing the flux of the morphogen on
the domain boundary. The morphogen is produced, diffuses and decays at unknown
rates which are determined, relative to the diffusion constant, by the method. We
have focused on two main test problems in which the domain is (1) the unit cube
and (2) the unit sphere. These test problems were chosen because they offer exact
analytical forward solutions which can be used to generate data with known solutions.
The biggest advantage to using this method is that, unlike many inverse problems or
fitting techniques, it does not require a single forward solution to be computed. The
cost that is introduced for this property is that quadrature of the data on the domain
boundary is necessary and should be accurate and this can sometimes be difficult. In
Test problem 2 (the unit sphere) we consider the data only on parallel and equidistant
slices, inspired by the types of data which are experimentally feasible.

Our method focuses on converting the problem on the bounded domain to that of the
infinite domain and exploiting the analytical nature of the fundamental solution. One of
the biggest challenges that is presented by this method is that small integration error can
lead to large errors in the optimal set of parameters. This is due to the ill-conditioning
of the problem. We mitigate against this source of inaccuracy by regularisation which
takes a heuristic form; a careful consideration of the error term, especially in the case
of large decay rate.

The results are accurate, fast, and robust. Whilst the accuracy of the method depends
heavily on the density of data and the position of the source, we found for even
conservative conditions that our method gave good results. The recovery of the position
of the source was the most accurate, followed by source production rate and the decay
rate—the accuracies of which are separated by a number of orders of magnitude. We
found that the best accuracy is obtained for dense data, small decay rates and source
points which are close to the data on the boundary (for example, not at the poles for
Test problem 2) but not too close (somewhere intermediate to the centre of the domain
the and the boundary).

This result is a test study for a more general challenge of source reconstruction. In
the more general case, the source will not be a single location but a distributed function
over the domain. In the case of the linear Helmholtz model it may be possible to extend
the method presented here but instead of (19) which describes the relationship between
the integrated data 7, and the fundamental solution G, it would be expected that if
Kk =kpandr ¢ 2 (19) becomes

Te(r;a) = /// G (r;rp)o(rg) dVp, 44)
2

where the integral is taken over coordinates of ro and o is the distribution of the
unknown source. We shall leave this for a future work.
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