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An Instance Space Analysis of Constrained
Multi-Objective Optimization Problems

Hanan Alsouly, Michael Kirley, and Mario Andrés Muñoz,

Abstract—Constrained multi-objective optimization problems
(CMOPs) are generally more challenging than unconstrained
problems. This in part can be attributed to the infeasible region
generated by the constraint functions, the interaction between
constraints and objectives, or both. In this paper, we explore
the relationship between the performance of constrained multi-
objective evolutionary algorithms (CMOEAs) and the instance
characteristics of CMOP using Instance Space Analysis (ISA).
To do this, we extend recent work on Landscape Analysis
features for characterising CMOPs. Specifically, we introduce
new features to describe the multi-objective-violation landscape,
formed by the interaction between constraint violation and multi-
objective fitness. Detailed evaluation of the algorithm footprints,
spanning eight CMOP benchmark suites and fifteen CMOEAs,
demonstrates that ISA effectively captures the strength and
weakness of the CMOEAs. We conclude that two characteristics,
the isolation of non-dominate set and the correlation between
constraints and objectives evolvability, have the greatest impact
on algorithm performance. However, the current benchmarks
problems lack of diversity to represent the real-world problems
and to fully reveal the efficacy of CMOEAs evaluated.

Index Terms—constrained multiobjective optimization, prob-
lem characterization, landscape analysis, algorithm selection,
evolutionary algorithm.

I. INTRODUCTION

CONSTRAINED multi-objective optimization problems
(CMOPs) involve searching for the best trade-off be-

tween multiple conflicting objectives subject to one or more
constraints. Many real-world optimization problems match this
description, in areas as diverse as mechanical design, chemical
engineering, and power system optimization [1]. Generally, a
CMOP is more challenging than its unconstrained counterpart
due to the addition of one or more constraint functions, and the
resulting interactions between the constraints and the objec-
tives [2]. Constraints may change the shape and location of the
Pareto front (PF), often creating a small and possibly disjoint
feasible region, resulting in additional difficulties when at-
tempting to estimate the PF . Consequently, several constrained
multi-objective evolutionary algorithms (CMOEAs) have been
introduced to specifically tackle CMOPs [3]. However, as per
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many other problem domains, practice has shown that no
single algorithm outperforms all other algorithms across all
problem instances [1], [4]. Each algorithm has its strengths
and weaknesses, and it is difficult to choose the best one
for solving a particular instance. Therefore, it is necessary
to understand when an algorithm is suitable or not, i.e.,
when it performs well and when it fails, which requires an
understanding of the characteristics of the instances being
solved, e.g. multi-modality and variable scaling, and what
distinguish the instances from each other [5].

In this paper, we explore the relationship between CMOEA
performance and the instances characteristics of CMOP using
Instance Space Analysis (ISA). Proposed by Smith-Miles et
al., [6], ISA is a methodology for assessing the difficulty
of a set of problem instances for a group of algorithms.
Figure 1 illustrates ISA’s framework, which uses a meta-
data set consisting of features that characterize a set of
instances, and performance measures of a group of algorithms
on those instances. Then, by selecting a subset of uncorrelated
features that are predictive of algorithm performance, and
using a tailored dimensionality reduction method, the meta-
data is projected into a 2-dimensional plane called the instance
space. Within this, each instance is represented as a point,
allowing for the visualization of the similarities and differences
between instances, in terms of characteristics and algorithm
performance. An examination of the generated instance space
can then be used to identify regions of good performance,
called footprints, where an algorithm is expected to perform
well and why.

ISA has been employed successfully on related problem
domains. For example, Yap et al., [7] performed an ISA of
combinatorial multi-objective optimization problems (MOPs),
discovering that MOEA/D is preferred, not only when the
number of objectives increased, but also when the degree
of conflict between objectives decreased. Similarly, Muñoz
and Smith-Miles [8] analyzed the space of continuous single-
objective optimization problems, identifying that multi-modal
instances with adequate global structure are hard to solve by
most studied algorithms with the exception of BIPOP-CMA-
ES. In both works, Landscape Analysis features [9] were
employed to characterize a problem instance. Therefore, a
necessary first step when applying ISA for CMOP will be
to identify and calculate appropriate, informative Landscape
Analysis features.

Recent works have proposed Landscape Analysis features
for characterizing MOPs. Kerschke et al., [11] studied the no-
tion of multimodality in MOPs and provided a set of features
to quantify it, whilst Liefooghe et al., [12] extended previous
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Fig. 1. Summary of the Instance Space Analysis framework [10].

works in the combinatorial MOPs domain to characterize
continuous MOPs, focusing on multimodality, evolvability,
and ruggedness. Unfortunately, it is not a straight forward
task to identify Landscape Analysis features for CMOPs.
However, the features described above can be used in the
CMOPs domain to help characterize the objective space. Still,
features associated with the constraints’ violation, and features
representing the interaction between objectives and constraints
are required.

There have been limited attempts to characterize constrained
optimization problems. For example, for single-objective prob-
lems (COPs), Malan et al., [13] defined the concept of a
violation landscape, proposing four features to characterize
the feasible and constrained spaces. In other work, Poursoltan
and Neumann [14] introduced a biased sampling technique to
quantify the ruggedness of a COP. Picard and Schiffmann [15]
focussing on CMOPs, adopted two features from [13], and
extended another so that it could be used to measure ‘dis-
jointedness’ of the feasible region. They also proposed two
features to quantify the relationship between the objectives
and constraints. Vodopija et al., [16] were the first to introduce
violation multimodality in CMOPs, proposing a set of features
to characterize violation multimodality, smoothness, and the
correlation between the objectives and constraints. They then
used those features to compare the characteristics of eight
benchmark problem suites against a real-world suite. This
work did provide important insights. However, the approach
was limited to the violation landscape and did not capture
important aspects that need to be quantified, such as the
relationship between the constrained and unconstrained PF,
or the ruggedness and evolvability of the multi-objective-
violation landscape.

To construct the first ISA for continuous CMOPs, we intro-
duce the multi-objective-violation landscape, formed by the
interaction between constraint violation and multi-objective
fitness. This requires the introduction of 12 new features and
modification of 22 existing features to quantify the character-
istics of the violation landscape and multi-objective-violation
landscape. The meta-data set is then generated for the instance

space by processing the features for eight CMOP benchmark
suites and the performance of 15 CMOEAs.

Comprehensive analysis of the generated footprints illus-
trates that ISA effectively captures the strength and weakness
of the CMOEAs. A key observation is that there are two
characteristics in particular that affect the performance of most
CMOEAs – the isolation of the non-dominate set and the
correlation between constraints and objectives. However, the
performance of each CMOEA is affected by a different set of
features. Importantly, the footprints provide strong supporting
visual evidence as to which characteristics are necessary if
any new proposed benchmarks are to significantly challenge
CMOEAs.

The remainder of the paper is organized as follows: Sec-
tion II presents a detailed discussion of related work and
thoroughly outlines the ISA methodology followed in this
study. Specifically, we describe the ISA methodology and its
components, which include a definition of CMOPs, bench-
mark suites, landscape features, CMOEAs, and performance
metrics. Section III introduces the multi-objective-violation
landscape and describes new Landscape Analysis features
designed to help characterize this space. Section IV describes
the experimental setup. The results are presented and discussed
in Section V. Finally, Section VI concludes the paper.

II. INSTANCE SPACE ANALYSIS

Instance Space Analysis (ISA) traces its foundations to
Rice’s framework for solving the Algorithm Selection Prob-
lem [17], which suggests the construction of a selection
mapping between measurable features of a problem and a set
of suitable algorithms; and Wolpert and Macready’s No-Free
Lunch theorems [18], which state that an algorithm is unlikely
to outperform all other algorithms on all possible instances.
Figure 1 illustrates ISA’s framework, which has at its core
six component spaces or sets [10]: (a) the problem space,
P , containing all the relevant instances of a problem in an
application domain; (b) a subset of instances, I, for which
we have meta-data from computational experiments; (c) the
feature space, F , which includes features used to characterize
the mathematical and statistical properties of the instances;
(d) the algorithm space, A, representing the set of algorithms
available to solve all instances in I; (e) the performance space,
Y , composed of a measure of the computational effort to
obtain a satisfactory solution; and (f) the instance space, a 2-
dimensional visualization that aids in the observation of trends
in hardness for different algorithms, and facilitates insights
into the distribution of existing instances.

The remainder of this section describes the details for each
one of the spaces in the ISA framework, tailored specifi-
cally for CMOPs. We start with P by formally defining a
CMOP. Then, we present I, drawn from seven commonly used
benchmark suites and a real-world suite. Next, we describe
F , where we summarize the features used for characterizing
CMOPs. We follow by describing A, by briefly presenting
the 15 algorithms under test, and Y by formally defining the
hyper-volume and IGD+, our performance metrics.
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Fig. 2. Effect of constraints on the PF : (a) The UPF is no longer feasible, and the true PF lies completely on bounds of the feasible region; (b) part of
the UPF is no longer feasible, and parts of the true PF lies on bounds of the feasible region; (c) the true PF is only a proportion of the UPF ; and (d) an
infeasible region blocks the way toward the PF .

A. Problem Space

A CMOP can be defined as finding a vector of decision
variables that optimizes a set of objective functions and
satisfies a set of restrictions. Without loosing generality, we
assume minimization. A CMOP can be mathematically defined
as follows:

min fm(x), m = 1,2, . . . ,M
s.t. g j(x)≥ 0, j = 1,2, . . . ,J

hk(x) = 0, k = 1,2, . . . ,K
x(L)i ≤ xi ≤ x(U)

i , i = 1,2, . . . ,n

 (1)

where a solution x ∈ Rn is a vector of n decision variables,
f (x) is a vector of M objectives to be optimized, g(x) is set
of J inequality constraints, while h(x) is set of K equality
constraints, and x(L)i and x(U)

i represent respectively the lower
and upper bounds of a decision variable xi. The constraints’
violation of a solution x can be calculated by using the
following equation:

CV (x) =

√√√√ J

∑
j=1

G j (x)
2 +

K

∑
k=1

Hk (x)
2 (2)

where
G j (x) = max

(
0,g j (x)

)
(3)

and
Hk (x) = max

(
0,
∣∣hk (x)

∣∣− ε

)
(4)

where ε is a small value
(

10−4
)

to relax the equality con-
straints. A solution to the problem is feasible when CV (x) = 0,
otherwise the solution is infeasible.

A solution x ∈ Rn is said to be Pareto optimal if there
is no other feasible solution y ∈ Rn such that f (y) ≺ f (x),
where ≺ indicates the Pareto dominance relation. That is, a
feasible solution x dominates a feasible solution y if and only
if (∀m) fm(x) ≤ fm(y) and (∃m) fm(x) < fm(y). Because of
the conflicting nature of the multiple objectives, optimizing
one objective function may lead to a degradation in another.
Therefore, a single optimal solution may no longer be found,
but instead a set of trade-off solutions, the so-called Pareto
optimal set (PS), i.e., PS = {x∗ ∈ Rn|∄x ∈ Rn, f (x) ≺ f (x∗)}.
Those set of solutions represent the Pareto optimal front (PF)
in the objective space, i.e., PF = { f (x),x∗ ∈ PS}.

When solving a MOP, an algorithm aims to find an es-
timated front, P̃F , that has converged, i.e., is as close as

possible to the PF , and is diverse, i.e., represents the whole
PF . In CMOPs, the feasibility of the solution(s) must also
be considered. The true, constrained, PF of a CMOP can be
determined by the unconstrained PF (UPF) and bounds of the
feasible region in the objective space. Having a low proportion
of feasible region typically adds to the challenge/difficulty of
the search process. In addition, the infeasible region may affect
the shape of the PF or split it into many segments, which may
impact the algorithm’s ability to provide diversity in its solu-
tions. That is, the infeasible region may block the trajectory
of the search towards PF , limiting convergence [2]. Figure 2
illustrates examples of difficulties caused by constraints.

B. Subset of instances

If the evaluation of the performance of an algorithm is to
be meaningful in practice, test problems should cover as many
characteristics of real-world problems as possible. Several
CMOP benchmarks have been designed with this goal in
mind. Ma and Wang [19] proposed a classification of CMOPs
depending on the relationship between UPF and the PF :
Type I where the PF is same as the UPF .
Type II where the PF is part of the UPF .
Type III where the PF contains all or part of the UPF and

solutions on the boundary of the feasible region.
Type IV where the PF is completely located on the boundary

of the feasible region.
In this study, we have used a range of diverse benchmark

suites with a wide range of characteristics, which are sum-
marized in Table I. Specifically, six inequality constrained
benchmark suites: CF [20], C-DTLZ [21], DC-DTLZ [22],
LIR-CMOP [23], DAS-CMOP [2], and MWs [19], and an
equality constrained suite: Eq-DTLZ [24]. In addition, we
have used a real-world suite, RWMOP [1], to compare the
characteristics of synthetic benchmarks with the real-world
problems.

C. Feature Space

Landscape Analysis are methods used to quantify the char-
acteristics of a problem’s landscape, which is described as a
surface in the search space that defines a certain aspect of
the problem, such as fitness for each potential solution [5].
Stadler [25] defined a general form of the fitness landscape
for a problem as the triplet (X ,N, f ), where X is a set of
potential solutions, f is a fitness function, and N is a notion of
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TABLE I
CHARACTERISTICS OF THE BENCHMARKS EMPLOYED IN THIS STUDY. ALL

OF THEM HAVE A SCALABLE NUMBER OF DECISION VARIABLES. Type
DESCRIBES THE RELATIONSHIP BETWEEN UPF AND PF , M IS THE

NUMBER OF OBJECTIVES, CF IS THE NUMBER OF CONSTRAINTS, UPF
AND PF COLUMNS DEFINE THEIR SHAPE, AND THE SIZE AND

CONNECTIVITY OF THE FEASIBLE REGION IS GIVEN IN THE LAST
COLUMN. S IS SHORT FOR SCALABLE, C FOR CONTROLLABLE, Disconn

FOR DISCONNECTED, Conn FOR CONNECTED, L FOR LARGE, AND S FOR
SMALL.

Problem Type M CF UPF PF Feasible Region

CF1 II 2 1 Linear Disconn L/Conn
CF2 II 2 1 Convex Disconn L/Conn
CF3 II 2 1 Concave Disconn L/Conn
CF4 III 2 1 Linear Linear L/Conn
CF5 III 2 1 Linear Linear L/Conn
CF6 III 2 1 Convex Mixed L/Conn
CF7 III 2 1 Convex Mixed L/Conn
CF8 II 3 1 Concave Disconn L/Conn
CF9 II 3 1 Concave Disconn L/Conn
CF10 II 3 1 Concave Disconn L/Conn
C1-DTLZ1 I S 1 Linear Linear S/Conn
C2-DTLZ2 II S 1 Concave Concave S/Disconn
C1-DTLZ3 I S 1 Concave Concave L/Disconn
C3-DTLZ4 IV S M Concave Concave L/Conn
DC1-DTLZ1 II S 1 Linear Disconn C/Disconn
DC1-DTLZ3 II S 1 Concave Disconn C/Disconn
DC2-DTLZ1 I S 2 Linear Linear S/Disconn
DC2-DTLZ3 I S 2 Concave Concave S/Disconn
DC3-DTLZ1 II S M Linear Disconn C/Disconn
DC3-DTLZ3 II S M Concave Disconn C/Disconn
Eq1-DTLZ1 II S S Linear Linear Undefined
Eq1-DTLZ2 II S S Concave Concave Undefined
Eq1-DTLZ3 II S S Concave Concave Undefined
Eq1-DTLZ4 II S S Concave Concave Undefined
Eq1-iDTLZ1 II S S Linear Linear Undefined
Eq1-iDTLZ2 II S S Convex Convex Undefined
Eq2-DTLZ1 II S S Linear Linear Undefined
Eq2-DTLZ2 II S S Concave Concave Undefined
Eq2-DTLZ3 II S S Concave Concave Undefined
Eq2-DTLZ4 II S S Concave Concave Undefined
Eq2-iDTLZ1 II S S Linear Linear Undefined
Eq2-iDTLZ2 II S S Convex Convex Undefined
DAS-CMOP1 C 2 11 Concave Disconn C/C
DAS-CMOP2 C 2 11 Mixed Mixed C/C
DAS-CMOP3 C 2 11 Disconn Disconn C/C
DAS-CMOP4 C 2 11 Concave Disconn C/C
DAS-CMOP5 C 2 11 Mixed Mixed C/C
DAS-CMOP6 C 2 11 Disconn Disconn C/C
DAS-CMOP7 C 3 7 Linear Disconn C/C
DAS-CMOP8 C 3 7 Concave Disconn C/C
DAS-CMOP9 C 3 7 Concave Disconn C/C
LIR-CMOP1 IV 2 2 Concave Concave S/Conn
LIR-CMOP2 IV 2 2 Convex Convex S/Conn
LIR-CMOP3 IV 2 3 Concave Disconn S/Disconn
LIR-CMOP4 IV 2 3 Convex Disconn S/Disconn
LIR-CMOP5 I 2 2 Convex Convex S/Disconn
LIR-CMOP6 I 2 2 Concave Concave S/Disconn
LIR-CMOP7 IV 2 3 Convex Concave S/Disconn
LIR-CMOP8 IV 2 3 Concave Concave S/Disconn
LIR-CMOP9 II 2 2 Concave Disconn S/Disconn
LIR-CMOP10 II 2 2 Convex Disconn S/Disconn
LIR-CMOP11 III 2 2 Convex Disconn S/Disconn
LIR-CMOP12 III 2 2 Concave Disconn S/Disconn
LIR-CMOP13 I 3 2 Mixed Mixed S/Disconn
LIR-CMOP14 II 3 3 Mixed Mixed S/Disconn
MW1 II 2 1 Linear Disconn S/Disconn
MW2 I 2 1 Linear Linear S/Disconn
MW3 III 2 2 Linear Mixed S/Conn
MW4 I S 1 Linear Linear S/Conn
MW5 II 2 3 Concave Disconn S/Conn
MW6 II 2 1 Concave Disconn S/Disconn
MW7 III 2 2 Concave Disconn S/Conn
MW8 II S 1 Concave Disconn S/Disconn
MW9 IV 2 1 Convex Concave S/Conn
MW10 III 2 3 Concave Disconn S/Disconn
MW11 IV 2 4 Concave Disconn S/Disconn
MW12 IV 2 2 Mixed Mixed S/Disconn
MW13 III 2 2 Disconn Disconn S/Disconn
MW14 I S 1 Disconn Disconn S/Conn

neighborhood relation. The Euclidean distance is usually used
in continuous optimization to quantify the solutions’ relations.

CMOP involves multiple fitness and constraint functions;
hence, Stadler’s definition of fitness landscape cannot be
directly applied in this work. Verel et al., [26] defined the
multi-objective landscape, and Malan et al., [13] introduced
the violation landscape. However, these two landscapes treat
constraints and objectives independently. Therefore, they do
not capture the interaction between them, which is essential
for CMOPs. In Section III, we formally describe our proposed
solution to this problem. Specifically, we propose the multi-
objective-violation landscape. However, before details are pre-
sented, we position our contribution within Smith-Miles’s ISA
framework by providing a summary of the three landscapes
and their features below. It should be noted that the Landscape
Analysis features used do not require knowledge of the PS,
apart from the HV-based features, which require a reference
point.
Multi-Objective Landscape In multi-objective optimization,

we are dealing with multiple fitness functions and a set
of optimal solutions. Therefore, we use the definition of
multi-objective landscape proposed by Verel et al., [26].
The Landscape Analysis features used to characterize
the multi-objective landscape has been adopted from the
literature and summarized in Table II.

Violation Landscape To characterize COP, Malan et al., [13]
introduced the violation landscape, which uses the vio-
lation function to quantify a solution fitness. Here, we
use the norm of constraints violation vector as calculated
in Equation 2. We propose an extended set of features
in section III-B to capture the underlying characteristics.
The violation landscape features are summarized in Ta-
ble III.

Multi-Objective-Violation Landscape In Section III-A, we
define the multi-objective-violation landscape, which is
constructed based on the interaction between constraint
violation and multi-objective fitness. We also propose a
set of features to characterize this landscape. Table IV
lists the features of the multi-objective-violation land-
scape. The table includes new, modified, and adopted
features.

D. Algorithm Space

Specialized versions of multi-objective evolutionary algo-
rithms (MOEAs) have been designed with constraints handling
techniques, so called constrained multi-objective evolutionary
algorithms (CMOEAs), to maintain the necessary balance
between optimizing objectives and satisfying constraints in
CMOP. There are three categories of CMOEAs [33]:
Prioritize constraints Methods in this category pressure the

search toward a feasible region. However, algorithms may
get trapped in a small part of the feasible region because
of the bias toward infeasible solutions. Representative
methods of this category include using the principle of
constraint dominance such as NSGAII, DCMOEAD [34],
and ANSGAIII [21], a relaxed version of constraint
dominance such as ε-constraint [23]. ECNSGAII and
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TABLE II
THE FEATURES USED TO CHARACTERIZE THE MULTI-OBJECTIVES LANDSCAPE OF CMOP.

Type Feature Description Source Focus

Global

upo n Proportion of unconstrained PO solutions [27] Set-Cardinality
uhv Hypervolume-value of the ŨPF [28] Set-Distribution
corr obj correlation between objective values [29] evolvability
mean f Average of unconstrained ranks [12] y-distribution
std f Standard deviation of unconstrained ranks [5] y-distribution
max f Maximum of unconstrained ranks [5] y-distribution
skew f Skewness of unconstrained ranks [5] y-distribution
kurt f Kurtosis of unconstrained ranks [5] y-distribution
kurt avg Average of objectives kurtosis [5] y-distribution
kurt min Minimum of objectives kurtosis [5] y-distribution
kurt max Maximum of objectives kurtosis [5] y-distribution
kurt rnge Range of objectives kurtosis [5] y-distribution
skew avg Average of objectives skewness [5] y-distribution
skew min Minimum of objectives skewness [5] y-distribution
skew max Maximum of objectives skewness [5] y-distribution
skew rnge Range of objectives skewness [5] y-distribution
f mdl r2 Adjusted coefficient of determination of a linear regression model for varibles and

unconstrained ranks
[5] variable scaling

f range coeff Difference between maximum and minimum of the absolute value of the linear model
coefficients

[5] variable scaling

Random Walk

dist f avg rws Average distance from neighbours in the objective space [12] evolvability
dist f r1 rws First autocorrelation coefficient of dist f avg rws [12] ruggedness
dist f dist x avg rws Ratio of dist f avg rws to dist x avg rws [12] evolvability
dist f dist x avg r1 First autocorrelation coefficient of dist f dist x avg rws [12] ruggedness
nuhv avg rws Average unconstrained hypervolume-value of neighborhood’s solutions [29] evolvability
nuhv r1 rws First autocorrelation coefficient of nuhv avg rws [29] ruggedness

TABLE III
THE FEATURES USED TO CHARACTERIZE THE VIOLATION LANDSCAPE OF CMOP. THE PROPOSED FEATURES MARKED AS NEW, WHILE THE (*)

INDICATES THAT THE FEATURE HAS BEEN MODIFIED TO CHARACTERIZE CMOP.

Type Feature Description Source Focus

Global

min cv Minimum of constraints violations [5] * y-distribution
skew cv Skewness of constraints violations [5] * y-distribution
kurt cv Kurtosis of constraints violations [5] * y-distribution
cv mdl r2 Adjusted coefficient of determination of a linear regression model for varibles and

violations
[5] * variable scaling

cv range coeff Difference between maximum and minimum of the absolute value of the linear model
coefficients

[5] * variable scaling

dist c corr Violation-distance correlation [30] * deception

Random Walk

dist c avg rws Average distance from neighbours in the constraints space [12] * evolvability
dist c r1 rws first autocorrelation coefficient of dist c avg rws [12] * ruggedness
dist c dist x avg rws Ratio of dist c avg rws to dist x avg rws [12] * evolvability
dist c dist x r1 rws First autocorrelation coefficient of dist c dist x avg rws [12] * ruggedness
ncv avg rws Average single solution’s violation-value New evolvability
ncv r1 rws first autocorrelation coefficient of ncv avg rws New ruggedness
nncv avg rws Average neighborhood’s violation-value New evolvability
nncv r1 rws first autocorrelation coefficient of nncv avg rws New ruggedness
bncv avg rws Average violation-value of neighborhood’s non-dominated solutions New evolvability
bncv r1 rws first autocorrelation coefficient of bncv avg rws New ruggedness

ECMOEAD apply an improved version of ε-constraint
which has been proposed in [35].

Consider objectives and constraints equally A method be-
longing to this category treats constraints as part of the
objective functions [36] by including static or dynamic
penalty factor in the objectives [37] such as ε-constraint
dynamic penalty [38], which has been used in PEC-
NSGAII and PECMOEAD. Other methods objectivize
the constraints [39], or switch between dominance re-
lation to compare constraints and dominance to com-
pare objectives by using stochastic ranking [40], which
has been implemented in SRNSGAII and SRCMOEAD.
Alternatively they use the status of the search such as
CMOEA MS [33]. These approaches provide good bal-
ance between exploring feasible and non-feasible regions,

however, they may suffer in convergence.
Hyper-strategies Methods in this category use different

strategies in different populations or stages. They aim to
balance objectives and constraints by favoring one or both
in each stage of the search or in different populations.
For example, CTAEA [22] uses two archives, one to
maintain convergence by optimizing both constraints and
objectives, while the second archive is used to maintain
diversity, and it considers optimizing objectives only. On
the other hand, CCMO [41] uses two populations, one to
solve the original CMOP and another to solve a helper
problem derived from the original one. Another approach
is to use multiple stages of the search, MOEADDAE [38]
uses the first stage to push the search toward feasible
solutions by prioritizing constraints and the second stage
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TABLE IV
THE FEATURES USED TO CHARACTERIZE THE MULTI-OBJECTIVES-VIOLATION LANDSCAPE OF CMOP. THE PROPOSED FEATURES MARKED AS NEW,

WHILE THE (*) INDICATES THAT THE FEATURE HAS BEEN MODIFIED TO CHARACTERIZE CMOP.

Type Feature Description Source Focus

Global

fsr Feasibility ratio [13] Set-Cardinality
po n Proportion of PO solutions [27] Set-Cardinality
hv Hypervolume-value of the P̃F [28] Set-Distribution
cpo upo n Proportion of P̃F to ŨPF New PF and UPF corre-

lation
hv uhv n Proportion of HV to unconstrained HV New PF and UPF corre-

lation
GD cpo upo distance between P̃F and ŨPF New PF and UPF corre-

lation
cover cpo upo Proportion of ŨPF covered by P̃F New PF and UPF corre-

lation
corr cobj min Minimum constraints and objectives correlation [16] evolvability
corr cobj max Maximum constraints and objectives correlation [16] evolvability
corr cf Constraints and ranks correlation [13] * evolvability
piz ob min Minimum proportion of solutions in ideal zone per objectives [13] * Optima isolation
piz ob max Maximum proportion of solutions in ideal zone per objectives [13] * Optima isolation
piz f Proportion of solutions in ideal zone [13] * Optima isolation
ps dist max Maximum distance across PS [27] PS connectivity
ps dist mean Average distance across PS [31] PS connectivity
ps dist iqr mean Average difference between 75th and 25th percentiles of distances across PS [31] PS connectivity
pf dist max Maximum distance across PF [32] PF discontinuouty
pf dist mean Average distance across PF [32] PF discontinuouty
pf dist iqr mean Average difference between 75th and 25th percentiles of distances across PF [32] PF discontinuouty

Random Walk

sup avg rws Average proportion of neighbors dominating the current solution [29] evolvability
sup r1 rws First autocorrelation coefficient of sup avg rws [29] ruggedness
inf avg rws Average proportion of neighbors dominated by the current solution [29] evolvability
inf r1 rws First autocorrelation coefficient of inf avg rws [29] ruggedness
inc avg rws Average proportion of neighbors incomparable to the current solution [29] evolvability
inc r1 rws First autocorrelation coefficient of inc avg rws [29] ruggedness
lnd avg rws Average proportion of locally non-dominated solutions in the neighborhood [29] evolvability
lnd r1 rws First autocorrelation coefficient of lnd avg rws [29] ruggedness
dist x avg rws Average distance from neighbours in the variable space [12] evolvability
dist x r1 rws First autocorrelation coefficient of dist x avg rws [12] ruggedness
dist f c avg rws Average distance from neighbours in the objective-constraints space [12] * evolvability
dist f c r1 rws First autocorrelation coefficient of dist f c avg rws [12] * ruggedness
dist f c dist x avg rws Ratio of dist f c avg rws to dist x avg rws [12] * evolvability
dist f c dist x avg r1 First autocorrelation coefficient of dist f c dist x avg rws [12] * ruggedness
nhv avg rws Average hypervolume-value of feasible neighborhood’s solutions [29] * evolvability
nhv r1 rws First autocorrelation coefficient of nhv avg rws [29] * ruggedness
bhv avg rws Average hypervolume-value of neighborhood’s non-dominated solutions [29] * evolvability
bhv r1 rws First autocorrelation coefficient of bhv avg rws [29] * ruggedness
nfronts avg rws Average number of ranks New evolvability
nfronts r1 rws first autocorrelation coefficient of nfronts avg rws New ruggedness
rfbx rws avg Average ratio of feasible boundary crossings [13] Dispersion of the

feasible regions

to favor objectives in order to escape local optima, whilst
PPS [35] pushes the search towards UPF , then, pulls it to
the feasible region. ToP [42] converts CMOP into COP in
the first stage, then uses a CMOEA in the second stage.

E. Performance Space

The most commonly used performance indicators when
optimizing CMOPs are the hypervolume (HV ) [1], [43], and
the inverted generational distance (IGD+) [44], which evaluate
the convergence and diversity of the P̃F . The HV quantifies
the volume of the objective space covered by P̃F and a
reference point to measure P̃F convergence and distribution.
The reference point, r, is a vector that has objective values
worse than any values in the P̃F . To overcome HV bias, a
common reference point r = (1.1, . . . ,1.1)(T ) is used with the
normalized PF and objectives [45]. The larger the value of the
HV , the better the approximation of the true PF . The second
performance indicator, IGD+, evaluates the convergence and
diversity of P̃F by measuring the distance between a PF and
the dominated points in its approximation. The closer the value

to zero the better. IGD+ requires a reference set and can only
be used in problems with known PF .

III. CHARACTERIZING CMOP LANDSCAPES

In this section, we describe the concept of the multi-
objective-violation landscape in detail. We also propose a
set of local structured-based Landscape Analysis features
collected by random walks, and global unstructured-based
Landscape Analysis features approximated by random sam-
ples [46] for the multi-objective-violation landscapes and the
violation landscapes.

A. Multi-Objective-Violation Landscapes

The multi-objective-violation landscape replaces Stadler’s
fitness function, f , by using the constraint domination prin-
ciple [34] to measure the quality of solutions in the search
space. Given two solutions x and y, x is said to have better
quality or higher rank than y if any of the following conditions
is true: (a) the solution x is feasible and the solution y is not;
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(b) both solutions are infeasible but x has smaller constraint
violation norm; or (c) x and y are both feasible or have similar
constraint violation norm, but x dominates y w.r.t. objectives
only.

Here, we propose six features to characterize a multi-
objective-violation landscape. As described in section II-B, the
relationship between the PF and the UPF may cause some
difficulty; therefore, four new features have been proposed to
quantify the relationship between an approximation of the PF
(P̃F) and an approximation of the UPF (ŨPF) by using a
random sample:

1) Proportion of PF to UPF (cpo upo n) approximates the
size of the constrained non-dominated solutions set in
relation to the unconstrained non-dominated solutions set.
Given a random sample of n points, cpo upo n is defined
as:

cpo upo n =
|po|
|upo|

(5)

2) Proportion of HV to unconstrained HV (hv uhv n) mea-
sures the hv in relation to the volume of the objective
space covered by the ŨPF (uhv). Given a random sample
of n points, hv uhv n is defined as:

hv uhv n =
hv

uhv
(6)

3) Distance between PF and UPF (GD cpo upo) measures
the distance between P̃F and ŨPF by using the genera-
tional distance metric [47] as follows:

GD cpo upo =
1

|po|

 ∑
s”∈po

d2
s”

 1
2

(7)

where
ds” = mins′∈upo|F(s”)−F(s

′
)| (8)

where F(s”) and F(s
′
) are vectors of solutions objectives,

and d”
s is the smallest distance from each solution in the

P̃F to the nearest solution in the ŨPF .
4) Proportion of unconstrained PF covered by PF

(cover cpo upo) approximates how many solutions
in ŨPF are dominated or equal to solutions in P̃F .
Given a random sample of n points, cover cpo upo is
defined as:

cover cpo upo =
|{s

′ ∈ ŨPF ;∃s” ∈ P̃F : s
′ ⪯ s”}|

|̃UPF |
(9)

if cover cpo upo = 1, that means all the solutions
in ŨPF are equal to the solutions in P̃F , while
cover cpo upo = 0, means the ŨPF strictly dominates
the P̃F [48].

The remaining two features required to help characterize
the multi-objective-violation landscape are collected by a
random walk as measures of evolvability and ruggedness of
the landscape. They are the average number of the solutions’
ranks based on constraints domination principle [34] in the
neighborhood (nfronts rws) and its first auto-correlation coef-
ficient.

We also adapt the following features from the multi-
objective or the violation landscapes in order to include multi-
objective and constraints concepts together. The features are
divided into four groups:

1) Constraints and objectives correlation [13]: given a ran-
dom sample of n points, the correlation between the
solutions’ rank based on constraints domination princi-
ple [34] and the solutions’ CV (corr cf) is calculated
using Spearman’s rank correlation coefficient, where the
range of the correlation coefficients are between [-1,1].

2) Proportion of solutions in ideal zone (piz) [13]: quantifies
the proportion of points in the lower quadrant of a fitness-
violation scatter plot. The lower quadrant is bounded by
the ideal point which is a pair of ideal fitness and ideal
CV . The ideal fitness or CV (id) is given by the following
formula:

id = min(S)+(0.25(max(S)−min(S))) (10)

where S is the set of solution’s fitness or violation.
The (piz) is calculated for each objective and for the
solutions’ rank. Then, the feature (piz ob min) quantifies
the minimum proportion of solutions in the ideal zone
per objectives, while (piz ob max) gives the maximum
value. Also, (piz f) approximates the proportion of over-
all good solutions in ideal zone.

3) Distance among neighbours in the objective-violation
space and the variable space [12]: the average eu-
clidean distance from each solution to its neighbours
in the objective-violation space (dist f c rws) and in
the variable space are calculated, as well as the ratio
of (dist f c rws) to (dist x rws) (dist f c dist x rws).
The average value as well as the first autocorrelation
coefficient of these features are measured.

4) Hypervolume-value of the neighborhood [12]: in a
random walk, the hypervolume-value of the feasible
set in each neighborhood is quantified (nhv rws), and
hypervolume-value of neighborhood’s non-dominated set
(bhv rws). Then, both the average value and the first
autocorrelation coefficient for each feature are measured.

B. Violation Landscapes
To better characterize constrained optimization problems,

we propose six features to measure ruggedness and evolvabil-
ity. From a random walk, we propose calculating the average
and first auto-correlation coefficient for each of the following:

1) Single solution’s violation-value (ncv rws) simply mea-
sures the CV of the current solution in a sample collected
by random walk.

2) Average neighborhood’s violation-value (nncv rws) is
given by:

nncv rws =
∑x∈S CV (x)

|S|
(11)

where |S| is the set of solutions in the neighborhood.
3) Average violation-value of neighborhood’s non-

dominated solutions (bncv rws) is given by:

bncv rws =
∑x∈S′ CV (x)

|S′ |
(12)
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where |S′ | is the set of non-dominated solutions in the
neighborhood.

In addition, we modified the following features from the
fitness landscape domain to quantify the characteristics of the
violation landscape. The features are divided into four groups:

1) Solutions’ constraints violations distribution
measures [5]: for a random sample of n points,
the solutions’ CV are calculated, then, a set of y-
distribution features are calculated, which are: minimum
(min cv), skewness (skew cv), and kurtosis (kurt cv) of
the CV s.

2) Linear model coefficients [5]: linear regression model
is fitted to solutions’ CV and decision variables. The
adjusted coefficient of determination of the model
(cv mdl r2), and difference between maximum and mini-
mum of the absolute value of the linear model coefficients
(cv range coeff) are calculated.

3) Violation-distance correlation [30]: given a random sam-
ple of n points, for each point a pair of CV and the
euclidean distance to the nearest global optima is calcu-
lated. Then, the Spearman’s rank correlation coefficient is
calculated for the set of (CV , distance) pairs to measure
(dist c corr).

4) Distance among neighbours in the violation space [12]:
in a sample collected by random walk, The average
euclidean distance from each solution to its neighbours
in the violation space (dist c rws) is calculated, as well
as the ratio of (dist c rws) to the average distance in
the decision space (dist c dist x rws). We compute both
the average value as well as the first autocorrelation
coefficient of these features.

IV. EXPERIMENTAL SETUP

We have used a total of 443 bi-objective instances to explore
the characteristics of CMOPs and to study their impact on the
performance of CMOEAs. Instances belong to the eight bench-
mark suites described in Section II-B, with n =∈ {2,5,10},
with the exception of for CF, where n = 2 cannot be used, and
for RWMOP, where n can not be controlled. For the DAS-
CMOP suite, 15 instances were generated from each problem
at each value of n by varying the constraints parameters to
adjust difficulty.

To extract the features, for each dimension, 30 samples sets
of size n×103 were generated. The average of features were
then calculated. Global features used random sampling, while
local features depend on random walks. A random walk of
neighborhood size N = (2× n)+ 1, length (n/N)× 103, and
step size of 2% of the range of the instance domain. Then,
the features were processed using the Yeo-Johnson power
transform method, which resulted in a distribution closer to
Gaussian.

We have tested 15 algorithms, five from each category of the
CHTs described in II-D. NSGAII, ANSGAIII, CMOEA MS,
CTAEA, CCMO, MOEADDAE, PPS, and ToP are available
through the PlatEMO [49] library, while DCMOEAD, ECNS-
GAII, ECMOEAD, PECNSGAII, PECMOEAD, SRNSGAII,
and SRCMOEAD have been implemented as described in

Section II-D. All MOEAD-based algorithms used Tchebycheff
approach. We have used algorithms’ default parameters. The
population size set to be 200 with all instances, while number
of evaluations is set to be 2× 104 for n = 2 instances and
5x104 for n = {5,10}. For each algorithm and each instance,
30 independent runs were conducted. The average Max-Min
normalized value has been calculated for the performance
metric. Indicators values are normalized to be between [0,1]
where 1 is the best value. We use a binary concept to define
the ‘goodness’ of the measured performance with respect to
others [7]. We consider the performance of an algorithm as
a ‘good’ performance if the performance metric ,normalized
HV or IGD+, is greater than zero and within 1% of the best
algorithm on the same instance.

After collecting the meta-data, a subset of the features that
impact algorithms’ performance were selected. Our selection
strategy is to filter out features that are weakly correlated with
all algorithms, i.e., when an absolute value of the Pearson
correlation is less than 0.3 [10] with all algorithms. Then,
when a feature is highly predictive to another feature, one of
them will be eliminated to reduce redundancy, i.e., the absolute
value of Pearson correlation of two features is greater than
0.85. We then use random forest regressor (RF) to keep only
the features that are predictive of algorithms’ performance.
Hyperparameter tuning and 3-fold cross validation were used
to build more accurate and stable RF models. Finally, to
construct the instance space, we make use of the publicly
available web tools in MATILDA [50].

V. RESULTS

A. Instance Space

Figure 3 illustrates the 2-dimensional CMOP instance space,
where each instance is represented as a point. The location of
each instance is defined by the following projection matrix:

[
z1
z2

]
=



0.2559 0.1348
−0.2469 −0.1649
−0.0257 −0.2703

0.2938 −0.2278
−0.2148 −0.1338
−0.1935 −0.2210
−0.1651 0.2998
−0.2150 0.3137

0.3067 0.1382
0.0709 0.3047
0.2032 −0.0515
0.1436 0.2869
0.1940 0.1154

−0.0508 −0.2466



⊤

corr c f
f mdl r2
dist c corr
min cv
bhv avg rws
skew rnge
piz ob min
ps dist iqr mean
dist c dist x avg rws
cpo upo n
cv range coe f f
corr ob j
dist f dist x avg rws
cv mdl r2



(13)

which uses the features with the highest correlation with
algorithm performance. The list of features in Equation 13
corresponds to the common features identified when using
both the HV and IGD+ performance metrics.

An inspection of the figure reveals that the real-world
problems are distributed throughout the instance space, with
the exception of the upper-right area, that suggests instances
in that part are not representative of real-world problems.
Furthermore, most test suites are distributed over specific parts
of the instance space. This is expected, as instances in the same
suite usually share similar objective or constraint functions.
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Fig. 3. Distribution of the instances in 2D space by using the projection
matrix in Equation (13). Instances are color and shape coded based on the
source.

For example, instances from DAS-CMOP1, DAS-CMOP2,
and DAS-CMOP3 have similar constraint functions, while
DC-DTLZ instances have either DTLZ1 or DTLZ3 objective
functions. We observe that there is a paucity of instances in
the bottom-right side of the space, that indicates a lack of
diversity in some features. That is despite the existence of
real-world problems in that area. By observing the features’
distribution in figure 6, we note that there is a lack of instances
with highly negative corr c f and instances that have high
cpo upo n. Also, there is high density of instances in some
regions, attributed to the DAS-CMOP suite. We note that
changing the constraints parameters of such problems does
not have impact on the difficulty or diversity of instances.
However, changing n does have an impact.

B. Comparing Performance Metrics

Figures 4a and 4b present a comparison between perfor-
mance metrics, HV vs IGD+. Each plot illustrates the number
of algorithms that performed well on each instance as a proxy
of their difficulty. Darker colors of the points in the plots
corresponds to fewer algorithms performing well. The plots
suggests that the instances in the top-right area are generally
easier to solve by most of the algorithms, especially for the
instances near the origin of the instance space. It is important
to note that the equality benchmark suite resides in the hard
to solve’ area, which is to be expected as equality constraints
are known to be challenging. As observed in the plots, IGD+

has a slightly larger easy instances percentage.
Given that insights gleaned from the performance metrics

are not significantly different, the remaining analysis will be
based on HV results, consistent with the approach used by
Zhou and co-workers [51].

C. Algorithms Footprints

Figure 5 shows the footprints of the algorithms in the
instance space. A grey point means the algorithm performed

badly compared to others on such instances, while dark blue
represents good performance. We limit our analysis to only
eight algorithms, as footprints reveal high similarity between
many of them. ANSGAIII, NSGAII and MOEAD with the
principle of constraint dominance, ε-constraint, and stochastic
ranking share similar footprints. The footprints of this group
are represented by the footprints of NSGAII in 5a. The figure
shows that they are capable of providing relatively good per-
formance in only a third of the instance space. The footprints
of CMOEA MS in 5b, which depends on the principle of
constraint dominance but sometimes includes the constraint
violation as an objective, matches the good area of NSGAII
and has a good performance in part of the instances in the left
area. Penalty based algorithms (PECNSGAII, PECMOEAD)
in figure 5c have similar footprints; both of them matched the
best algorithm in instances located near the origin or on the
upper-left area. Whilst, MOEADDAE in 5d, which uses two
stages to relax the penalty factor, performed well in almost all
the area covered by penalty based algorithms, and matched
part of the first group footprints.

On the other hand, CTAEA, ToP, CCMO, and PPS have dis-
tinctive footprints. CTAEA and ToP have a low proportion of
good performance, but they have different footprints. CTAEA
in Figure 5e seems only capable of providing high quality
solutions in easy to solve instances, while ToP in 5f targeted
instances that are rarely solved by previous algorithms. CCMO
and PPS, in figures 5g and 5h respectively, appear to be the
only algorithms that performed well in a wide area of the in-
stance space. Moreover, they have almost opposite footprints.
Both algorithms use two strategies to handle constraints, the
first strategy is considering objectives only, but for the second
CCMO uses the principle of constraint dominance while PPS
uses ε-constraint. CCMO uses the two strategies in parallel
by having two populations, while PPS uses them sequentially
by applying the first strategy for several generations, then,
applying the second strategy.

D. Features Impact
Within the instance space, we can gain insights into an

algorithm’s strength and weakness by examining the dis-
tribution of features across the space. Here, we present a
subset of features that better explain how easy or difficult
an instance is for at least one algorithm. Figures 6a and 4a
show that instances that have high positive correlation between
constraints and objectives are easier to solve. This suggests
that the evolutionary trajectory of the search in those instances
is not affected by the infeasible area; a search directed by
objectives or constraints will probably lead directly to the
optimal set of solutions. cv range coe f f is another feature
that can identify instances that may be easy to solve as shown
in Figure 6f, a large value indicates that there is at least
one decision variable carries most of the violation weight. In
addition, Figures 6b and 6e suggests that a smaller proportion
of cpo upo n or piz ob min, representing isolation of the
non-dominate set or a narrow feasible area, causes difficulty
for most algorithms.

Penalty-based algorithms do not have clear footprints in the
represented instance space. The group represented by NSGAII,
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(a) HV (b) IGD+

Fig. 4. Number of algorithms performed well for each instance, where good performance means a normalized performance indicator within 1% of the best
algorithm. The color scale corresponds to the total number of algorithms. A color closer to dark blue means fewer number of algorithms performed well.

(a) NSGAII (b) CMOEA MS (c) PECMOEAD (d) MOEADDAE

(e) CTAEA (f) ToP (g) CCMO (h) PPS

Fig. 5. Eight algorithms footprints in the projected instance space. Dark colored points represent good performance, where a good performance is defined as
a normalized HV within 1% of the best algorithm.

illustrated in Figure 5a, and CMOEA MS in Figure 5b find it
easier to solve a problem if the average ratio of the distance
between neighbors in the violation space to the distance in the
decision space is not low, as shown in Figure 6c. This suggests
the presence of large, neutral areas in the violation landscape.
CCMO footprints seem to overlap with the distribution of

dist f dist x avg rws, illustrated in Figure 6d. The higher
this feature is, the more likely it is that CCMO 5g will
succeed. Moreover, CCMO seems to be capable of finding
solutions in instances that have a low ratio of solutions in the
ideal zone of one objective, as shown in Figure 6e, meaning
that CCMO has the ability to find isolated optima. Although,
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(a) corr cf (b) cpo upo n (c) dist c dist x avg rws

(d) dist f dist x avg rws (e) piz ob min (f) cv range coeff

Fig. 6. Distribution of normalized subset of features in the projected instance space. The color scale corresponds to normalized feature values.

this feature has the opposite impact on PPS, as observed in
Figure 5h, suggesting that PPS is better suited to find diverse
solutions when there are more feasible solutions, which is
also supported by the low values of dist c dist x avg rws as
illustrated in Figure 6c. Furthermore, when there is negative
correlation between constraints and objectives, illustrated in
Figure 6a, PPS is one of the best performing algorithms. We
can observe that the instances that have the highest conflict
between constraints and objectives, are the instances that ToP
was capable to excel at, as shown in Figure 5f.

E. A Step Towards Algorithm Selection

Algorithm selection is the process of selecting an algorithm
from a set based on its expected performance to optimize a
specific instance [52]. In order to map an algorithm to an
instance, the selector must understand the algorithm’s general
behavior with similar instances. This is where informative
landscape features come in handy, as they can distinguish
instances from each other. In the previous sections, we have
visualized the similarities and differences between instances
by using informative features, and highlighted algorithms’
strengths and weaknesses on the instance space. This in-
formation can then be used by a classifier to partition the
instance space and determine which algorithm is best suited
for each part. This suggests that it should be possible to
generate automated algorithm recommendations for untested
instances based on its location in the instance space. Here, we
will examine whether a machine learning classifier, trained on
the set of features in 13 and algorithms performances, might

Fig. 7. Algorithm recommendations by SVM selection model for the projected
instance space.

be able to provide insights into the mapping of particular
algorithm to part of the instance space.

Figure 7 presents the SVM results generated by the
MATILDA web tools [50] using default settings. The figure
shows that hyper-strategies are more likely to be selected by
the SVM model because they surpassed others in larger and
clearer regions. The instance space is almost divided between
CCMO and PPS, however, we noticed that PPS has been
selected for the instances around origin even though CCMO
succeed in this region. There are small area in the bottom-
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Fig. 8. SVM selection model accuracy and precision for each algorithm.

left that predicted to be solved mostly by CTAEA. However,
this area was not easy to solve by almost all the algorithms, as
observed in Figure 5. Our analysis of the instances in this area
found that either there are no feasible solutions, or the HV of
the set found by algorithms is approximately zero. Therefore,
we conclude that the selection in this area is not accurate.

In addition, figure 8 describes the accuracy and precision
of SVM model for each algorithm individually. The results
validate the accuracy of the overall model. They illustrate
all algorithms have high accuracy and precision, except PPS,
CTAEA, and PECMOEAD. In addition, the metrics show that
the quality of the algorithm selection model based on the
selected features correlate with the clarity of the visualized
footprints. For example, CTAEA and PECMOEAD have poor
SVM metrics values, and they do not have clear footprints on
the projected instance space. Nevertheless, our method does
have limitations, as it relies on a large sample size, which may
be more expensive than what one would be willing to invest
in an application.

In a recent survey paper, Kerschke et al., [52] stated that the
cost of calculating features should not exceed the benefits of
algorithm selection. Multiple works in single objective [53],
multi-objective [12] and constrained [54] optimisation have
shown that samples between n × 50 to n × 200 could be
used. However, for CMOPs, determining a sample size that
guarantees accuracy and reliability of the features will require
further investigation.

VI. CONCLUSION

We have presented a detailed instance space analysis of
CMOPs. Our primary motivation was to systematically evalu-
ate and characterize the conditions where a selected CMOEA
was expected to perform well based on the landscape analy-
sis features of CMOP instances. Firstly, we have identified
CMOP features in terms of three landscapes: the multi-
objective landscape; the violation landscape and the multi-
objective-violation landscape. Secondly, we have collected a
large volume of meta-data encapsulating multiple benchmark
problem instances and algorithms (including alternative con-
straint handling techniques). Finally, footprints corresponding
to regions of varying algorithm performance were identified.
This visual representation provides useful insights, helping to
explain CMOPs characteristics and the strengths and weakness

of a particular algorithm. In addition, a SVM classifier was
used to provide a preliminary mapping between the ‘strength
region’ of an algorithm and particular problem characteristics.

Our results show that some CMOEAs, CCMO and PPS in
particular, have distinct footprints. CCMO and PPS employ
hyper constraint handling techniques, where they use two
strategies in two populations/stages. CCMO can effectively
converge on isolated optima, whereas PPS generates more
diversity when there is a large optimal set. Significantly, the
analysis shows that most CMOEAs fail to evolve high quality
solutions when there is negative correlation between con-
straints and objectives. Moreover, CTAEA and other penalty-
based algorithms have no clear area of strength, which indi-
cates that the available benchmarks lack examples on which
these algorithms would outperform.

It is widely acknowledged that any benchmark suite of prob-
lems should ideally test the efficacy of the optimizer. However,
our analysis reveals a lack of diversity in the benchmark
suites examined, with many instances sharing similar objective
and/or constraint functions. Only a few instances provide a
high proportion of constrained Pareto front to unconstrained
front, and fewer instances have a highly negative correlation
between constraints and objectives, despite the fact that those
two characteristics are challenging for most algorithms. Our
investigation of where real-world problems fall within the
instance space revels that the current benchmark suites do
not have enough characteristics to represent the real-world
problems.

A wide range of existing and new Landscape Analysis
features have been used in this work, however, they do not
result in clear footprints for all algorithms. This, in turn,
suggests that there is scope to further explore new features
tailored specifically for CMOPs.
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