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Abstract. In recent years, multifidelity expensive black-box (Mf-EBB) methods have re-
ceived increasing attention due to their strong applicability to industrial design problems.
The challenge, however, is that knowledge of the relationship between decisions and
objective values is limited to a small set of sample observations of variable quality. In
the field of Mf-EBB, a problem instance consists of an expensive yet accurate source of
information, and one or more cheap yet less accurate sources of information. The field
aims to provide techniques either to accurately explain how decisions affect design out-
come, or to find the best decisions to optimise design outcomes. Many techniques that
use surrogate models have been developed to provide solutions to both aims. Only in
recent years, however, have researchers begun to explore the conditions under which
these new techniques are reliable, often focusing on problems with a single low-fidelity
function, known as bifidelity expensive black-box (Bf-EBB) problems. This study
extends the existing Bf-EBB test instances found in the literature, as well as the features
used to determine when the low-fidelity information source should be used. A literature
test suite is constructed and augmented with new instances to demonstrate the poten-
tially misleading results that could be reached using only the instances currently found
in the literature, and to expose the criticality of a more heterogeneous test suite for algo-
rithm assessment. Addressing the shortcomings of the existing literature, a new set of
features is presented, as well as a new instance creation procedure, and a study of their
impact on algorithm assessment is conducted. The low-fidelity information source is
shown to be valuable if it is often locally accurate, even when its overall accuracy is rela-
tively low. This contradicts the existing literature guidelines, which indicate the low-
fidelity information is only useful if it has a high overall accuracy.
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1. Introduction
Design problems within a wide range of industries
often involve measurable design outcomes for which
no analytical expression exists. Design outcomes of
this type are known as black-box functions. This term
denotes the fact that the exact relationship between
the decision variables and the design outcome is
unknown, and the only way to evaluate the outcome
for a new decision point is through the use of a

deterministic procedure. It is often the case that these
functions are also expensive, meaning that sampling
the function has a high cost, measured in terms that
are either computational, monetary, or temporal. The
lack of analytical expression and high sampling cost
can be seen when designing and producing a proto-
type such as a battery or a plane (Forrester 2010), or
performing a lengthy software simulation such as
a weather or medical model (Aleman et al. 2009).
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Problems of this type are known as expensive black-
box (EBB). Algorithms developed for these problems
often aim to better understand the relationship
between the design variables and outcome in order to
accurately predict the outcome value in regions not
yet sampled. Surrogate models have been developed
in the past and successfully used in EBB problems,
either for the purpose of uncertainty quantification
and reduction, or when performing design optimisa-
tion. Perhaps the two best-known surrogate model-
ling methods are Kriging (Krige 1951, Matheron 1963,
Jones 2001) and radial basis functions (RBFs) (Duchon
1977, Gutmann 2001, Regis and Shoemaker 2007, Wild
et al. 2008, Müller and Shoemaker 2014). Such meth-
ods consist of training a surrogate model on the sparse
available data in order to guide the sampling strategy
of the algorithm. This strategy can be a global explora-
tion strategy when training a surrogate model (and
thus sampling in regions where the model is uncertain
of its accuracy), or a balance between global explora-
tion and local exploitation when optimising an objec-
tive function. The latter consists of balancing the need
for exploration of yet unexplored areas in the sample
space for further model training, and the opportunity
for exploitation of promising regions via further sam-
pling to reveal optimal solutions.

In many application domains, it is often the case
that multiple sources of information exist for the
objective function, with varying degrees of cost and
accuracy. A survey by Fernández-Godino et al. (2019)
shows many potential reasons for different levels of
cost and accuracy, including the simplification of a
mathematical model, an increase in model coarseness,
and the difference between simulations and experi-
ments. For instance, in plane design it might be possi-
ble to use a cheap but potentially inaccurate physics
simulation engine to assess the performance of a can-
didate design, whilst the true performance can only
be assessed via the more costly construction of a pro-
totype and wind tunnel testing (Forrester 2010). These
types of problems are known as multifidelity expen-
sive black-box (Mf-EBB) problems, with its simplest
variant known as bifidelity expensive black-box (Bf-
EBB) problems. An instance of this class of problems
is defined by its two sources of information, namely fh
and fl, defined as

fh : Ω → R

fl : Ω → R

where Ω is the sample space and is normally defined
as a hypercube

Ω � [xl1, xu1] ×⋯× [xld, xud]:
Here, xl � (xl1,: : : ,xld)� and xu � (xu1 ,: : : ,xud)� are the vec-
tors representing the lower and upper bounds of Ω,
and d ∈ N is the dimension (i.e., number of variables)

of the problem. The high-fidelity function fh represents
an accurate yet expensive source of information, and
the low-fidelity function fl represents a cheaper but
less accurate source of information. It is worth noting
that in the literature fh is sometimes assumed to be
a noisy (i.e., stochastic) function. This is however
beyond the scope of this study, and as such fh is
assumed to be deterministic for the remainder of the
paper. Furthermore, despite being a less accurate rep-
resentation of fh, the low-fidelity function fl is also
assumed to be deterministic.

As fh is considered to be expensive, the cost to sam-
ple the function is assumed to dominate the computa-
tional time required by any algorithm solving this
type of problem. Therefore, the computational time of
algorithms is not typically taken into consideration
when assessing their performance. Instead, a sam-
pling budget B is specified, determining the maxi-
mum amount of sampling allowed by any given algo-
rithm. The function fl is considered to be a cheaper
(but still relatively expensive) function, and as such, a
constant 0 < Cr < 1 is given that represents the cost of
fl relative to the cost of fh. For instance, a value Cr � 0:1
implies the cost of a single evaluation of fh is the same
as evaluating fl a total of 10 times. If a given algorithm
has sampled fh and fl a total of nh and nl times, respec-
tively, the total budget used is given by nh +Crnl.

Surrogate model methods have been adapted to
Bf-EBB problems, including Co-Kriging (Kennedy
and O’Hagan 2000, Forrester et al. 2007) and RBFs
methods (March and Willcox 2012, Durantin et al.
2017, Müller 2020). Due to the importance of the
choice of surrogate model in these methods, many
studies are devoted to studying the comparative accu-
racy of different models given a fixed sample of fh and
fl (Dong et al. 2015, Toal 2015, Park et al. 2017, Liu et al.
2018c, Shi et al. 2020), as well as the impact of the
chosen training procedure of a scaling parameter on
overall model quality (Park et al. 2018). It is worth not-
ing that any (single-source) EBB algorithm can be also
applied to a Bf-EBB problem by simply working with
the function fh and ignoring the extra information pro-
vided by fl. Whilst a variety of algorithms exist in the
literature, Co-Kriging in particular has taken a promi-
nent position in the field. This can likely be attributed
to its strong theoretical backing, and the fact that
Co-Kriging provides specific methods for a variety of
aims. These include surrogate model fitting via the
training of hyperparameters, exploration via the use
of a measure of model uncertainty, and an explora-
tion/exploitation balance measure that maximises the
expected function improvement of further sampling.

Underlying most of the literature is the assumption
that bifidelity methods should always be applied to
Bf-EBB problems, thus assuming a minimum thresh-
old in the quality of fl. In other words, if a low-fidelity
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function is available, it should be used, be it to train a
surrogate model or when using optimisation algo-
rithms. David Toal (2015, p. 1223) was one of the first
to challenge this assumption by asking “when exactly
should a designer select a multifidelity approach over
a single fidelity approach and vice versa?” In his study,
he compared the accuracy of (single-source) Kriging
models with the accuracy of (two-source) Co-Kriging
models for a variety of instances (i.e., pairs of functions
( fl, fh)) given a fixed sample, and showed that the corre-
lation between fh and fl can have a significant impact on
the quality of a Co-Kriging model. In fact, he showed
that in some cases, it would be better to ignore the
low-fidelity function and train a Kriging model instead.
Toal established some guidelines on when a Co-Kriging
model should be trained, including the requirement
that fl and fh are highly correlated. If this requirement
is not satisfied, it is possible that a Co-Kriging model
will be less accurate than a Kriging model based only
on fh.

Toal’s work highlights two important and interre-
lated questions pertaining to Bf-EBB problems:

i. What are the properties required of a low-fidelity
function to ensure a bifidelity model performs no
worse than a single-source model?

ii. How can we develop an algorithm or rules to
choose when to use a bifidelity or single-source
model?

Despite Toal’s work bringing attention to these
important questions, analysis of the performance of
algorithms within the context of variations in low-
fidelity function quality has only gained traction in
very recent years. A survey by Fernández-Godino
et al. (2019), which focused on the topic of building
multifidelity surrogate models for optimisation, did
not discuss the impact of function quality; nor did
another survey by Liu et al. (2018a), which focused on
sampling strategies leading to accurate multifidelity
surrogate models. Fernández-Godino et al. (2019,
p. 2042) stated that “more research into the choice
between high-fidelity alone surrogate and multifidel-
ity surrogate is clearly called for.” Whilst most studies
properly justify the choice of test instances, an analy-
sis of their diversity is often missing (Forrester et al.
2007; Rajnarayan et al. 2008; March and Willcox
2012; Liu et al. 2016, 2018b, c; Ruan et al. 2020; Wu
et al. 2020; Zhou et al. 2020, 2021). This can lead to a
choice of instances for which the multifidelity algo-
rithm performance is unsurprising and consistent
with Toal’s findings (Toal 2015): either performing
poorly when fl is chosen as an unrelated function
(March and Willcox 2012), or performing better
since fl functions are frequently either chosen as
highly correlated industry test problems (Shahpar
et al. 2011) or created via a small perturbation of fh
(Rajnarayan et al. 2008).

Some very recent studies, however, extend the
work of Toal when performing algorithm analysis.
These studies analyse both the qualities of their
chosen test instances by measuring the correlation
between fh and fl, and the overall discrepancies be-
tween the two, in order to assess whether a wide set
of instances have been chosen to conduct a thorough
algorithm analysis (Wang et al. 2017, Song et al. 2019,
Müller 2020, Shi et al. 2020, Lv et al. 2021, van Rijn
et al. 2022). The work of both Müller (2020) and van
Rijn et al. (2022) is of particular interest as they pre-
sented two of the very few adaptive techniques (the
first in surrogate model training with guided sam-
pling, the second in function optimisation) that choose
to sample fl only if it seems beneficial to do so, rather
than assuming fl should always be used. The need for
such techniques arises from the large impact the qual-
ity of fl can have on algorithm performance. This fur-
ther indicates the need for accurate measures of the
quality of fl relative to fh, and of instances that can
accurately assess the performance of these algorithms.
The need for more instances in the field is highlighted
by the work of Wang et al. (2017), which proposes a
creation procedure of industry-like Mf-EBB instan-
ces with a single parameter that specifies the quality
of fl.

This study argues the need for further work in both
instance creation and instance characterisation in the
field of Bf-EBB. Both are important prerequisites to
analysing the types of instances that a two-source
algorithm can be used for, and developing prediction
techniques that can correctly choose which method to
use. As such, their importance will be showcased
through the analysis of single-source versus two-
source surrogate model accuracy in the form of Krig-
ing versus Co-Kriging, similar to the work of Toal
(2015). Performing this analysis twice using different
instance test suites will reveal the need for new instan-
ces and new instance measures, or features, both of
which are put forward in this work.

The remainder of this paper is structured as follows.
Section 2 presents the existing types of instances and
features in the literature, chooses more than 200
instances to create a literature test suite, and conducts
a performance analysis of Kriging and Co-Kriging
algorithms using this test suite. Section 3 then pro-
poses new features and instances that are used to cre-
ate an augmented test suite. This new test suite is
used for a second algorithm performance analysis,
leading to results in direct disagreement with those
found in Section 2. Section 4 presents a discussion of
the differences in results obtained based on the chosen
test suite and highlights the importance of the pre-
sented features and instance creation procedure. Sec-
tion 5 concludes the study with some closing remarks
and direction of future work. To make the results

Andrés-Thió, Muñoz, and Smith-Miles: Bifidelity Surrogate Modelling
INFORMS Journal on Computing, 2022, vol. 34, no. 6, pp. 3007–3022, © 2022 INFORMS 3009

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

25
0.

0.
11

5]
 o

n 
22

 D
ec

em
be

r 
20

22
, a

t 1
4:

31
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



easily reproducible, both the code and the data used
in the research are available on GitHub (Andrés-Thió
2022) and FigShare (Andrés-Thió et al. 2022), respec-
tively. Both the code and the data as well as an appen-
dix giving a formal description of Kriging and
Co-Kriging are also available on the IJOC GitHub site
(Andrés-Thió et al. 2021).

2. Existing Test Suites
Synthetic Bf-EBB problem instances are defined in
part by a pair of functions ( fl, fh). Many such pairs
exist in the literature, as studies presenting new tech-
niques often perform their experimental analysis
using newly created instances. The standard approach
in creating such a pair of functions is the use of a well-
known test function such as the Branin or Hartmann
functions being assigned to fh, with fl being defined as
a modification of fh via the addition of some extra
terms or the modification of the coefficients of fh.
Three types of literature instances, namely fixed,
parameter-based, and error-based, are implemented in
this study to create a literature test suite.

The term fixed can be used to describe the most
common type of instance found in the literature. Each
of these instances is the result of some modification
being applied to fh resulting in a unique ( fl, fh) pair, as
opposed to a family of instances as is the case in the
other two classes described later. How this modifica-
tion is added can greatly vary from study to study,
from adding a function to fh to represent a small error
term (Rajnarayan et al. 2008) to assigning an unrelated
function to fl (March and Willcox 2012). A total of 43
distinct functions of this type with varying dimension
(d ∈ {1, 2, 3, 4, 5, 6, 8, 10,20}) from 10 different studies
(Rajnarayan et al. 2008; March and Willcox 2012;
Xiong et al. 2013; Dong et al. 2015; Liu et al. 2016,
2018c; Park et al. 2017; Shi et al. 2020; Surjanovic and
Bingham 2020; Wu et al. 2020) are implemented here.

The set of parameter-based instances are of the kind
first presented by Toal (2015), which is followed in the
work of Song et al. (2019). This type of instances are
defined as a family of instances by defining a fixed fh
function and a parametrised fl function. By varying
the single parameter A of fl, new ( fl, fh) pairs are cre-
ated with varying fl quality. An example is Toal’s Bra-
nin function, defined forΩ � [−5, 10] × [0, 15]:

fh(x) � x2− 5:1
4π2 x

2
1+

5
π
x1−6

( )2
+10 1− 1

8π

( )
cos(x1)+10,

fl(x) � fh(x)− (A+0:5) x2− 5:1
4π2 x

2
1+

5
π
x1−6

( )2
A∈ [0,1]:

By varying the parameter A with the values {0, 0:1,
: : : , 0:9, 1:0}, 11 different instances can be generated
from a single definition. A further 77 such instances

with different dimensions (d ∈ {1, 2, 4, 10}) are added
to the literature test suite (seven families of instances
with 11 different A values each).

Finally, another set of instances defined by Wang
et al. (2017) is also added to the literature test suite.
While studying an evolutionary algorithm for multifi-
delity optimisation, the authors argued the need for
new test instances for these types of algorithms, and
provided a systematic way to create a ( fl, fh) pair by
adding so-called stochastic, instability, or resolution
errors to fh. Neither stochastic nor instability errors are
implemented in this study, as the former define non-
deterministic functions, and the latter define functions
which might fail to evaluate. On the other hand, reso-
lution errors are deterministic and therefore highly
relevant to this study. Resolution errors are used to
create a framework for instance creation based on
industry problems where the low-fidelity function fl is
taken to represent a simulation model, with its accu-
racy and cost able to be varied by changing the resolu-
tion of the model. As such, given a function fh, fl is
created by adding one of four resolution errors with
parameter φ ∈ [0, 10000]. The authors showcase their
method with the Rastrigin function, for which a
desired function degree d can be specified. Setting
the dimension to 5 and 10 in combination with all four
resolution errors and for φ values {0, 1000, : : : , 9000,
10000}, another 88 instances are added to the literature
test suite, ultimately containing a total of 208 instances
already studied in the literature.

2.1. Existing Features
The work of Toal (2015) was the first to bring attention
to the impact that different instance qualities can have
on the performance of a given algorithm. His work
presented two measures (in this work denoted as
instance features) for the analysis of pairs of functions
( fl, fh), namely correlation coefficient (CC) and root
mean squared error (RMSE). Note that these two
measures are calculated after heavily sampling both fh
and fl. In this study, a sample of size 1,000d is chosen
via Latin hypercube sampling (LHS). Taking such a
large sample cannot be done in practice, however, as
the sample budget is limited. The aim here is to study
the effect of different instance features on algorithm
performance in an artificial setting, where the analyti-
cal expressions for both fh and fl are known and sam-
pling them can be done at little to no cost. Once the
features have been measured, these functions are
treated as expensive black-box functions when assess-
ing algorithm performance.

Both features are calculated on a given set of sample
points {x1, : : : ,xn} ⊂Ω, evaluated both at fl and fh.
Therefore, the two available sets are Yl � {Yl

1, : : : ,Y
l
n}

and Yh � {Yh
1, : : : ,Y

h
n}, with Yl

i � fl(xi) and Yh
i � fh(xi).

The measures are given by
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RMSE �
∑n

i�1(Yl
i −Yh

i )2
n

[ ]1=2
,

CC � 1
n− 1

∑n
i�1(Yl

i − Ȳl)(Yh
i − Ȳh)

sYlsYh

( )[ ]2
,

where Ȳl � 1
n

∑n
i�1

Yl
i sYl �

∑n
i�1(Yl

i − Ȳl)2
n− 1

[ ]1=2
,

Ȳh � 1
n

∑n
i�1

Yh
i sYh �

∑n
i�1(Yh

i − Ȳh)2
n− 1

[ ]1=2
:

Note that Toal’s CC feature is defined as the square of
the sample correlation of Yl and Yh. As such,
0 ≤ CC ≤ 1, and a high CC value indicates fl is corre-
lated with fh and therefore behaves similarly. Note
also that the RMSE feature can vary greatly between
instances as it is affected by the range of fh and fl. As
such, in this study the relative RMSE (RRMSE) feature
will be used instead to allow comparison between
instances

RRMSE � RMSE
max{Xh} −min{Xh} :

Figure 1 shows a plot of all 208 instances of the literature
test suite based on their CC and RRMSE feature values.

2.2. Algorithm Performance Analysis on Literature
Test Suite

The created literature test suite can be used to assess the
comparative performance of Kriging and Co-Kriging
(see Andrés-Thió et al. 2021) for the aim of surrogate
model fitting, that is, when fitting as accurate a surro-
gate model as possible to the available data. To do so,
an experimental setup similar to that of Toal (2015) is

used. For a given instance of dimension d, a total sam-
ple budget of 5d is used for both Kriging and
Co-Kriging. In the case of Kriging, the whole budget
is used to sample fh; that is, a sample of fh of size 5d is
created using LHS and then used to fit the surrogate
model. In the case of Co-Kriging, a budget of d sam-
ples is used to sample fl, with the remaining 4d used
to sample fh. These samples are chosen using first
LHS, and then a subset fh sample is chosen using the
Morris-Mitchell criterion, in a procedure presented
by Forrester et al. (2007). Toal analyses algorithm per-
formance for different cost ratio Cr values; in this
study, however, a value Cr � 0:1 is fixed, leaving fur-
ther analysis of the impact of this constant to future
work. Therefore, for an instance of dimension 5, a
Kriging model is fitted using 25 samples of fh, and a
Co-Kriging model is fitted using 20 samples of fh and
50 samples of fl.

The performance of the two techniques on a given
instance is compared by assessing the statistical per-
formance of 20 runs per algorithm. All experiments
were run using the Spartan computer cluster (for
details, see funding). The performance of an algorithm
on a single run is measured in the form of the error
between the constructed surrogate model and the
function fh. This is measured by taking 1,000d samples
of both the surrogate model and fh, and calculating
the RRMSE value between the two samples. The 20
runs of each algorithm are then compared using a
two-tailed Wilcoxon test (Wilcoxon 1992), with the
null hypothesis being that the two sets of errors are
not statistically significantly different from one
another. The two algorithms are said to perform
equally well if the null hypothesis cannot be rejected
with higher than 95% accuracy. If the null hypothesis
is rejected, the algorithm with the smaller median
error is said to perform best. A plot representing
which algorithm performs best for each instance is
shown in Figure 2, which seems to indicate that for
CC ≤ 0:5, Co-Kriging is ill-advised. This supports the
findings of Toal (2015) regarding the strong impact
the feature CC has on algorithm performance, despite
a discrepancy on the critical CC value at which
Co-Kriging is discouraged. Toal concluded that
Co-Kriging should be used for CC ≥ 0:9 whereas Fig-
ure 2 seems to indicate that Co-Kriging could be used
for CC ≥ 0:5, although this difference may be due to
the choice of Cr and budget in this study.

To further evaluate the impact of different features
on algorithm performance, a machine learning method
is used to infer when each algorithm is expected to
perform better than the other. The question being
answered is when to ignore the low-fidelity source
of information as harmful and use Kriging instead of
Co-Kriging. Therefore, the prediction accuracy is as-
sessed in terms of the accuracy predicting for which

Figure 1. (Color online) Instances in the Literature Test Suite
Plotted Based on their Correlation Coefficient (CC, y-axis) and
Relative Root Mean Squared Error (RRMSE, x-axis) Values

Note. Each plot point represents an instance, that is, a pair of func-
tions ( fl, fh), and a set of 1,000d points is used to calculate the features
of each instance, where 1 ≤ d ≤ 20.
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instances Co-Kriging can be used (i.e., Co-Kriging
performs no worse than Kriging, shown as green
triangles and yellow circles in the plots), and for
which it cannot be used (i.e., Kriging outperforms
Co-Kriging, red squares in the plots). The literature
test suite is randomly divided into a training and
a testing set, the former containing 80% and the
later 20% of the data. A decision tree is trained, with
its accuracy assessed on the testing set. This cross-
validation procedure is repeated 100 times for each
technique and the average accuracy calculated.

Two basic prediction rules are used as baseline
comparisons. The first is the simple rule to always use
Co-Kriging. The second is a majority rule; that is, the
same algorithm is always used based on the one that
has superior accuracy on the training data. For exam-
ple, if Co-Kriging should only be used in 30% of the
instances in the training set, the majority rule chooses
to always use Kriging on the testing set. These two
baselines are compared with a set of decision trees
built using varying sets of features. These are con-
structed using the rpart package in R, with parameters
cp� 0 and minbucket� 0.05. This allows the constru-
cted trees to keep growing as long as prediction error
is reduced, while restricting the leaves of the tree to
contain at least 5% of the instances in the training set.
Two sets of prediction trees are compared, the first
built using only the feature CC, and the second
using all the literature features, namely CC, RRMSE,

problem dimension and problem budget. The result-
ing prediction accuracies are shown in Table 1. Inter-
estingly, creating a decision tree with only the CC fea-
ture or with all literature features results in almost
equally accurate trees.

Finally, a decision tree is built using all literature
features with the whole literature test suite as the
training set, as shown in Figure 3, to further analyse
the impact of different features on accuracy. This final
tree states that Co-Kriging should be used only when
CC ≥ 0:486 (93.7% true positive rate, 82.4% true nega-
tive rate, 91.9% accuracy), which would be an improve-
ment over the choice to always use Co-Kriging (81.5%
accuracy). Despite being allowed to grow unrestricted
(by setting cp � 0), the tree is quite small. It is, however,

Figure 2. (Color online) Comparative Performance of Kriging and Co-Kriging on the Literature Test Suite

Notes. Each plot point represents an instance, that is, a pair of functions ( fl, fh) and its position is based on the features correlation coefficient (CC,
y-axis) and relative root mean squared error (RRMSE, x-axis). The colour/shape represents which technique performed best, either Kriging (red
square), Co-Kriging (green triangle) or statistically equal performance (yellow circle).

Table 1. Cross-Validated Accuracies of Different
Techniques Predicting When to Use Co-Kriging on the
Literature Test Suite

Prediction technique Literature test suite

Always use Co-Kriging 81.5%
Majority rule 81.5%
Decision tree, using CC only 90.9%
Decision tree, using literature features 91.0%

Note. The techniques include always using Co-Kriging, a majority
rule, and the accuracies of constructing a decision tree using only the
CC feature, or using all of the literature features, that is RRMSE, CC,
problem dimension, and problem budget.
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possible that features other than CC could have been
used to produce a different tree with similar accuracy.
To get a sense of the relevance of each of the features,
the variable importance value of the decision tree is
inspected. This value indicates the importance of each of
the features when constructing the tree, as it indicates
the reduction in prediction error obtained when splitting
nodes in the tree using a particular feature. The variable
importance is measured in each of the 100 runs when
constructing a decision tree using all literature features,
and the average is shown in Figure 4.

The results presented so far might lead the reader
to the following natural conclusions:

• The constructed literature test suite appears to be
varied enough, as seen in Figure 1, and therefore they
present a good test of algorithm performance.

• Co-Kriging is overall a safe technique when
applied to Bf-EBB problems, as it performed no worse

than Kriging in 81.5% of the instances analysed, as
shown in Table 1.

• The feature CC is sufficient to accurately predict
when Co-Kriging can be used, and the use of other fea-
tures only results in a marginal improvement on this
accuracy, as shown in Table 1. Figure 4 shows that this
feature has a much higher importance than the other
features when constructing a decision tree.

• For problemswith a total budget of 5d and a cost ratio
Cr � 0:1, it is beneficial to use fl (through Co-Kriging) for
CC ≥ 0:486, as shown in Figure 3.

These conclusions are in agreement with consensus
in the literature, except perhaps the last one, as Toal
recommends the use of Co-Kriging only for CC > 0.9.
His work, however, studies the impact of different
budgets and cost ratio values, rather than fixing them
to a given value. It is likely that for different budgets
and cost ratios, the critical value at which the function
fl is deemed to be useful may vary. In the next section,
these conclusions are further analysed, through the
introduction of new features and instances, to see if
they are upheld when an intentionally more diverse
suite of test instances is explored.

3. Creation of New Test Suites
The quality of a test suite is based on its ability to pro-
vide a clear analysis of algorithm performance. This is
achieved by showcasing the strengths and weaknesses
of the algorithms being tested: where existing algo-
rithms perform well, and where they do not, and
where new algorithms might be needed. This analysis
can only be conducted if the test suite is heterogene-
ous, that is, if the instances it contains are as diverse
and varied as possible. As will be seen in this section,
new features are needed to further analyse differences
between instances, and to guide the creation of new
instances and appropriate test suites.

3.1. New Features
A potential shortcoming of the instance features cur-
rently considered in the literature is their global nature.
By only measuring the global macro-level relationship
between fl and fh, it is possible for the resulting analysis
of the instance to be insufficiently nuanced. Take, for
example, two different instances (i.e., two different
( fl, fh) pairs) with the same CC value. It is possible that
in one case the quality of fl (i.e., correlation with fh) is
roughly constant everywhere in the sample space,
whereas in the second case, fl is highly accurate half
of the time, and wildly inaccurate the other half. It is
quite likely that these two instances will lead to
different performance of multifidelity algorithms
despite having a similar CC value. Additional fea-
tures are therefore needed to assess the local behav-
iour of fl.

Figure 3. (Color online) Decision Tree Constructed Using the
Literature Features and the Performance of Co-Kriging and
Kriging on the Literature Test Suite

CC >= 0.486yes no

1

2 3

CC >= 0.486

Can use Co-Kriging
0.812  0.188

100.0%

Can use Co-Kriging
0.937  0.063

83.7%

Should not use Co-Kriging
0.176  0.824

16.3%

yes no

1

2 3

Notes. The label “Can use Co-Kriging” means the tree predicts
Co-Kriging performs no worse than Kriging. The label “Should not
use Co-Kriging” means the tree predicts Co-Kriging performs worse
than Kriging. The percentages indicate the instances present in the
node, and the proportions indicate the proportion of the instances in
the node for which Co-Kriging can be used (left) and for which it
should not be used (right).

Figure 4. (Color online) Average Variable (Feature) Impor-
tance of 100 Runs When Constructing a Decision Tree Using
All the Literature Features on a Training Data Set Chosen
from the Literature Test Suite
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The concept of weighted sample correlation is
adapted in this work to create new features. Given
two sets Yl and Yh of samples of fl and fh, respectively,
at locations X � {x1, : : : ,xn}, as well as a set of weights
w � {w1, : : : ,wn}, the weighted correlation coefficient
(WCC) is given by

WCC(w) � 1∑n
i�1wi

∑n
i�1wi(Yl

i − Ȳl)(Yh
i − Ȳh)

sYlsYh

( )[ ]2
,

where Ȳh �
∑n

i�1wiYh
i∑n

i�1wi
sYh �

∑n
i�1wi(Yh

i − Ȳh)2∑n
i�1wi

[ ]1=2
,

Ȳl �
∑n

i�1wiYl
i∑n

i�1wi
sYl �

∑n
i�1wi(Yl

i − Ȳl)2∑n
i�1wi

[ ]1=2
:

Note that if wi � 1 for all i, WCC � CC. Given the sam-
ples Yl and Yh, we define the local correlation coeffi-
cient at a point xwith radius r as

LCCr(x) �WCC(w),
where wi �min 0, 1− ||x− xi||

r||xu − xl||
{ }

:

This measure calculates the correlation between fl and
fh inside the d-sphere centred at a point x with radius
r||xu − xl||, where the measure gives higher importance
to points that are closer to the centre. Given the set of local
correlations Lr � {LCCr(x1), : : : , LCCr(xn)}, a new family
of features is created which calculates the proportion of
local correlations which are above a certain threshold p

LCCr
p �

|Lr
p|

|Lr|
Here, Lr

p � {LCCr(x) ∈ Lr | LCCr(x) ≥ p} is the set of
local correlations with a value larger than p. The fam-
ily of features LCCr

p provides an approximation of the
probability that a randomly chosen point in Ω has a
local correlation larger than p. The set Lr can be used
to calculate two additional features that represent the
variability in local correlation. These are the sample
standard deviation LCCr

sd and coefficient of variance
LCCr

coeff of L
r and are given by the formula

LCCr
sd �

�������������������������������∑n
i�1[LCCr(xi) − LCC

r]2
n− 1

√

LCCr
coeff �

LCCr
sd

LCC
r ,

where LCC
r � 1

n

∑n
i�1

LCCr(xi):

In this study, these features are all calculated with r �
0.2. This value is chosen to represent a neighbourhood
that is small enough to measure local behaviour,

but large enough to encompass changes in the
relationship between fl and fh. The values p � {0:1,
0:2, : : : , 0:8, 0:9, 0:95,0:975} are used to assess which
threshold produces the most relevant feature, where p can
be thought of as indicating the threshold separating good
(i.e., high) and bad (i.e., low) correlation values.

The previous section demonstrated that for a
budget of 5d and cost ratio Cr � 0:1, the correlation
threshold for which Co-Kriging can be used appears
to be CC > 0.486. Therefore, the feature LCC0:2

0:5 is of
particular interest as it uses a threshold of 0.5 when
assessing whether a local correlation is high enough
to be considered good. This feature is used to replot
the literature test suite instances, resulting in Figures 5
and 6. As can be seen in both figures, despite contain-
ing a large set of instances, the literature test suite
only occupies limited regions of the sample space,
with most instances having very similar CC and
LCC0:2

0:5 values. Figure 5 shows that error-based instan-
ces suffer the most from this, as most of them have
very high CC and LCC0:2

0:5 values. Parameter-based
instances provide some variation within the test suite,
although most instances still lie in the top-right and
bottom-left regions. Figure 6 shows why this could be
a problem. If the space is divided into four quadrants,
the top-right is mainly filled with instances where
Co-Kriging performs well, whereas the bottom-left region
is filled with instances where it does not. As the other two
regions are relatively empty, however, it is hard to assess
whether Co-Kriging performs well for instances with a
high CC value or for instances with a high LCC0:2

0:5, and
how it will perform with instances that lie in the empty
regions. To analyse the causes for the observed results,
new instances that further fill the space are required.

Figure 5. (Color online) Literature Instances Plotted Using a
Feature from the Literature (CC, y-axis) and a Proposed New
Feature (LCC0:2

0:5, x-axis)

Notes. Each plot point represents an instance, that is, a pair of func-
tions ( fl, fh). Note that the instances have similar values for both
features (the relationship is strongly linear), and the top-left and
bottom-right quadrants are relatively empty.
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3.2. Generating New Instances
A new instance generating procedure is presented
here. The aim is two-fold. Firstly, the procedure must
generate artificial instances that can represent indus-
try problems. This is needed as algorithms being
tested will eventually be applied to real-world prob-
lems, and therefore conclusions being drawn from the
use of a test suite must be applicable to industry. Sec-
ondly, to fill the space shown in Figure 5, instances
are needed for which the quality of fl changes
throughout the domain Ω. This differs from existing
literature instances, which have a fl function with a
fixed quality throughout the whole domain.

The proposed procedure for constructing the low-
fidelity function fl consists of two steps. A basic dis-
turbance is first defined, which can be added to the
high-fidelity function, similar to the error term used
by Wang et al. (2017). A set of modifications are then
defined, which can be applied to a basic disturbance
so that its impact on the function varies throughout Ω.
A single basic disturbance is used in this work, namely

dist(x,α, ν) � α( fmax − fmin)cos 2πν
||x − xmin||

||xmax − xmin||
( )

sin 2πν
||x − xmin||

||xmax − xmin||
[ ]2( )

:

The disturbance is defined relative to a given
high-fidelity function, with fh : Ω→ [ fmin, fmax] ⊂ R

being bounded by the hypercube Ω � [x1min,x
1
max] ×[x2min,x

2
max] ×⋯× [xdmin,x

d
max]. The constant α modulates

the amplitude of the disturbance, and ν the frequency
of the trigonometric functions. Figure 7 shows the
creation of a function fl via the addition of the disturb-
ance to fh. It is important to note that a single basic dis-
turbance is used in this study to showcase how basic
disturbances can be modified to generate novel instan-
ces that vary greatly from one another. The modi-
fications presented next can be applied to any basic
disturbance, including stochastic disturbances such as
white noise, if the creation of a stochastic function is
desired.

3.2.1. Height-Based Disturbance. Given a basic dis-
turbance dist, a modification can be applied to create
height-based disturbances. Two such modifications
are defined, which modulate the impact of the dis-
turbance based on the objective function value of fh.
The first one adds a disturbance around a particular
height with a decrease in strength as the function
moves away from the given height, with no disturb-
ance being added past a certain point. It is defined as

Disth1(f (x), h, r) � M · dist,

with M � max 0, 1 −
f (x) − fmin

fmax − fmin
− h

∣∣∣∣ ∣∣∣∣
r

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭:

Here, h ∈ [0, 1] specifies the proportional height about
which the disturbance is added, and r ∈ [0, 1] specifies
the proportional radius. This modification can be used
to construct a function fl representing the readout of a
measuring device, for which the accuracy decreases
for certain outputs. The second modification removes
the disturbance around a particular height instead,

Figure 6. (Color online) Comparative Performance of Kriging
and Co-Kriging on the Literature Test Suite, Plotted Using a
Feature from the Literature (CC, y-axis) and a Proposed New
Feature (LCC0:2

0:5, x-axis)

Notes. Each plot point represents an instance, that is, a pair of func-
tions ( fl, fh), and the colour/shape represents which technique per-
formed best, either Kriging (red square), Co-Kriging (green triangle),
or statistically equal performance (yellow circle). Note that the top-
right quadrant is filled with instances where Co-Kriging performs
well, the bottom-left is filled with instances where it does not, and the
top-left and bottom-right regions are almost empty.

Figure 7. (Color online) Basic DisturbanceWhen Added to
the Function fh(x) � x2 with α � 0:3 and ν � 10 to Create a
fl(x) � fh(x) + dist(x,α,ν) Function
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and adds the disturbance past a certain radius. It is
defined by

Disth2(f (x),h, r) �M · dist,

where M �max 0,1−
1− f (x) − fmin

fmax − fmin
− h

∣∣∣∣ ∣∣∣∣
1− r

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭:

Here r and h are similarly defined. This modification
can be used to create a function fl representing a
model constructed for a particular output range in
which the output is accurate, beyond which it starts to
lose accuracy. Both of these modifications can be
added to a fh function in order to create a fl function as
shown in Figure 8.

3.2.2. Location-Based Disturbance. Similarly to height-
based disturbances, location-based disturbances are a
way to modulate the disturbance based on the sample
location of fh, with locations defining sources of accu-
racy or sources of inaccuracy. This can arise in prac-
tice when a measuring device has been created for a
certain variable range, a model has been trained on
data from a particular region, or physical assump-
tions from a model no longer apply in a particular
region. Given a set of locations L � {xs1, : : : ,xsl}, the
first location-based disturbance is therefore defined
to add no disturbance around these locations, with
the disturbance arising with increasing strength past
a certain radius

Dists1(x,L, r) �M · dist,

with M �max 0,1−
1−min{||x− xsi ||}

||xmax − xmin||
1− r

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭:

The second location-based disturbance is defined to
have a disturbance near the locations, with the dis-
turbance decreasing after a certain radius

Dists2(x,L, r) � M · dist,
with M � max 0, 1 −min{||x − xsi ||}

r||xmax − xmin||
{ }

:

Here, r ∈ [0, 1] again denotes the relative radius of the
disturbance. Both of these modifications can also be
added to a fh function to create a fl function, as shown
in Figure 9.

3.3. Augmented Test Suite Construction
The newly defined instance generating procedure is
used to create a large set of instances from which an
augmented test suite can be constructed. The COCO
test suite (Hansen et al. 2021), which is composed of
24 generating functions that can be instantiated
through translation and rotation, is used for this pur-
pose. Therefore, 75 fh functions are created by taking
the first instantiation from functions 1, : : : , 20{ } with
dimensions 1 (except for functions 8, 9, 17, 18, and 19,
which are defined for d ≥ 2), 2, 5, and 10. Each fh
function is then used to construct a set of ( fl, fh) pairs
via the addition of disturbances Disth1,Disth2,Dists1,
or Dists2, using values h ∈ {0, 0:25,0:5, 0:75,1:0}, r ∈
{0:025, 0:05, 0:1, 0:15,0:2, 0:25}, a set L with one,
three, six, or nine randomly chosen locations, and a
basic disturbance with α ∈ {0:1, 0:5, 1:0, 1:5, 2:0} and
ν ∈ {10,100}. This leads to the construction of 81,000
instances, of which a subset is chosen that possess a
variety of CC and LCC0:2

0:5 values. This is achieved by
choosing, when possible, a single instance i of dimen-
sion d satisfying 0:05n− 0:05 ≤ CC(i) ≤ 0:05n and
0:05m− 0:05 ≤ LCC0:2

0:5(i) ≤ 0:05m for n,m ∈ {1, 2, : : : , 20}
and d ∈ {1, 2, 5, 10}. The chosen subset of instances is
added to the literature test suite to construct the aug-
mented test suite.

The set of 81,000 instances as well as the augmented
test suite are shown in Figure 10. As can be seen on
the left plot, despite using a single basic disturbance,
the use of the different modifications allows for the

Figure 8. (Color online) Height-Based Disturbances Added to the Function fh(x) � x2 to Create a Function
fl � fh(x) +Disthi ( fh(x),h, r)

Notes. The modificationDisth1 (left) removes the disturbance around a particular height, whereas the modification Disth2 (right) adds the disturb-
ance around a particular height. The parameters used are h � 0.15 and r � 0.1, with a basic disturbance defined with α � 0:3 and ν � 10.
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creation of instances with a large variation in CC and
LCC0:2

0:5 values, which showcases the procedure’s effec-
tiveness in more diverse instance creation. It is also
worth noting that despite generating many more
instances in the top-left and bottom-right quadrants
than the literature test suite, there are still some
regions with no instances. This makes sense as they
represent extreme regions where instances have either
very large CC and very low LCC0:2

0:5 values, or very low
CC and very large LCC0:2

0:5 values. Whereas such
instances could be created, they are not particularly
practical, and we consider the selected augmented test
suite to be sufficiently diverse for the purposes of this
study.

3.4. Updated Algorithm Performance Analysis
The algorithm performance analysis presented in Sec-
tion 2.2 is repeated with the augmented suite and
additional features. Both Kriging and Co-Kriging are

again used to construct surrogate models a total of 20
times each for each instance, and their comparative
performance is assessed using a two-tailed Wilcoxon
test. The top-performing algorithm for each of the
instances is shown in Figure 11. Interestingly, it
appears at a first glance that the feature CC no longer
provides an accurate means to decide when Co-
Kriging will perform no worse than Kriging as there
appears to be no horizontal line that could be drawn
to separate the instances shown as red squares from
the instances shown as green triangles and yellow
circles.

Further analysis is conducted to assess which fea-
tures have the biggest impact on algorithm perform-
ance. The same prediction techniques are used to
predict when Co-Kriging will perform no worse
than Kriging, including the baselines “always use
Co-Kriging” and a majority rule. Three sets of deci-
sion trees are built, the first using only the CC feature,

Figure 9. (Color online) Location-Based Disturbances Added to the Function fh(x) � x2 to Create a Function
fl � fh(x) +Disthi (x,L, r)

Notes. The modification Dists1 (left) removes the disturbance around the specified locations, and the modification Disth2 (right) adds the disturb-
ance around the locations. The parameters used are r � 0.1 and L � {(−2:5), (4:1)}, with a basic disturbance with α � 0:3 and ν � 10.

Figure 10. (Color online) Set of 81,000 Newly Generated Instances (Left) and Selected Augmented Test Suite (Right), Plotted
Using a Feature from the Literature (CC, y-axis) and a Proposed New Feature (LCC0:2

0:5, x-axis)

Notes. Each plot point represents an instance, that is, a pair of functions ( fl, fh). The addition of the chosen subset to create the augmented test
suite results in a muchmore varied test suite.
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the second using all literature features (CC, RRMSE,
budget, problem dimension), and the third using liter-
ature and new features (CC, RRMSE, budget, problem
dimension, LCC0:2

sd ,LCC
0:2
coeff ,LCC

0:2
0:1, : : : ,LCC

0:2
0:9,LCC

0:2
0:95,

LCC0:2
0:975). The resulting cross-validated accuracies,

averaged over 100 runs, are shown in Table 2 for both
the literature and the augmented test suites. The sec-
ond column presents a strong contrast to the conclu-
sions drawn in Section 2.2. Unlike with the literature
test suite, with the augmented test suite it is best to
choose always to use Kriging (the choice of the major-
ity rule), as choosing to use Co-Kriging chooses the
right technique only 38.8% of the time. It also appears
that the feature CC no longer provides a very accurate
indication of which technique will perform best. The
decision trees constructed using only this feature per-
formed remarkably worse than the ones constructed
using all literature features, and a tree constructed

using all features provides a further improvement in
accuracy.

The importance of variables in the decision trees is
again analysed to examine the impact of each feature
on tree accuracy. Figure 12 shows a final decision tree
constructed using the whole augmented test suite,
and Figure 13 shows the averaged variable impor-
tance of trees constructed using all features over the
100 runs using a training set. The decision tree makes
use of the newly defined feature LCC0:2

0:3 and the litera-
ture feature RRMSE, although interestingly it makes
no use of the feature CC. Figure 13 further shows the
importance of the newly presented features, as the dom-
inant features in terms of importance do not include any
of the literature features. The results obtained through
the analysis of the augmented test suite lead to the fol-
lowing conclusions:

• Although Co-Kriging may be recommended under
special conditions, such as a high CC, when we con-
sider a more comprehensive set of instances we find

Figure 11. (Color online) Comparative Performance of
Kriging and Co-Kriging on the Augmented Test Suite

Notes. Each plot point represents an instance, that is, a pair of func-
tions ( fl, fh) and its position is based on the features correlation coeffi-
cient (CC, y-axis) and local correlation coefficient with threshold 0.5
(LCC0:2

0:5, x-axis). The colour/shape represents which technique per-
formed best, either Kriging (red square), Co-Kriging (green triangle),
or statistically equal performance (yellow circle). Note that LCC0:2

0:5
appears to have a bigger impact on performance than CC.

Table 2. Accuracies of Different Techniques When Predicting When to Use Co-Kriging on the Literature Test Suite and the
Augmented Test Suite

Classification Literature test suite Augmented test suite

Always use Co-Kriging 81.5% 38.8%
Majority rule 81.5% 61.2%
Decision tree, using CC only 90.9% 65.3%
Decision tree, using literature features 91.0% 71.0%
Decision tree, using all features 90.9% 77.3%

Note. The techniques include always using Co-Kriging, a majority rule, and the accuracies of constructing a decision tree using only the CC
feature, using all literature features (CC, RRMSE, budget, problem dimension), or using literature and newly proposed features (CC, RRMSE,
budget, problem dimension, LCC0:2

sd ,LCC
0:2
coeff ,LCC

0:2
0:1, : : : ,LCC

0:2
0:9,LCC

0:2
0:95,LCC

0:2
0:975).

Figure 12. (Color online) Decision Tree Constructed Using
New and Literature Features and the Performance of Co-
Kriging and Kriging on the Augmented Test Suite

LCC_0.3 >= 0.875

RRMSE < 0.0843

yes no

1

2

3

6 7

LCC_0.3 >= 0.875

RRMSE < 0.0843

Should not use Co-Kriging
0.390  0.610

100.0%

Can use Co-Kriging
0.800  0.200

27.8%

Should not use Co-Kriging
0.233  0.767

72.2%

Can use Co-Kriging
0.547  0.453

9.4%

Should not use Co-Kriging
0.185  0.815

62.8%

yes no

1

2

3

6 7

Notes. The label “Can use Co-Kriging” means the tree predicts
Co-Kriging performs no worse than Kriging. The label “Should not
use Co-Kriging” means the tree predicts Co-Kriging performs worse
than Kriging. The percentages indicate the instances present in the
node, and the proportions indicate the proportion of the instances in
the node for which Co-Kriging can be used (left) and for which it
should not be used (right).
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that Co-Kriging is not likely to perform better than
Kriging for many types of instances.

• Choosing to always use Co-Kriging leads to only
38.8% accuracy in predicting which algorithm to use,
with the majority rule choosing to always use Kriging
instead with an accuracy of 61.2% (Table 2). It is therefore
more likely that Co-Kriging will performworse than Krig-
ing except under some very specific conditions.

• The feature CC only gives a rough indication of
when Co-Kriging can be used, as the accuracy of a deci-
sion tree constructed with this feature presents a small
improvement over the majority rule (Table 2) and the
feature importance of CC is very small relative to other
features (Figure 13).

• On the other hand, measures of local correlation
(i.e., how fl behaves locally, and how this behaviour
changes throughout Ω) give a good indication of when
Co-Kriging can be used (Figure 13).

• For problems with a total budget of 5d and a cost
ratio Cr � 0:1, it is beneficial to use fl (through the use of
Co-Kriging) only if fl is often somewhat locally corre-
lated to fh (LCC0:2

0:3 ≥ 0:875), or if the error between fh
and fl is very small (RRMSE < 0.0843).

These conclusions represent a significant diver-
gence from the assumptions presented in the litera-
ture, and the conclusions drawn in Section 2 based on
a more limited set of test instances studied in the exist-
ing literature. These findings show that the choice of
test instances matters, for reasons we discuss further
in the next section.

4. Discussion
Sections 2 and 3 presented a comparative analysis of
the performance of Kriging and Co-Kriging models
through the use of two different instance test suites.
Despite the analysis procedure being identical in both
cases, the resulting conclusions strongly contradict

one another. It is clear from these differences that the
choice of test instances can have a significant impact
on the resulting algorithm analysis, and therefore on
the directions taken in the field of multifidelity surro-
gate modelling and optimisation.

4.1. Impact of New Features
The work of Toal (2015) highlighted the need for some
measure of quality of fl when assessing whether a bifi-
delity technique such as Co-Kriging can be used when
constructing a surrogate model. His work showcased
the usefulness of the feature CC, which has led to sub-
sequent studies (Wang et al. 2017, Song et al. 2019,
Müller 2020, Shi et al. 2020, Lv et al. 2021, van Rijn
et al. 2022) to take this feature into account when per-
forming algorithm analysis and instance creation.
Despite its usefulness, the work presented here shows
the potential shortfalls of this feature, in particular its
global nature. Defining new features that measure the
change in local correlation between fl and fh rather
than overall correlation has revealed the potential bias
present in existing literature instances. Section 2
presents what seems to be a varied literature test suite,
however Section 3 demonstrates that most instances
in this suite have in fact very similar CC and LCC0:2

0:5
values, indicating that the overall quality of fl and its
local quality are similar throughoutΩ in most literature
instances. Many real-world problems, however, show
variation in local fl quality, due to model assumptions
breaking down or device measurements having non-
uniform errors, among others.

The dangers incurred by the bias of the literature
test suite is demonstrated in the accuracy of the differ-
ent classification techniques. Table 2 shows that for
this test suite, Co-Kriging performs no worse than
Kriging most of the time, and therefore in general if a
function fl is available in an EBB problem, it should be
used when constructing a surrogate model. Figure 6,
however, indicates that this is likely the result of most
instances having a large LCC0:2

0:5 value, despite the
whole test suite being varied in terms of the CC fea-
ture. When constructing the augmented test suite
with instances with varying CC and LCC0:2

0:5 values,
Co-Kriging performs no worse than Kriging only
38.3% of the time. This does not mean Co-Kriging is
not a good technique; rather, as Toal points out, one
should be cautious and selective about when to use it.

Interestingly, the use of the feature RRMSE can
increase the accuracy of decision trees for the aug-
mented test suite, as the trees built using literature
features were on average 5.6% more accurate than
trees built using only the CC feature. This is surprising
as, despite this feature being discussed by Toal, little
importance has been given to it in the literature
regarding its impact on algorithm performance. It is

Figure 13. (Color online) Average Variable (Feature) Impor-
tance of 100 Runs When Constructing a Decision Tree Using
New and Literature Features on a Training Data Set Chosen
from the Augmented Test Suite

Note. Notice that the importance of the literature features is quite
small relative to the newly defined features.
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likely, however, that this feature is correlated with the
newly presented features due to the instance creation
procedure used in this work, rather than being a use-
ful feature in and of itself more generally. Indeed, the
variable importance of RRMSE when constructing
decision trees using all features is relatively small
compared with the features with the highest impor-
tance. It appears that out of all features discussed in
this work, those pertaining to local correlation (i.e.,
LCC0:2

coeff and LCC0:2
p ) have the largest impact on model

accuracy.
The usefulness of the newly presented features is also

clearly shown in Table 2. Despite the literature consen-
sus being that the feature CC is sufficient to estimate
whether Co-Kriging can be used, classification trees
constructed using all features achieved a 77.3% accu-
racy on the augmented test suite, which is a significant
improvement over the 65.3% accuracy of trees con-
structed using only the CC feature. It is worth mention-
ing, however, that this accuracy is still far from the 91.0%
accuracy achieved on the more homogeneous literature
test suite alone. This highlights the need for furtherwork
in this area, and in particular the development of new
features, to further assess the intricacies and differences
between heterogeneous instances.

4.2. Impact of New Instances
The results shown in this work also highlight the use-
fulness of the proposed instance creation framework.
Both Toal (2015) and Wang et al. (2017) rightly emphas-
ised the need for new instances in the field of Mf-EBB
surrogate modelling and optimisation, and their work
proposed instance creation techniques that led to a var-
ied set of instances. Their work has been influenced,
however, by the fact that the definition of “varied” has
been based solely on the CC feature. The instance crea-
tion technique proposed by Wang et al. in particular
leads to instances with a variety of CC values and there-
fore a variety of overall fl quality. However, these
instances suffer from having a very high LCC0:2

0:5 value,
indicating that nowhere in Ω does the quality of fl wor-
sen significantly. It is, however, possible in industry
problems that the low-fidelity source of information
worsens only in certain regions due to physical assump-
tions no longer holding, a lack of training data on a sim-
ulation model, or the readout of a measuring device
moving away from its operating range.

The instance generating procedure presented in this
work has shown its ability to create synthetic Bf-EBB
instances with these more real-world characteristics.
Despite only working with a single basic disturbance,
the four modifications (two height based and two
location based) are able to create instances with a
large variety of CC and LCC0:2

0:5 values. These instances
show the promise of defining fl functions with their
quality being affected by either the output of fh or the

region of Ω being sampled. These types of modifica-
tions can be further adapted to suit the needs of the
instance being created. The basic disturbance could be
modified to closely resemble an error term found in a
particular industry, such as the creation of stochastic
instances via the use of white noise as the basic dis-
turbance. The impact of the modification could also be
altered, for instance defining the modification to
“flatline” fh in certain regions when creating fl, in order
to represent a loss in the ability of fl to represent the
intricate behaviour of fh. The procedure could also be
modified to construct Mf-EBB instances with more
than two levels of fidelity by modulating the impact of
the added disturbance based on the fidelity level. This
could be achieved by modulating the amplitude of the
basic disturbance, or by increasing/decreasing the
radius of the final disturbance.

5. Conclusion
This study has highlighted the need for both new fea-
tures and new instances in the field of Bf-EBB through
the analysis of surrogate model accuracy, both when
assessing algorithm performance and when develop-
ing rules to predict when a two-source algorithm can
be used in a bifidelity setting. A framework for
new instance creation procedures has been proposed,
which is shown to create extremely varied instances,
some of which are very different from any seen in the
literature and are capable of representing important
real-world characteristics. These procedures showcase
the potential of quantifying instances using local
rather than global features. New features are also pre-
sented that can better differentiate between instances,
furthering the understanding of what impacts the per-
formance of a particular algorithm in this field.

The work presented here constitutes a proof of con-
cept rather than a complete work, however, and has
some limitations. Despite the computational setup
being very similar to that of Toal (2015), this study is
more limited in the sense that both the sample budget
and the cost ratio have been fixed to 5d and Cr � 0:1,
respectively. For this reason, it is important to place
the obtained results in perspective. Namely, the deci-
sion tree presented at the end of Section 3 stating that
Co-Kriging can be used for instances with LCC0:2

0:3 ≥
0:875 or RRMSE < 0.0843 should be taken as an indi-
cation of the importance of these features, rather than
as a set of rules to be followed in further work. Further-
more, whereas it is quite likely that the newly presented
features will have a significant impact on algorithm per-
formance for other budgets and cost ratios, the general-
isation of these findings to other experimental settings
remains to be conducted in futurework.

This study has also been restricted to the analysis of
surrogate model accuracy given a fixed sample. It is
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not clear, however, whether a technique that will cre-
ate the most accurate model given an initial sample
will do so also if given a further sampling budget, and
whether it will also perform best in function optimisa-
tion. Within this context, the usefulness of the new
instances and features presented here remains to be
studied. Furthermore, this work has looked at single-
source versus two-source algorithm performance in
the form of Kriging versus Co-Kriging. These techni-
ques, however, are by no means the only ones avail-
able. In answering the question of when a two-source
algorithm can safely be used for a bifidelity problem,
many such algorithms should be considered. Further
work in this area should pay special attention to
newly presented techniques that focus on bifidelity
instances for which fl and fh are not necessarily corre-
lated. The work of both van Rijn et al. (2022) andMüller
(2020) are of particular interest in this regard, as they
both present ways of dealing with instances with dif-
ferent CC values, the former in surrogate model accu-
racy and the latter in function optimisation. Further
analysis of these techniques in the context of the newly
defined instances and features would be beneficial.

Finally, the increase in scope of future analysis in
terms of varying instance budgets and cost ratios, and
simultaneous assessment of multiple algorithms, will
require the use of more sophisticated classification
and prediction techniques. In this work, a relatively
simple machine learning method in the form of deci-
sion trees has been used. This choice can be justified
due to the relative simplicity of the classification “can
Co-Kriging be used or not?” Furthermore, the aim
here has not been to obtain a set of rules that further
researchers should follow, but rather to showcase the
importance of the presented instances and features.
Further study will require an analysis of how well
each of the features can be approximated given a lim-
ited budget, and the adoption of more sophisticated
classification and prediction techniques. Instance
space analysis (Muñoz and Smith-Miles 2017) in par-
ticular is likely to be beneficial for future analysis, as it
has been shown to support a more insightful analysis
of which features have an impact on algorithm per-
formance, the strengths and weaknesses of different
algorithms, and for which types of instances certain
algorithms can be expected to outperform others.
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Andrés-Thió, Muñoz, and Smith-Miles: Bifidelity Surrogate Modelling
3022 INFORMS Journal on Computing, 2022, vol. 34, no. 6, pp. 3007–3022, © 2022 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

25
0.

0.
11

5]
 o

n 
22

 D
ec

em
be

r 
20

22
, a

t 1
4:

31
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 

http://www.sfu.ca/~ssurjano

	s1
	s2
	s2A
	s2B
	TF1
	s3
	s3A
	s3B
	s3B1
	s3B2
	s3C
	s3D
	TF2
	s4
	s4A
	s4B
	s5

