
European Journal of Operational Research 304 (2023) 411–428

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

Enhanced instance space analysis for the maximum flow problem

Hossein Alipour ∗, Mario Andrés Muñoz , Kate Smith-Miles

School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia

a r t i c l e i n f o

Article history:

Received 14 June 2021

Accepted 9 April 2022

Available online 14 April 2022

Keywords:

Validation of OR computations

Maximum flow

Instance space analysis

Instance selection

Feature selection

a b s t r a c t

The Maximum Flow Problem (MFP) is a fundamental network flow theory problem, for which many algo-

rithms, supported by strong theoretical worst-case analyses, have been proposed. However, their practical

efficiency depends on the network structure, making it unclear which algorithm is best for a particular

instance or a class of MFP. Instance Space Analysis (ISA) is a methodology that provides insights into such

per-instance analysis. In this paper, the instance space of MFP is constructed and analysed for the first

time. Novel features from the networks are extracted, capturing the performance of MFP algorithms. Ad-

ditionally, this paper expands the ISA methodology by addressing the issue of how benchmark instances

should be selected to reduce bias in the analysis. Using the enhanced ISA methodology with MFP as

the case study, this paper demonstrates that the most important features can be detected, and machine

learning methods can identify their impact on algorithm performance, whilst reducing the bias caused

by over-representation within the selected sample of test instances. The enhanced methodology enables

new insights into the performance of state-of-the-art general purpose MFP algorithms, as well as recom-

mendations for the construction of comprehensive and unbiased benchmark test suites for MFP algorithm

testing.

© 2022 Elsevier B.V. All rights reserved.

1

i

s

1

w

c

&

6

e

e

a

a

b

t

t

p

c

a

g

e

e

c

t

p

f

b

c

t

s

m

S

i

e

(

t

T

a

e

e

i

v

v

h

0

. Introduction

The Maximum Flow Problem (MFP) involves finding the max-

mum volume of flow of a commodity that could be sent from a

ource node to a sink node through a network (Ford & Fulkerson,

956; Harris & Ross, 1955). Being a fundamental problem in net-

ork flow optimisation, MFP has many explicit and implicit appli-

ations in the modelling of real-world problems (Ahuja, Magnanti,

 Orlin, 1993). Hence, it has been heavily researched in the last

0 years, with many algorithms proposed for its solution (Ahuja

t al., 1993; Boykov & Kolmogorov, 2004; Goldberg, 2009; Goldberg

t al., 2015; Hochbaum, 2001; Orlin, 2013). Performance of these

lgorithms is theoretically evaluated through worst-case analyses

nd strong mathematical or algorithmic proofs, which provide un-

iased and objective conclusions. In contrast, experimental evalua-

ions are less conclusive, but potentially more relevant for practice

han theoretical ones, if they explain the expected performance on

articular instance types. In practice, MFP algorithms are tested

ompetitively , i.e. running algorithms on a limited set of instances

nd comparing their average performances (Hooker, 1995). An al-

orithm is “effective” and “publishable”, if it out-performs the oth-

rs on all or most of the selected instances. Unfortunately, these
∗ Corresponding author.

E-mail addresses: h.alipour@unimelb.edu.au (H. Alipour), munoz.m@unimelb.

du.au (M.A. Muñoz), smith-miles@unimelb.edu.au (K. Smith-Miles) .

t

2

s

a

ttps://doi.org/10.1016/j.ejor.2022.04.012

377-2217/© 2022 Elsevier B.V. All rights reserved.
omparisons often lack of insight (Hooker, 1995). Not only can

he possibly arbitrary choice of test instances weakens such com-

arisons, but also they offer no insight about the expected per-

ormance of an algorithm on unseen instances or why algorithms

ehave differently on different instances. To form a more robust

onclusion about the practical performance of an algorithm, scien-

ific testing is required instead (Hooker, 1995), i.e., to test hypothe-

es about how an instance’s feature impacts an algorithm’s perfor-

ance.

Instance Space Analysis (ISA) is a methodology developed by

mith-Miles et al. (20 07; 20 08a; 20 08b; 2014), whose primary aim

s to overcome the above-mentioned difficulties. ISA offers a sci-

ntific testing framework of algorithm performance, based on Rice

1976) Algorithm Selection Problem , through a mapping between

est instance features and the performance metrics of algorithms.

he core output from ISA is a visualisation of the space containing

ll possible test instances of a problem as a 2 D plane with a math-

matically derived boundary. Within this instance space , empirical

vidence of algorithm performance can be contrasted to the vary-

ng characteristics of a diverse set of test instances. To produce this

isualisation, each instance is represented as a high-dimensional

ector of measurable features, which capture those characteris-

ics known to affect algorithm performance (Smith-Miles & Lopes,

012). Then, the 2 D space is constructed by projecting the in-

tances into a plane, and the boundaries of the instance space

re generated using the upper and lower bounds of the features.

https://doi.org/10.1016/j.ejor.2022.04.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2022.04.012&domain=pdf
mailto:h.alipour@unimelb.edu.au
mailto:munoz.m@unimelb.edu.au
mailto:smith-miles@unimelb.edu.au
https://doi.org/10.1016/j.ejor.2022.04.012

H. Alipour, M.A. Muñoz and K. Smith-Miles European Journal of Operational Research 304 (2023) 411–428

T

t

e

a

t

t

d

w

s

a

B

t

o

a

p

c

l

m

s

c

s

c

t

t

r

c

T

i

d

t

i

c

c

b

t

M

t

s

i

s

t

c

a

1

H

a

m

f

a

f

d

a

f

o

p

a

i

r

u

m

b

S

2

2

o

p

c

a

v
b

t(
p

p

{

{

0

w

v

o

c

a

m

E

fl

2

t

w

p

F

a

l

s

t

i

he projection is constructed by enforcing linear trends on both

he instance features and algorithm performances, facilitating the

mergence of regions of algorithmic strength, called “footprints ”,

nd weakness. Therefore, ISA facilitates an objective assessment of

he practical capabilities of an algorithm, and enable fair predic-

ion of its likely performance for unseen instances. Assessing the

iversity of the existing benchmarks as evidenced by the extent to

hich they fully occupy the instance space, and using the instance

pace to guide the generation of new instances with specific char-

cteristics for enriching computational experiments (Smith-Miles &

owly, 2015) are other benefits of the ISA methodology.

ISA is an iterative process due to its sensitivity to the ini-

ial set of benchmark instances, selected algorithms, and choice

f features. Eventually, with new instances created to fill sparse

reas in the instance space, and new features introduced to ex-

lain the algorithms’ performances, the process is expected to

onverge (Smith-Miles, Christiansen, & Muñoz, 2020a). Neverthe-

ess, if inappropriate instances are selected, the results might be

isleading. In fact, non-uniform density of instances across the

pace (under- or over-representation of instances) can potentially

reate bias in several key steps of the ISA methodology: feature

election, dimensionality reduction, and the performance of ma-

hine learning classifiers. Down-sampling (thinning) could be used

o avoid over-representation bias from instances with similar fea-

ures. However, to provide sufficient statistical evidence of algo-

ithm performance, there must be enough benchmarks, i.e., suffi-

ient density, creating a conflict with a down-sampling strategy.

herefore, benchmark instance selection must be done systemat-

cally to create a suitable trade-off between bias reduction via

own-sampling and the need for sufficient density to provide sta-

istical evidence. We introduce a new instance selection procedure

nto the ISA methodology to this end. Although we generate spe-

ific instances to decrease under-representation bias, our main fo-

us is to decrease over-representation bias by removing redundant

enchmarks.

In this paper, we analyse the instance space of MFP for the first

ime. To this end, we collect and generate a comprehensive set of

FP benchmark instances —within the constraints of our compu-

ational environment — and discuss the kinds of benchmarks that

hould be generated for a more complete analysis. We adopt ex-

sting features from the literature, and propose new ones demon-

trating their effect on performance. Moreover, we apply state-of-

he-art general purpose MFP algorithms on the benchmarks and

reate a metadata for ISA, defined in Section 3 . These algorithms

re highest-level Push-Relabel (Hi_PR) (Cherkassky & Goldberg,

997), pseudoflow highest-label FIFO (Pseudo_Hi_FIFO) (Chandran &

ochbaum, 2009), partial augment-relabel (PAR) (Goldberg, 2008),

nd two-level Push-Relabel (P2R) (Goldberg, 2009). We propose a

ethod for selecting instances from our set, obtaining a more uni-

orm distribution of benchmarks. As result, we reduce the bias cre-

ted by non-uniform density, while retaining sufficient instances

or a thorough exploration of the space. After selecting the meta-

ata, a new instance space for MFP is constructed through ISA,

nalysing the performances of algorithms based on the important

eatures of MFP. In summary our contributions are:

1. Introducing new features of MFP to capture the behaviour of

algorithms on different instance types;

2. Developing a comprehensive set of MFP benchmarks to repre-

sent a diverse instance space;

3. The first instance space analysis for MFP;

4. Introducing a new instance selection method for reducing bias

in different stages of ISA and ensuring that the insights afforded

by ISA are not limited or biased by the available test instances;

5. Introducing a statistical measure to assess the adequacy of fea-

tures in capturing the algorithm performance;
412
6. Detecting the fundamental differences in algorithm mecha-

nisms that explain the different behaviours of algorithms in

practice;

7. Discovering why features may cause certain behaviours of algo-

rithms;

8. Giving a direction to improve the MFP algorithms using the in-

sights obtained in this work;

9. Identifying gaps and future research opportunities in the scien-

tific testing of MFP algorithms.

The paper continues as follows: Section 2 describes the details

f MFP, its algorithms, and the limitations present in their ex-

erimental analyses. Section 3 presents an initial instance space

imed to address these limitations, where our new features are

ntroduced and new instances are generated to decrease under-

epresentation bias. Section 4 discusses the bias caused by non-

niform density of instances, introduces our instance selection

ethod, and presents the final results with the insights afforded

y the enhanced ISA. and future opportunities are discussed in

ection 5 followed by our conclusions in Section 6 .

. Maximum flow problem

.1. Definitions and notations

Let G = (V, E, C) be a directed network defined on V as the set

f n nodes, E as the set of m capacitated arcs with positive ca-

acities, C as the set of m upper bound capacities each of which

orresponds to an arc in E, and two distinguished nodes, source

nd sink , denoted by s and t respectively. An arc e from nodes u to

 is denoted by (u, v) . Each arc (u, v) ∈ E has an associated upper-

ound capacity c u v ∈ C. A path is defined as the sequence of dis-

inct nodes { u 1 , u 2 , . . . , u q } such that, for all 1 ≤ p ≤ q − 1 , either

u p , u p+1

)
∈ E or

(
u p+1 , u p

)
∈ E. Moreover, if

(
u p , u p+1

)
∈ E for any

air of consecutive nodes u p and u p+1 , the path is called a directed

ath . A flow is a function f : E �→ R

+ satisfying: ∑

v : (v ,u) ∈ E }
f v u −

∑

{ v : (u, v) ∈ E }
f u v = 0 , ∀ u ∈ V \ { s, t } , (1a)

∑

u :(u,t) ∈ E }
f ut = | f | , (1b)

 ≤ f u v ≤ c u v , ∀ (u, v) ∈ E, c u v ∈ C, (1c)

here f u v is the amount of flow on the arc (u, v) and | f | is the

alue of f . The aim of MFP is to find a flow that maximises | f | . In
ther words, MFP aims to find the maximum amount of flow that

ould be sent from s to t through directed paths in G such that

rc flows satisfy flow conservation constraints (Eq. (1a)) at all inter-

ediate nodes, i.e., V \ { s, t } , and satisfy arc capacity constraints in

q. (1c) . A flow f satisfying constraints (1a) - (1c) is called a feasible

ow . Additional relevant concepts are provided in Appendix A.

.2. Computational studies of MFP algorithms

MFP was formulated by Harris & Ross (1955) . Since then, mul-

iple algorithms have been developed to solve it. Initially, the net-

ork simplex method of Dantzig (1951) , designed for the trans-

ortation problem, was used to solve MFP as a special case. Ford &

ulkerson (1956) proposed the first augmenting path method with

 worst-case complexity in the order of O (mn c) , where c is the

argest arc capacity in C. This algorithm tries to find a path from

 to t , known as an augmenting path, in each iteration and sends

he maximum possible flow through this path, then updates flows

n the network and looks for another path in the next iteration

H. Alipour, M.A. Muñoz and K. Smith-Miles European Journal of Operational Research 304 (2023) 411–428

u

c

s

j

t

r

t

r

i

&

g

T

p

w

c

p

p

g

g

I

t

C

c

P

i

D

H

2

r

r

i

t

D

h

s

G

P

a

2

t

t

p

s

n

p

s

b

r

s

o

H

e

S

s

f

e

a

p

m

f

t

n

k

i

t

p

t

o

a

l

m

(

f

m

m

3

3

W

t

o

r

o

l

t

d

p

s

t

y

o

t

u

b

p

f

I

M

u

ntil there is none available. Karzanov (1974) introduced the con-

ept of preflow , whereby a flow is allowed to be changed on a

ingle arc instead of the entire augmenting path. Goldberg & Tar-

an (1988) combined preflow with the idea of relabelling operations

o design the pushrelabel (incorrectly known as preflow-push) algo-

ithm with order O

(
n

3
)

complexity. Hochbaum (2001) introduced

he pseudoflow algorithm with order O (mn log n) complexity. More

ecent implementations of all of these algorithms have resulted in

mproved worst-case complexity (see Ahuja et al., 1993; Hochbaum

 Orlin, 2013). More recently, Orlin (2013) proposed another al-

orithm which, taken together with the algorithm of King, Rao, &

arjan (1994) , results in order O (mn) —the best worst-case com-

lexity obtained so far.

In practice, algorithms usually behave much better than their

orst-case, making this theoretical complexity an unsatisfactory

riterion to judge expected performances. As a complement, com-

utational investigations have been conducted to observe the

ower of the proposed MFP algorithms. Currently, Dinic’s (1970) al-

orithm is considered as the most efficient augmenting path al-

orithm (Ahuja, Kodialam, Mishra, & Orlin, 1997; Cheung, 1980;

mai, 1983); Hi_PR (Cherkassky & Goldberg, 1997) as one of

he most efficient Push-Relabel algorithms (Ahuja et al., 1997;

herkassky & Goldberg, 1997); Pseudo_Hi_FIFO the most effi-

ient pseudoflow algorithm (Chandran & Hochbaum, 2009); with

ush-Relabel algorithms being substantially faster than augment-

ng path ones (Ahuja et al., 1997; Cherkassky & Goldberg, 1997;

erigs & Meier, 1989), and Pseudo_Hi_FIFO being faster than

i_PR (Chandran & Hochbaum, 2009). Recently, Goldberg (2008,

009) introduced two improvements of Hi_PR, i.e. partial augment-

elabel (PAR) algorithm and two-level Push-Relabel (P2R) algo-

ithm. Goldberg (2009) concluded that PAR and P2R behave sim-

larly, and both outperform Hi_PR on all tested instances, and

he pseudoflow algorithms in most tested instances. Moreover,

inic’s, Hi_PR, PAR, P2R, and Pseudo_Hi_FIFO implementations

ave also been tested on a real-world family of computer vision in-

tances (Boykov & Kolmogorov, 2004; Fishbain, S., & Mueller, 2016;

oldberg, 2009; Goldberg et al., 2015), where it is shown that PAR,

2R, and Pseudo_Hi_FIFO are competitive against domain-specific

lgorithms.

.3. Limitations of MFP algorithm testing

The experimental studies mentioned above have at least one of

he following limitations. The first one, unfortunately not confined

o MFP studies, is the lack of a systematic instance selection ap-

roach to detect bias in the datasets used for experimental analy-

es. As result, each study uses different benchmark families, often

ot covering all the ones available in the literature, making a com-

arison between algorithms unfair. Moreover, the number of in-

tances from each family is often small, resulting on representation

ias (Suresh & V. Guttag, 2020) due to under-sampling.

The second limitation is that the features that impact the algo-

ithms’ performances have not been thoroughly explored. Features

uch as network size, average node degree, density, connectivity,

r shape of the network are highly correlated with performance.

owever, they remain largely unused for drawing insights into the

xpected performance of an algorithm on different instance types.

ummarising algorithm performance on average across all test in-

tances studied hides valuable insights. In addition, the number of

eatures used in competitive testing are limited to a few in each

xperiment, making them less informative. Using analysis of vari-

nce , Sedeño-Noda, González-Sierra, & González-Martín (20 0 0) ex-

lored the impact of the number of nodes, number of arcs, the

aximum arc capacity, and the instance generator, among other

actors, had on CPU time. Although they concluded that some fac-

ors impact performance, such as the generator type, they provided
413
o insights into why. Despite this, Sedeño-Noda et al. (20 0 0) ac-

nowledged that more factors must be studied to fully capture the

mpact that generators have on practical efficiency.

The final limitation is that comparing average performance on

he studied test instances cannot be used to predict the most ap-

ropriate algorithm for an unseen instance. Without understanding

he impact of different features on the algorithms’ performances

ver a comprehensive and unbiased set of benchmarks, predicting

lgorithms’ performances for unseen problems is likely to be unre-

iable.

These limitations demonstrate the need for a scientific testing

ethodology applied to MFP algorithms. Instance Space Analysis

ISA) is a methodology aimed to bridge these limitations. In the

ollowing section, we show how ISA can be applied to provide a

ore rigorous testing of algorithms for MFP, before enhancing the

ethodology to address the issue of test instance selection.

. Instance space analysis for the maximum flow problem

.1. Background and framework

Instance Space Analysis (ISA) draws its foundations from

olpert and Macready’s (1997) No-Free Lunch theorem , which state

hat for a given problem, an algorithm is unlikely to outperform

ther algorithms on all possible instances; and Rice’s (1976) Algo-

ithm Selection Problem , which frames the solution as a prediction

f the algorithm performance using measurable features of prob-

em instances. Fig. 1 illustrates ISA, with Rice’s framework (inside

he dashed-line box) having four components:

• The problem space P composed of all possible instances for a

given problem;
• The feature space F comprising measurable characteristics of

the instances in P;
• The algorithm space A consisting of a set of algorithms to solve

the problem;
• The performance space Y containing the mapping of each algo-

rithm in A to a set of performance metrics.

The collection { P, F , A , Y } is referred to as a problem’s meta-

ata . The algorithm selection problem is stated as: for a given

roblem instance x ∈ P with a feature vector f x = f (x) , find the

election mapping S (f x) into the algorithm space A such that

he selected algorithm α ∈ P maximises the performance mapping

 α,x = y (α, x) ∈ P . Through Rices framework, and using regression

r other supervised learning methods, the relationship between

he features and the algorithm performance can be identified, and

sed to predict algorithm performances for unseen instances. The

lue block in Fig. 1 represents a new instance selection procedure

resented in Section 4 to enhance the ISA methodology. ISA is per-

ormed using the tools available at the Melbourne Algorithm Test

nstance Library with Data Analytics (MATILDA) (Muñoz & Smith-

iles, 2020; Smith-Miles, Muñoz, & Neelofar, 2020b), which allow

s to:

1. create a visualisation of the instance space for MFP:

(a) showing the location of benchmark test instances across the

instance space;

(b) revealing the strengths and weaknesses of MFP algorithms

across the instance space;

(c) summarising the properties of the instances that an algo-

rithm finds easy or hard;

2. calculate objective metrics of algorithmic power via footprint

analysis;

3. identify the locations of new test instances that should be gen-

erated or acquired at specific locations in the instance space to

fill gaps, especially, in the edges of different footprints to ex-

H. Alipour, M.A. Muñoz and K. Smith-Miles European Journal of Operational Research 304 (2023) 411–428

Fig. 1. Enhanced ISA framework: Rice’s framework is illustrated within the dashed-line box; ISA framework includes all parts except the blue box; the enhanced ISA pre-

sented in this paper augments the ISA framework with the instance selection component in blue. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

M

r

o

s

l

f

t

c

o

o

i

u

m

a

e

p

t

a

e

a

p

a

3

3

t

A

1

G

t

s

e

s

f

n

n

3

s

a

s

q

c

c

n

m

e

t

n

plore phase transition boundaries adequately and provide more

evidence for machine learning classifiers;

4. recommend the best algorithms for a given instance via auto-

mated algorithm selection tools.

ATILDA employs a tailored dimension reduction algo-

ithm (Muñoz, Villanova, Baatar, & Smith-Miles, 2018) that finds an

ptimal linear transformation from the higher dimensional feature

pace to the 2 D instance space, such that maximises the degree of

inear trends across the instance space for the distribution of each

eature and algorithm performance metric. In this way, the rela-

ionships between instance features and algorithm performance

an be more easily visualised. Within the instance space, a set

f Support vector Machine (SVM) classification models are used,

ne for each algorithm, based on binary labels of each instance as

nducing a good or bad performance by the algorithm, following a

ser defined performance criteria (see Section 3.2.3). These SVM

odels are used for performance prediction on unseen instances,

nd for automated algorithm selection. Finally, the footprints of

ach algorithm are calculated as the areas of high purity 1 of good

erformance, and are footprint statistics and locations are used

o provide an objective assessment of each algorithm’s strengths

nd weaknesses across the entire instance space. The subroutines

mployed by MATILDA to create and analyse the instance space

re summarised in Appendix B.

In the next sections, we describe the initial metadata, before

resenting MATILDA’s analysis of the resulting instance space.
1 For an algorithm in an area, purity is defined as the number of instances labeled

s good for that algorithm over the number of all instances in that area.

f

p

414
.2. Initial metadata

.2.1. Benchmark problems

We utilised 16 benchmark generators available in the litera-

ure, specified for the general MFP in DIMACS format 2 . These are:

C, AK, Netgen, RMF, Random, TG, and the Washington family of

0 generators (Mesh Graph, Random Level Graph, Random 2-Level

raph, Square Mesh, Basic Line, Exponential Line, Double Exponen-

ial, DinicBadCas, GoldBadCase, and Cheryian). This synthetic in-

tances are complemented with a family of real-world instances

xtracted from computer vision applications 3 .

To produce more diverse benchmarks than those commonly

tudied in the literature, we considered a wider range of values

or the controllable parameters in each generator. For example, the

umber of nodes considered in the literature are in the format

 = 2 ι for different values of ι. Here, we used other bases too, i.e.,

 , 5 , 7 , 11 , Moreover, the min/max arc capacities are fixed in

ome generators, while they can impact the performance of MFP

lgorithms more than other factors in some instances. For example,

ome huge instances from the AK family can be solved much more

uickly than medium sized ones depending on the maximum arc

apacities (see Figure E.1 in the Appendix). We manipulated these

apacity bounds to produce more diverse networks. Based on the

umber of controllable parameters and the diversity of the bench-

arks, we also generated a different number of benchmarks for

ach family. Furthermore, for the generators with random parame-

ers, we generated 5 different replications for each set of values of

on-random parameters. As a result, we obtained 8508 instances

or the initial metadata. The values of the controllable parameters
2 Generators and further information are available at http://dimacs.rutgers.edu/

ub/netflow/
3 Available at https://vision.cs.uwaterloo.ca/data/maxflow

http://dimacs.rutgers.edu/pub/netflow/
https://vision.cs.uwaterloo.ca/data/maxflow

H. Alipour, M.A. Muñoz and K. Smith-Miles European Journal of Operational Research 304 (2023) 411–428

f

A

3

i

b

l

A

2

c

p

t

C

g

P

2

1

s

W

t

i

3

i

p

p

e

m

p

m

b

I

w

w

a

r

p

a

p

1

o

p

f

w

t

W

a

3

i

t

w

2

f

p

w

t

e

c

i

C

M

a

c

f

q

d

o

n

t

o

F

o

p

u

e

p

A

P

W

fi

P

i

t

p

o

l

f

t

a

n

s

i

3

i

v

c

3

t

6

1

c

e

t

p

s

P

-

t

S

m

f

d

i

m

or each family fall within the ranges presented in Table E.1 in the

ppendix.

.2.2. Algorithms

In this work, we survey the most successful algorithms for solv-

ng the general MFP. Some specific cases, such as unit capacity or

ipartite networks and MFPs arising from computer vision prob-

ems, can be solved more effectively by specialised algorithms (see

huja et al., 1993; Boykov & Kolmogorov, 2004; Goldberg et al.,

015). However, we do not consider them here, since such spe-

ialised algorithms either cannot solve the general MFP or are im-

lemented in a language other than C, which is the implemen-

ation language of tested algorithms in this work for fairness of

PU comparisons. The most successful general-purpose MFP al-

orithms in the literature, which belong to the pseudoflow and

ush-Relabel families, are Pseudo_Hi_FIFO (Chandran & Hochbaum,

009), Hi_PR (Cherkassky & Goldberg, 1997; Goldberg & Tarjan,

988), PAR (Goldberg, 2008), and P2R (Goldberg, 2009). A short

ummary for each of these algorithms is provided in Appendix A.

e also tested the algorithm of Dinic (1970) but it was uncompeti-

ive with the four other algorithms used here, therefore, we do not

nclude it in this study.

.2.3. Performance measure

Defining the goodness of an algorithm is the key to assessing

ts performance. In the literature, goodness is often taken as best

erformance : an algorithm is good in solving an instance if it out-

erforms other algorithms on the chosen performance metric. Nev-

rtheless, the definition of goodness is dependent on the perfor-

ance measure and the underlying problem. For example, in this

aper we use CPU time, as it is the most common performance

easure for testing and comparing MFP algorithms. However, the

est CPU time is unsuitable as a measure because of its noisiness.

n addition, small differences in CPU times are irrelevant, as they

ill soon disappear by advances in computational technology.

An alternative is to consider a range of acceptable performances

ithin a tolerance threshold of the best, which addresses the

forementioned issues about reliability of CPU times. For algo-

ithms α1 , α2 , . . . , αa ∈ A let y i =

[
y i, 1 . . . y i,a

]�
be the vector of

erformance values on an instance x i ∈ I . The performance of an

lgorithm in an instance is good if it is within 100 × ε% of the best

erforming algorithm, where ε is a goodness threshold . Let δi,k =

(
y i,k ≤ (1 + ε) y i, best

)
be the binary performance of αk , k = 1 , . . . , a

n x i , where 1 (·) denotes the indicator function and y i, best is the

erformance of the best algorithm on x i . The vector of binary per-

ormance values on x i is denoted as δi = [δi, 1 . . . δi,a]
� . In ISA,

e compare algorithms based on such binary labels, capturing if

he algorithm’s performance was defined as good for any instance.

e also regard an instance as hard if less than 55% of algorithms

chieve a good performance label on it.

.2.4. Features

Since MFP is concerned with network flows, the capacity of arcs

s just as important as the spectral features of the network. In

he literature, some features such as weighted clustering coefficients ,

hich consider arc capacities, are discussed (Clemente & Grassi,

018; Opsahl & Panzarasa, 2009); Unfortunately, calculating such

eatures is intractable for large networks, demanding more com-

uting resources than an MFP algorithm. For example, calculating

eighted clustering coefficients of a network requires �(n 4) , while

he practical complexity of Hi_PR is shown to be O(n

1 . 5) (Ahuja

t al., 1997). There are many simple spectral network features that

an be measured cheaply, but versions that combine the arc capac-

ties with such spectral features are non-existent in the literature.

onsequently, our challenge for constructing suitable features for

FPs is to propose tractable features that consider arc capacities
415
s well as network structures. In addition, since multiplying all arc

apacities by a fixed scalar does not impact the algorithm’s per-

ormances, we used the scaled versions of capacities whenever re-

uired. Scaled capacitated density is inspired by this discussion and

efined in Table 1 , combines the density with the average capacity

f the network to reveal the information about the capability of a

etwork in carrying different amounts of flow; a high/low value of

his feature indicates the network can carry a large/small amount

f flow.

We also define some features based on our intuition into MFP.

or example, compensating the node excesses is the main phase

f Pseudo and Push-Relabel algorithms; hence, excesses affect the

erformance of these algorithms. Because the node excesses are

nknown before the algorithm process, we estimate the potential

xcess for each node and across the network. Firstly, we define the

otential balance in node u :

pb(u) :=

∑

{ v :(v ,u) ∈ E }
c v u −

∑

{ v :(u, v) ∈ E }
c u v . (2)

 positive value of pb (u) is a potential excess of node u ,

otExcess (u) , and a negative value is a potential deficit of node u .

e denote the potential excess of a network by PotNetExcess , de-

ned as

 ot Net Excess :=

∑

u ∈ V,u 	 = s,t
P otExcess (u) . (3)

Using the notation from Section 2.1 , we define 14 features listed

n Table 1 , of which four are extracted from the literature, and

en are new features. All of these features can be calculated inde-

endent of knowing the optimal solutions of the instances. More-

ver, this features do not include those that are intractable for the

arge networks in our metadata, or that require computational ef-

ort greater than solving the instance by MFP algorithms. We note

hat if the aim is to obtain some insights, rather than automated

lgorithm selection, the last two restrictions could be relaxed. Fi-

ally, the mathematical formulation for some features is not pre-

ented in Table 1 as they are trivial. However, they can be found

n Appendix C.

.3. Initial results

In this section, we present the initial instance space analysis us-

ng MATILDA, specifying all the parameters and computational en-

ironments needed for reproducibility. The resulting instance space

an be explored online at Alipour, Muñoz, & Smith-Miles (2021) .

.3.1. Experimental setup

We used the University of Melbourne SPARTAN HPC sys-

em (Lafayette, Sauter, Vu, & Meade, 2016), with an Intel Xeon Gold

254 CPU @ 3.10GHz processor, with allocated memory between

GB to 64GB depending on the size of each instance. The source

odes of the benchmark generators, MFP algorithms, and feature

xtraction (Alipour, 2021) codes are in C, while the MATILDA

oolkit (Muñoz & Smith-Miles, 2020) and the instance selection

rocedure (Alipour, 2021) introduced in this paper are MATLAB

cripts. Algorithms tested are Pseudo_Hi_FIFO v3.23, Hi_PR v3.6,

AR v043c, and P2R v045c, all compiled with gcc 4.8.5 using the

o4 optimisation flag.

All algorithms clock very fast CPU times on tiny instances;

herefore, we avoided generating instances with Order < 500 or

ize < 20 0 0 . We recorded the times to a precision of three deci-

al places to achieve good discrimination of the algorithms’ per-

ormances, but also because higher precision made no substantial

ifference in the results, and less precision made the performances

ndistinguishable on small instances. We chose as the performance

etric the average CPU time from five repetitions, because this was

H. Alipour, M.A. Muñoz and K. Smith-Miles European Journal of Operational Research 304 (2023) 411–428

Table 1

Set of initial 14 features used in the metadata.

Feature name Description

Features from the literature: (4 features)

Order Number of the nodes in the network;

Size Number of the arcs in the network;

A v NdDg Average node degree: m
n

;

Density m
n (n −1)

;

New features: (10 features)

cv NdDg Coefficient of variation of node degrees;

cv Cap Coefficient of variation of arc capacities;

PercLoCap Percentage of capacities smaller than average arc capacity;

PercHiCap Percentage of capacities greater than average arc capacity;

ScRngCap Scaled range of arc capacities: = the range of arc capacities over the average arc capacity;

ScA v Cap Scaled average arc capacity : =

A v C ap(C)
MedCap

, wher e A v C ap(C) and MedC ap are average and median of arc capacities in C respectively;

ScA v NdCap Scaled average node capacity: =

A v NdCap
MedCap

, where A v NdCap is the sum of all arc capacities in C divided by n ;

ScCapDens Scaled capacitated density : = ScA v Cap × Density ;

ScPot Net Excess Scaled potential net excess : =

Pot Net Excess
A v C ap(C)

;

AV ScPot Net Excess Average of scaled potential net excess : =

ScPot Net Excess
n −2

;

t

t

i

a

b

l

r

p

c

f

w

t

l

r

O

3

t

f

b

[

e

s

i

i

s

o

t

t

o

P

h

u

i

m

w

t

l

i

i

3

s

g

i

u

c

t

t

p

e

t

b

p

s

i

i

t

i

a

s

T

w

[

m

b

h

a

i

m

b

s

n

m

he minimum that provided some convergence to normal distribu-

ion with a reasonable computational cost. Moreover, we included

n the performance metric the initialisation time, i.e., where flows

re allocated to the arcs to get an initial solution, because it can

e significant (Verma & Batra, 2012).

We set the main parameters of the MATILDA toolkit as fol-

ows. The performance measure is minimising CPU time with

elative performance and ε = 0 . 05 . We activated the automatic

re-processing and the feature selection. If the Pearson correlation

oefficient exceeds 0.3 between a feature and an algorithm per-

ormance, we regard it as one of the top most correlated features

ith the algorithm performance. We found that the implementa-

ion of the SVMs using a Gaussian kernel function with LIBSVM’s

ibraries (Chang & Lin, 2011) leads to a good discrimination of algo-

ithms’ performances and yields good accuracy of SVM prediction.

ther parameters in MATILDA toolkit are described in Appendix B.

.3.2. Results

Applying ISA on the initial metadata, denoted by M 0 , five fea-

ures were selected. As such, each instance is represented as a 5D

eature vector, visualised as a 2D point in the instance space given

y the equation:

Z 1
Z 2

]
=

⎡

⎢ ⎢ ⎣

0 . 9272 −0 . 2228

0 . 2074 0 . 5812

0 . 3866 0 . 5068

−0 . 4044 −0 . 5475

−0 . 2502 0 . 1752

⎤

⎥ ⎥ ⎦

� ⎡

⎢ ⎢ ⎣

Size
AV ScP ot Net Excess
cv Cap
ScA v Cap
ScCapDens

⎤

⎥ ⎥ ⎦

(4)

Fig. 2 shows the distribution of the instances of various gen-

rators and the predicted footprints of algorithms in the instance

pace created using M 0 and Eq. (4) . Trends of the features in this

nstance space are also presented in Fig. 3 . The location of each

nstance in the instance space is determined by its feature values,

uch that instances with similar features are located near each

ther even if they are from different families. This demonstrates

hat the benchmark family is less important than the characteris-

ics of individual instances, especially for evaluating the behaviour

f algorithms. For example, according to the portfolio footprints,

seudo_Hi_FIFO is recommended for most but not all the space;

owever, its strengths (or weaknesses) are unrelated with partic-

lar classes of instances, but with the feature combination that

nstances share. The same observation can be made for the re-

aining algorithms. Because of the sparsity of this instance space,

hich indicates inadequate diversity of these initial instances,

he relationship between features and performances is examined

ater. Another issue is the presence of non-uniform density in the
416
nstance space, which is discussed in Section 4 . For now, we try to

mprove the diversity of instances.

.4. Generating new instances to fill sparse areas of the instance

pace

An approach to fill the sparse areas in the instance space is to

enerate new instances using the available generators by explor-

ng alternative parameters. To this end, we highlight each individ-

al family in the instance space then, based on their nearby lo-

ation, we target some families that are most promising in filling

hese holes. Using the distribution pattern of instances from each

arget family, we detect how to change the values of controllable

arameters of that family to generate instances in the targeted ar-

as. Fig. 4 illustrates the distribution of some target families across

he instance space (see Figure E.2 in the Appendix for the distri-

ution of other target families). Despite the simplicity of this ap-

roach, it might be hard to fill some holes in the projected instance

pace appropriately because the projection’s impact on the density

s out of our control. Alternative approaches will be discussed later

n Section 5.2.3 .

After generating new benchmarks in this way and adding them

o M 0 , we obtained an augmented metadata set M

′
0

with 25,401

nstances. Applying ISA on M

′
0 with the same parameter setting

s before, six features were selected, with the corresponding 6D

pace reduced to a 2D space using the projection matrix in (5) .

he updated instance space and the predicted footprints associated

ith the selected features of M

′
0

and Eq. (5) are shown in Fig. 5 .

Z 1
Z 2

]
=

⎡

⎢ ⎢ ⎢ ⎢ ⎣

−0 . 1108 −0 . 2886

−0 . 8386 −0 . 5103

−0 . 2889 0 . 3535

−0 . 2374 0 . 2604

0 . 0952 −0 . 3641

−0 . 0029 0 . 3941

⎤

⎥ ⎥ ⎥ ⎥ ⎦

� ⎡

⎢ ⎢ ⎢ ⎢ ⎣

Order
Size
A v NdDg
ScP ot Net Excess
cv NdDg
ScCapDens

⎤

⎥ ⎥ ⎥ ⎥ ⎦

. (5)

Fig. 5 illustrates that the newly generated instances dra-

atically improved the density. However, non-uniform density

ecomes a major issue due to over-sampled families that create

igh-density pockets, while other areas remain sparse. Since our

ssessment of the diversity of the instances might be unreliable

n the presence of the bias created by non-uniform density, we

ust increase the uniformity and reduce the representation bias

efore adding more benchmarks to M

′
0

and filling the remaining

parse areas. In Section 4 we will discuss how the bias created by

on-uniform density of instances misleads feature selection, di-

ensionality reduction, and the performance of machine learning

H. Alipour, M.A. Muñoz and K. Smith-Miles European Journal of Operational Research 304 (2023) 411–428

Fig. 2. Distribution of the instances and predicted algorithm portfolio footprints across the instance space created using M 0 and (4) . (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Distribution of selected features in the initial instance space with a colour scale ranging from scaled minimum (dark blue) to scaled maximum (light yellow) values.

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. New benchmarks introduced to fill the existing holes; gray points are all current instances except those in the target family, black points are the current instances

from the target family, and cyan points are newly generated instances from the target family intended to fill empty and sparse areas. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

417

H. Alipour, M.A. Muñoz and K. Smith-Miles European Journal of Operational Research 304 (2023) 411–428

Fig. 5. Distribution of the instances and predicted portfolio footprints across the instance space created using M

′
0 and Eq. (5) . (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)

c

n

4

s

s

t

L

e

r

p

(

d

o

s

e

a

m

a

t

t

m

l

o

l

i

c

t

4

4

p

n

x∥∥
w

a

t

δ

m

s

d

H

f

t

p

q

o

l

a

s

f

d

c

a

r

w

t

r

p

t

4

s

lassifiers. To handle this issue, we select instances carefully by a

ovel instance selection procedure introduced in the next section.

. An instance selection procedure for bias reduction

Non-uniform density appears when many benchmarks have

imilar features, leading to oversampling in some regions of the in-

tance space, in turn causing representation bias (Suresh & V. Gut-

ag, 2020). Oversampling misleads three key steps in ISA:

• it impacts the estimation of correlation among features and be-

tween performance and features, resulting in biased feature se-

lection;
• it affects the estimation of variance of the features, misleading

the dimensionality reduction;
• it changes the density and purity across the instance space, bi-

asing the performance of the machine learning classifiers.

Instance selection is a common task within the field of Machine

earning, particularly in the context of fitting classification mod-

ls, as a means to address oversampling. García, Luengo, & Her-

era (2015) provided a comprehensive taxonomy of over 100 ap-

roaches for instance selection proposed to date; Fer ́nandez et al.

2018) investigated over 90 approaches of dealing with imbalanced

ata sets proposed to date; none of these approaches, nor any

ther recently reported studies, aims to reduce non-uniform den-

ity to reduce over-representation bias to the best of our knowl-

dge. Therefore, we introduce an instance selection procedure

imed to decrease the oversampling bias, which retains only the

ost informative instances while controlling the information loss

nd enforcing a more uniform density across the space. While

he instance selection procedure has been proposed to mitigate

he bias in instance space analysis, the concepts exposed in the

ethodology are broadly applicable to any machine learning chal-

enge to reduce the representation bias and select an unbiased set

f instances. The details of this procedure are described in the fol-

owing sections, with Section 4.1.1 presenting our method to detect

nformative instances, and Section 4.1.2 presenting our method to

orrect the non-uniform density. We also discuss when and how

his procedure should be applied in the context of ISA.
418
.1. Methodology

.1.1. Critical and redundant instances

To handle non-uniform density resulted from oversampling, we

ropose the removal of redundant instances. To formalise the defi-

ition of redundant, let f i =

[
f i, 1 . . . f i,m

]�
be the feature vector of

 i ∈ I . Two instances
{

x i , x j
}

are similar if:

f i − f j
∥∥

2
≤ θ, (6)

here θ is a similarity threshold; otherwise they are dissimilar . ISA

ssumes that for two similar instances, an algorithm is likely to have

he same binary performance . In other words, if (6) is true then:

i = δ j (7)

ust also be true. A pair of instances that fulfil this similarity as-

umption carry the same information; hence, one of them is redun-

ant and could cause oversampling bias (Suresh & V. Guttag, 2020).

owever, we might find a pair of similar instances for which (7) is

alse, i.e., δi 	 = δ j . Then, one of them violates the similarity assump-

ion , implying that the current set of features cannot properly ex-

lain algorithm performance and perhaps a new feature is re-

uired. Although violations could be addressed by removing one

f the instances, this would result in valuable information being

ost. We define the set of instances in violation of the similarity

ssumption (named ViSA) and denote the set by V θ . The set of dis-

imilar instances is denoted by D θ . Dissimilar and ViSA instances

orm the critical set of instances, denoted by C θ := D θ ∪ V θ . Redun-

ant instances are denoted by R θ := I \ C θ . The ratio between the

ardinalities of V θ and C θ is called ViSA ratio , and it is calculated

s follows:

 θ =

|V θ |
|C θ | = 1 − |D θ |

|C θ | , (8)

here | . | is cardinality. Note that 0 ≤ r θ < 1 , with values of r θ close

o zero indicating that the current set of features describes algo-

ithm performance well, whereas values close to one indicate a

oor set of features. Hence, we propose r θ as a criterion to assess

he adequacy of a feature set.

.1.2. Instance selection algorithm

Algorithm 1 selects critical instances from a given metadata

et based on a given similarity threshold θ . It uses as inputs a list,

H. Alipour, M.A. Muñoz and K. Smith-Miles European Journal of Operational Research 304 (2023) 411–428

Algorithm 1: Instance selection algorithm .

Result : A filtered metadata including C θ , V θ , and D θ associated with a
given similarity threshold θ ;

Initialisation: given a list L of instances and a similarity threshold θ ,
set C θ = ∅ , V θ = ∅ , D θ = ∅ , and Id i = 1 , ∀ x i ∈ L ;
while L 	 = ∅ do

select an instance x i from L in FIFO order;
for any x j ∈ L , x j 	 = x i do

if
∥∥f i − f j

∥∥
2

≤ θ then

if δi = δ j then

L ← L /
{

x j
}

;

else
Id j ← 0 ;

end

end

end
if Id i = 1 then

D θ ← D θ ∪ { x i } ;
else

V θ ← V θ ∪ { x i } ;
end
L ← L / { x i } ;

end
C θ ← V θ ∪ D θ ;
return C θ , V θ , D θ ;

Fig. 6. The uniformity of D θ versus θ in M 1 and M 2 . (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version

of this article.)

d

p

s

i

f

d

s

o

f

I

f

s

c

V

l

c

w

s

i

a

w

m

g

c

a

T

a

f

w

c

s

a

n

e

m

n

f

d

D

t

t

c

T

&

&

d

S

a

v(
i

h

s

t

s

t

o

p

m

r

c

A

c

u

r

c

t

e

i

a

t

4

t

t

t

t

t

t

enoted as L , of all instances in I , vectors of features and binary

erformance labels, f i and δi respectively, for each x i ∈ I . As a first

tep, the algorithm initialises C θ , V θ and D θ as empty sets. Then,

t creates an identifier Id ∈ { 0 , 1 } for each instance to separate V θ
rom D θ : x i is a candidate to belong to D θ if Id i = 1 and it is a can-

idate to belong to V θ if Id i = 0 . Id is initialised as 1 for all x i ∈ I ,

o that initially all instances are assumed dissimilar until shown

therwise. In each iteration, the algorithm selects an instance x i
rom L in FIFO order and compares it to all other instances in L .

f an instance x j is similar to x i and δi = δ j , then, x j it is removed

rom L . If x j is similar to x i but δi 	 = δ j , violating the similarity as-

umption, then Id j is set to 0. When all instances in L have been

ompared with x i , the algorithm removes x i from L and adds it to

 θ if Id i = 0 , otherwise, adds it to D θ . In the next iteration, it se-

ects another instance from the front of L and repeats the above

omparison process. The algorithm terminates when L is empty,

hich occurs after | I | (| I | − 1) / 2 comparisons. The critical set of in-

tances C θ is identified as the union of V θ and D θ . Notice that if an

nstance gets Id j = 0 in the current iteration, it might be detected

s redundant later during the comparison process. In this case, it

ill be removed from L but not be added to V θ . A MATLAB imple-

entation of this algorithm can be found in Alipour (2021) .

The value of θ in Algorithm 1 depends on the trade-off between

ood uniformity and diverse sampling. In the following, we dis-
419
uss how to assess the uniformity of instances and determine θ to

chieve a balance between good uniformity and diverse sampling.

o avoid missing important information, we assess the similarity

nd uniformity of instances only in the high-dimensional space of

eatures but not in the reduced 2-dimensional space. This point

ill be discussed further in Section 4.1.3 . Moreover, since the lo-

ations of ViSA instances are potentially unreliable in the feature

pace, as the features must be inadequate if they are similar but

chieving different performance, we do not regard V θ in assessing

on-uniform density. Based on the point-to-point comparison strat-

gy used in Algorithm 1 , we use the simple point-to-point unifor-

ity measure based on the coefficient of variation of the nearest

eighbour distances to assess the uniformity of D θ in the space of

eatures. For an instance x i ∈ D θ , the nearest neighbour distance,

enoted by d NN (x i) , is defined as d NN (x i) = min

∥∥f i − f j
∥∥

2
, ∀ x j ∈

 θ , x j 	 = x i . Let D

NN
θ

=

{
d NN (x i) | x i ∈ D θ

}
. The coefficient of varia-

ion of the nearest neighbour distances for D θ is denoted by cv NN ,

hat is,

v NN =

σD NN
θ

μD NN
θ

.

he uniformity of D θ is measured by u D θ = 1 − cv NN (Gunzburger

 Burkardt, 2004) as a reliable uniformity measures (Ong, Kuang,

 Ooi, 2012). Notice that u D θ ≤ 1 , where values near 1 in-

icate high uniformity of D θ . If |D θ | = 1 , we take u D θ = 1 .

ince u D θ ∈

[
1 − cv NN

max , 1
]
, where cv NN

max is the maximum allow-

ble cv NN in D θ , knowing whether u D θ is suitable depends on the

alue of cv NN
max , which is a little vague. Standardising u D θ using

u D θ −
(
1 − cv NN

max

))
/
(
1 −

(
1 − cv NN

max

))
, makes u D θ ∈ [0 , 1] easier to

nterpret.

In detecting a good value for θ , if we focus on achieving a

igh uniformity of D θ , the ideal θ might be large, resulting in a

mall cardinality of D θ in which all instances have the same dis-

ances from their nearest neighbours; however this is likely to re-

ult in insufficient diversity of instances in the instance space. On

he other hand, if we focus on achieving an acceptable diversity

f instances, the ideal θ might be small resulting in the maximum

ossible benchmarks retained in D θ , but likely, with low unifor-

ity of D θ and a persistence of oversampling bias. The following

ule determines the value of θ to achieve a balance between these

onflicting goals. Notice that, if the value of θ is large enough,

lgorithm 1 will return D θ with perfect uniformity; in the worst

ase, just one or a few instances are retained in D θ resulting in

 D θ = 1 . This means that using some large values of θ , the algo-

ithm can return D θ that satisfies any predetermined uniformity

ondition such as u D θ ≥ 0 . 8 . Now, given an acceptable uniformity

hreshold u 0 , we apply Algorithm 1 on the metadata with differ-

nt similarity thresholds θ1 < θ2 < · · · < θq and regard the follow-

ng rule.

Threshold rule: the preferred value of θ = θh , h = 1 , . . . , q is the

smallest one such that u D θ ≥ u 0 .

Because the value of θ is proportional to 1 / D θ , this rule en-

bles us to retain as many instances as possible while satisfying

he user-defined minimum uniformity requirement, i.e., u D θ ≥ u 0 .

.1.3. When should the instance selection procedure be applied?

Applying the instance selection procedure before feature selec-

ion is crucial. It decreases the bias of non-uniform density on

he feature selection and gives the same chance to all features in

he metadata to show their importance. The selected instances are

hen used by ISA to detect the appropriate features and preclude

he redundant features. However, precluding the redundant fea-

ures by ISA changes the dimension of the feature space, implying

H. Alipour, M.A. Muñoz and K. Smith-Miles European Journal of Operational Research 304 (2023) 411–428

Fig. 7. Instance spaces created using M 2 and M

′′
0 with (9) . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

Fig. 8. Predicted best algorithm performance and portfolio footprint areas. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

t

i

t

p

d

t

l

t

m

a

fi

l

m

s

i

r

t

s

s

p

f

s

t

s

4

a

w

S

M
M
l

M

s

a

i

o

T

hat the previous assessments of the uniformity and the critical

nstances are no longer valid in the new lower dimensional fea-

ure space. Therefore, the instance selection process must be ap-

lied again on the induced metadata, which is the original meta-

ata without the precluded features. As a benefit, this decreases

he bias of the presence of redundant features on the instance se-

ection. Applying the instance selection process after feature selec-

ion, decreases the bias of non-uniform density in the lower di-

ensional feature space associated with the induced metadata. As

 result, the bias in dimensionality reduction used to create the

nal instance space and the bias in the performance of machine

earning classifiers will be decreased at this phase. If the original

etadata includes no redundant features, that is, all features are

elected through the feature selection process, then, applying the

nstance selection process before and after feature selection will

esult in the same C θ . In this case, the second phase of applying

he instance selection process will be unnecessary.

Some critical instances in the induced metadata might become

imilar in the 2D space due to information lost during the dimen-

ionality reduction. In this case, non-uniform density might hap-

en in the 2D space as the consequence of the absence of this in-

ormation. To avoid losing more information, applying the instance

a

420
election process is not carried out in the 2D space, but just in

he higher dimension feature space where instance similarity is as-

essed.

.2. Results

Taking u 0 = 0 . 5 as an acceptable uniformity threshold and

pplying Algorithm 1 on M

′
0
, we obtained M 1 . Six features

ere selected: Ord er, Size , A v Nd Dg, AV ScPot Net Excess , cv NdDg , and

cCapDens . We kept these features and removed all others from

′
0 to obtain the induced metadata M

′′
0 . Applying Algorithm 1 on

′′
0

resulted in M 2 . We then applied ISA without the feature se-

ection on M 2 .

Fig. 6 shows the uniformity of D θ for different values of θ in

 1 and M 2 . Table 2 reports the changes in the number of in-

tances and the uniformity in each phase of applying Algorithm 1 ,

s well as the similarity thresholds obtained by the Threshold rule

n each phase using u 0 = 0 . 5 . The ViSA ratio associated with each

f the selected set of instances is reported too. According to the

hreshold rule of Section 4.1.2 , the preferred similarity thresholds

re θ = 0 . 20 and θ = 0 . 15 to obtain M and M respectively.
1 2

H. Alipour, M.A. Muñoz and K. Smith-Miles European Journal of Operational Research 304 (2023) 411–428

Fig. 9. Actual binary performances of each algorithm on each instance (top row) and their SVM predictions (bottom row); the blue points are instances for which the

algorithm is labeled as good and the orange points are instances where the algorithm is labeled as bad .. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

Table 2

Changes to the uniformity and sample size resulting from applying the instance

selection procedure on different metadata sets..

Metadata θ u D θ |D θ | |C θ | r θ Dimension

M

′
0 - -0.83 25,401 25,401 - 14D

M 1 0.20 0.55 3073 4633 0.34 14D

M

′′
0 - -0.95 25,401 25,401 - 6D

M 2 0.15 0.51 2430 3857 0.37 6D

t

F

j

A

s

[

r

s

t

t

f

o

a

o

r

f

s

c

a

Table 3

Statistical results of SVM models: the first column consists of the name of the al-

gorithms. The second column shows the probability that an algorithm is labeled as

good for a given instance. The remaining three column show the quality of SMV

models for each algorithm.

Algorithm Pr (Good) Accuracy Precision Recall

Hi_PR 0.081 81.9% 28.2% 80.4%

PAR 0.237 70.2% 42.5% 72.9%

P2R 0.172 80.4% 45.2% 65.5%

Pseudo_Hi_FIFO 0.752 81.5% 89.1% 85.8%

t

l

g

f

s

o

a

t

d

s

t

s

o

a

t

a

t

t

m

t

m

n

n

s

The instance space shown in Fig. is constructed using M 2 and

he optimised projection equation given in (9) . By contrast, in

ig., M

′′
0

is projected into the same instance space using the pro-

ection Eq. (9) . In combination, Fig. 7 illustrates how efficiently

lgorithm 1 decreases non-uniform density across the instance

pace, reducing oversampling and its potential for bias.

Z 1
Z 2

]
=

⎡

⎢ ⎢ ⎢ ⎢ ⎣

−0 . 4208 −0 . 0738

−1 . 0599 0 . 7700

0 . 0458 0 . 5908

0 . 4662 0 . 3763

−0 . 3384 −0 . 2591

0 . 4274 0 . 2908

⎤

⎥ ⎥ ⎥ ⎥ ⎦

� ⎡

⎢ ⎢ ⎢ ⎢ ⎣

Order
Size
A v NdDg
AV ScP ot Net Excess
cv NdDg
ScCapDens

⎤

⎥ ⎥ ⎥ ⎥ ⎦

(9)

According to Fig., the empirical boundaries in the bottom and

ight sides of the instance space are far from any generated in-

tances. As we will see later in Fig. 11 , these areas belong to the

iny networks, which are not worth considering as the running

imes of all algorithms are near-zero, making all algorithms’ per-

ormances indistinguishable. However, the gaps to the boundaries

n other sides of the instance space should be reduced by gener-

ting more instances. Supporting this, Fig. 8 shows SVM prediction

f the best algorithm for each instance and prediction of the algo-

ithms’ footprints, where some small holes exist in the predicted

ootprints due to insufficient evidence of performance. These re-

ults show that more instances must be generated still to obtain a

omplete instance space. Unfortunately, because of the large stor-

ge and computing time requirements, we could not generate and
421
est more of the largest benchmarks. Nevertheless, Figs. 7 and 8 il-

ustrate an acceptable density across the instance space with a

ood uniformity, meaning that there is a balance between uni-

ormity and diverse sampling. This allows us to explore the in-

tance space with more confidence than the initial metadata (M 0)

r the augmented metadata (M

′
0), with their inadequate instances

nd oversampling bias, could afford. Comparing these results with

hose in Section 3.4 , we see the benefits of addressing non-uniform

ensity issues as a priority before attempting to fill sparse areas,

o the assessment of sufficiency of the instances is not biased by

he non-uniformity. Notice that it is hard to compare different in-

tance spaces resulting from different features, projection matrices,

r different set of instances to obtain further insights about the

lgorithms’ performances. Here, we used such a comparison just

o see the improvement of diversity and uniformity of instances

nd their impacts on the feature selection, dimensionality reduc-

ion, and footprint detection.

In Fig. 9 , the top row shows the actual binary performance and

he bottom row provides the SVM prediction of the binary perfor-

ance for each algorithm in the instance space. These results show

hat the SVMs have learned to distinguish good and bad perfor-

ances well.

Statistical results of the SVM models’ learning within the fi-

al instance space are provided in Table 3 . In the presence of

umerous instances violating the similarity assumption (ViSA in-

tances), distinguishing the algorithm’s labels precisely is challeng-

H. Alipour, M.A. Muñoz and K. Smith-Miles European Journal of Operational Research 304 (2023) 411–428

Fig. 10. Locations of V 0 . 15 (black) and D 0 . 15 (gray) in the instance spaces created

using M 2 and M

′′
0 with (9) . The black instances violate the similarity assumption,

meaning that the performances of algorithms on these instances might not be ex-

plained accurately by the current set of features..

i

g

t

l

r

b

m

t

i

r

i

o

o

c

i

r

R

a

a

s

s

F

m

p

e

P

r

c

f

i

s

e

u

e

d

u

f

r

[

[

S

b

f

S

r

s

i

i

F

v

ng. Fig. 10 highlights V 0 . 15 and D 0 . 15 in M 2 . We note that the re-

ions with a significant number of ViSA instances also correspond

o the regions where the SVM models perform less precisely. The

ow precision of the Push-Relabel family in Table 3 supports this

elationship, and the belief that the current features are proba-

ly insufficient to accurately describe the relationship to perfor-

ance for instances in these regions that are mostly occupied by

he Push-Relabel algorithms’ footprints. The quantity r 0 . 15 = 0 . 37

n Table 2 also acknowledges that the set of the selected features

emains imperfect. However, this does not prevent us from mak-

ng predictions for such instances; as we can see in the top row

f Fig. 9 , the similar behaviours of PAR and P2R in such areas is

ne of the main reasons for this phenomenon, meaning that we

annot have a preference between PAR and P2R but each of them
ig. 11. Distribution of the selected features in the final instance space with a colour s

alues. (For interpretation of the references to colour in this figure legend, the reader is r

422
s preferable than Pseudo_Hi_FIFO and Hi_PR for instances in the

elevant regions. Except for the low SVM precision for the Push-

elabel family, other metrics (i.e. accuracy and recall) have accept-

ble values for all four algorithms. Consequently, the SVM models

re reliable enough to discuss other aspects of the final instance

pace.

Fig. 11 illustrates the trends of the selected features across the

pace. Comparing these trends with the predicted footprints in

ig. 8 , we can see how features impact the algorithms’ perfor-

ances beyond the name of their generator. The size of the foot-

rints in Fig. 8 also reveals that Pseudo_Hi_FIFO is the most pow-

rful algorithm in general, P2R is the next strongest algorithm,

AR is slightly weaker than P2R, and Hi_PR is the weakest algo-

ithm in the portfolio. Table 4 summarises the statistical signifi-

ance testing for the impact of the features on the good/bad per-

ormance of algorithms. Taking the groups 1 and 2 as the sets of

nstances in which an algorithm is labeled as good and bad re-

pectively, we obtained the p-values from the two-sample t-test for

ach pair of feature-algorithm, where the mean of the feature val-

es in group 1 is compared with that in group 2; corresponding to

ach such p-value smaller than 0.05, we calculated the 95% confi-

ence interval (CI) using the one-sample t-test for the feature val-

es in group 1. These results enable selecting suitable algorithms

or unseen problems. For example, Hi_PR is the preferable algo-

ithm for instances with A v N dDg ∈ [4 . 7558 6 . 1397] or cv N dDg ∈
90 . 0514 187 . 2852] ; if Size ∈ 10 7 × [1 . 4520 1 . 8567] , A v NdDg ∈
642 . 9823 825 . 7418] , A v ScPot Net Excess ∈ [109 . 5541 150 . 4747] , or

cCapDens ∈ [0 . 0215 0 . 0298] , Pseudo_Hi_FIFO is the best option;

eyond these bounds, we might invoke combinations of multiple

eature values to distinguish the performances of algorithms (see

ection 4.3.2). The large p-values of Order for Push-Relabel algo-

ithms also demonstrate that the analyses limited to this feature,

uch as some asymptotic analyses, prohibit getting deep insights

nto the algorithms’ behaviours.

The distribution of the percentage of good algorithms on each

nstance across the space is depicted in Fig. 12 , indicating the loca-
cale ranging from scaled minimum (dark blue) to scaled maximum (light yellow)

eferred to the web version of this article.)

H. Alipour, M.A. Muñoz and K. Smith-Miles European Journal of Operational Research 304 (2023) 411–428

Table 4

Statistical significance testing for the impact of the features on the good/bad performance of algorithms, p-values (top rows) and 95% CIs (bottom rows) of each feature for

good performance of each algorithm.

Feature Hi_PR PAR P2R Pseudo_Hi_FIFO

Order 0 . 2175 0.7101 0.7098 3 . 9712 e − 10

- - - 10 6 × [1 . 3779 1 . 9798]

Size 5 . 6488 e − 04 1 . 7018 e − 08 8 . 7593 e − 06 2 . 7700 e − 04

10 6 × [1 . 8974 8 . 6659] 10 6 × [4 . 9612 8 . 1441] 10 6 × [4 . 5965 9 . 0809] 10 7 × [1 . 4520 1 . 8567]

A v NdDg 3 . 1590 e − 06 1 . 0164 e − 16 7 . 2315 e − 09 2 . 4369 e − 15

[4 . 7558 6 . 1397] [7 . 6440 6 8 . 24 96] [31 . 8288 199 . 0035] [642 . 9823 825 . 7418]

AV ScPot Net Excess 2 . 6246 e − 04 3 . 4048 e − 09 0.0068 2 . 6045 e − 06

[0 . 7775 1 . 1073] [0 . 8083 31 . 1063] [13 . 9620 97 . 5733] [109 . 5541 150 . 4747]

cv NdDg 2 . 3784 e − 40 0.0016 0.0330 9 . 3394 e − 09

[90 . 0514 187 . 2852] [10 . 5733 18 . 7062] [13 . 2920 20 . 8401] [16 . 6497 24 . 3152]

ScCapDens 0.0041 5 . 0676 e − 07 0.0032 2 . 2573 e − 08

[0 . 0 035 0 . 0 057] [0 . 0 035 0 . 0 080] [0 . 0055 0 . 0142] [0 . 0215 0 . 0298]

Fig. 12. Distribution of the percentage of good algorithms with a colour scale rang-

ing from scaled minimum (dark blue) to scaled maximum (light yellow) values. (For

interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

t

F

t

A

i

s

w

e

e

a

t

l

f

fi

“

s

f

4

i

f

s

a

b

e

s

t

4

f

a

(

(

(

(

g

s

P

(

t

m

i

d

s

r

P

c

a

a

f

b

(

a

a

A

t

s

P

i

T

c

e

n

P

l

f

ions of easy (bottom right) and hard instances for the algorithms.

ig. 13 shows the scaled performance for each algorithm, where

he scaling is based on the range of the algorithm’s performances.

ccording to our choice of the performance measure and the def-

nition of the performance goodness, Fig. 12 shows that most in-

tances are hard for MFP algorithms; some small instances (net-

orks with small Size and Order according to Fig. 11) are the only

asy instances for all MFP algorithms. Because these algorithms are

xtremely fast on the small instances, their CPU times are regarded

s 0 (smaller than 0.001) indicating that all algorithms are known

o be good on such instances. Fig. 13 illustrates this fact. It is be-

ieved that most of the benchmark families examined here are easy

or MFP algorithms (Ahuja et al., 1997; Goldberg, 2009), which at

rst glance it is in contradiction with our findings. Since, the term

hard” has not been clarified by research claiming that such in-

tances are easy, we cannot discuss such claims. Nevertheless, dif-

erent definitions of “hardness” yield different conclusions.

.3. Further insights into the algorithms’ behaviours

In the previous section, we explored how key features appear to

mpact the behaviours of algorithms. We now explain why these

eatures may cause certain behaviours. To this end, we first de-

cribe differences in the underlying mechanism adopted by each

lgorithm and show that arc/path finding strategies are responsi-
423
le for the major differences in algorithms behaviours. Then we

xplain why algorithms exhibit certain behaviours in the instance

pace by interpreting the relationship between the features and

he arc/path searching strategies.

.3.1. The key difference in the behaviours of MFP algorithms

The four algorithms in our study utilise a variety of strategies

or finding the maximum flow (see Appendix A). These strategies

re:

1) using preflows or pseudoflows,

2) pushing flows through admissible arcs,

3) relabelling, and

4) finding admissible arcs/paths.

This raises the question: Which of these strategies has the

reatest impact on the behaviour of an algorithm for particular in-

tances?

Push-Relabel algorithms work with preflows, while

seudo_Hi_FIFO works with pseudoflows. Chandran & Hochbaum

2009) demonstrated that Push-Relabel algorithms can be adopted

o work with any kind of initial pseudoflows, but this does not

ake Push-Relabel algorithms behave like Pseudo_Hi_FIFO, mean-

ng that using preflows or pseudoflows cannot cause a major

ifference between these algorithms.

Except for P2R, all other algorithms push the maximum pos-

ible flows through admissible arcs. If the pushing strategies are

esponsible for large differences among all algorithms, then Hi_PR,

AR, and Pseudo_Hi_FIFO must behave similarly, but this is not the

ase. While pushing strategies cause some differences between PAR

nd P2R, they cannot describe the major differences among all four

lgorithms.

The relabelling strategies do not seem to cause a major dif-

erence either. For example, PAR and P2R use different rela-

elling strategies, while behaving similarly. Chandran & Hochbaum

2009) claim that the main reason for the substantial differences

mong Push-Relabel and Pseudoflow algorithms is whether they

llow flows to be pushed through arcs (u, v) with l(u) = l(v) (See

ppendix A). We see that Hi_PR, PAR, and P2R do not allow flows

o be pushed through such arcs, thus, if this is the main rea-

on for the substantial difference between the Pseudoflow and the

ush-Relabel algorithms, all algorithms from the Push-Relabel fam-

ly would be expected to behave similarly, but this is not the case.

he global relabeling heuristics used in Push-Relabel algorithms

an cause some substantial differences if they are combined with

fficient path finding strategies. Nevertheless, these heuristics are

ot responsible for major differences individually, otherwise, all

ush-Relabel algorithms must behave similarly as thy utilise simi-

ar heuristics.

Although differences in the above strategies can cause some dif-

erent behaviours, the main strategies that make significant differ-

H. Alipour, M.A. Muñoz and K. Smith-Miles European Journal of Operational Research 304 (2023) 411–428

Fig. 13. Scaled algorithm performance for each algorithm relative to its own performance range with a colour scale ranging from scaled minimum (dark blue) to scaled

maximum (light yellow) values.. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

e

c

a

t

n

w

r

d

u

t

i

o

t

i

P

s

e

w

s

e

p

w

w

D

g

4

s

s

a

o

r

c

t

f

W

a

i

s

o

p

p

w

s

i

t

m

s

t

P

t

Fig. 14. Distribution of the network density in the instance space with a colour

scale ranging from scaled minimum (dark blue) to scaled maximum (light yellow)

values.. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

f

n

fi

r

fi

c

t

m

[

i

o

c

w

p

D

w

c

s

P

A

p

P

i

h

a

nces appears to be the way of finding admissible arcs/paths. Ex-

ept for Hi_PR, which looks only for the admissible arcs adjacent to

 fixed active node using breadth-first-search BFS at each iteration,

he three other algorithms look for paths stemming from an active

ode using depth-first-search DFS at each iteration. This explains

hy Hi_PR performs quite differently from the three other algo-

ithms. Though the last three algorithms rely on paths, they use

ifferent approaches for finding admissible paths. Pseudo_Hi_FIFO

ses a forest of the current arcs and finds admissible paths from

he root of a strong component to the root of weak components

n each iteration using the information of the components. On the

ther hand, in each iteration, PAR and P2R use only the informa-

ion of the current arcs and the current nodes explored within the

teration in determining admissible paths. That is, the strategies of

AR and P2R use less information at the cost of having a blind

earch for the admissible paths. This explains the dramatic differ-

nce of Pseudo_Hi_FIFO’s behaviour from that of PAR and P2R, and

hy PAR and P2R behave similarly. In summary, these insights and

tatistical footprint analysis have provided support for the hypoth-

sis that arc/path finding strategies make a critical difference in ex-

laining the key differences in behaviour of these four algorithms;

hether they use BFS or DFS to find admissible arcs/paths, and

hich strategy they use to find admissible paths if they rely on

FS. The role of the instance features on arc/path finding strate-

ies must be explored.

.3.2. Impact of instance features on the algorithm behaviour

Now, we present some intuitive explanations of the relation-

hip between the features and the admissible arc/path finding

trategies. To begin with, we expect that looking for admissible

rcs/paths demands less effort on sparse networks than on dense

nes. Moreover, if the values of node excesses are low, an algo-

ithm does not need to push back as much flow; thus, its ineffi-

ient trial-and-error search for admissible arcs/paths decreases. In

his case, searching for admissible arcs/paths might require less ef-

ort than searching in networks with high values of node excesses.

e call a network as symmetric/pseudo-symmetric if its nodes and

rcs have the same/similar degrees (i.e. incident arcs) and capac-

ties respectively, otherwise, it is non-symmetric . We expect that

earching for admissible arcs/paths in any part of a symmetric

r pseudo-symmetric network will lead to the similar result, im-

lying that there is no substantial difference between using sim-

le or rich information there. Consequently, in a sparse network

ith minimal AvScPotNetExcess or in a sparse symmetric/pseudo-

ymmetric network, we expect that a simple searching strategy

s more effective than searching with high-information because in

he latter, extra operations are required to obtain and store infor-

ation that is unnecessary. From now onwards, we call the search

trategies of Push-Relabel algorithms as constrained search because

hey limit the path length and use simpler information, and the

seudo_Hi_FIFO’s search strategy as unconstrained search . Notice

hat although the Push-Relabel algorithms benefit from the rich in-
424
ormation of the global relabeling heuristics periodically, they do

ot carry/obtain this rich information during all iterations in the

rst phase. Therefore, they are freed of the extra operations and

emain constrained during most iterations. In the following, we

rst compare the unconstrained search of Pseudo_Hi_FIFO with the

onstrained searches of the Push-Relabel algorithms, then compare

he constrained searches with each other.

We refer to the scaled values of the features as tiny, small,

edium, large , and huge if they fall within the intervals [0 0 . 2] ,

0 . 2 0 . 4] , [0 . 4 0 . 6] , [0 . 6 0 . 8] , and [0 . 8 1] respectively. Fig. 14

llustrates the distribution of the network density, which can be

btained using Order and AvNdDg . Figs. 14 and 8 reveal that the

onstrained searches are preferable only on some sparse networks,

here Density ∈ [0 0 . 4] , and Pseudo_Hi_FIFO’s footprint occu-

ies all parts of the instance space with dense networks, where

ensity ∈ (0 . 4 1) . In the bottom of the instance space, the net-

orks are sparse and AvScPotNetExcess is tiny (see Fig. 11), thus

onstrained searches are more effective than the unconstrained

earch as discussed. This describes why the footprints of PAR and

2R occupy the corresponding region. If a network is sparse and

vScPotNetExcess is mall but not tiny, we do not expect a good

erformance of the constrained searches; this coincides with the

seudo_Hi_FIFO’s footprint in the area with these properties.

The region around the center to the left of the instance space

s occupied by the footprints of PAR and P2R. Networks there

ave small Density and tiny ScCapDens , meaning that the aver-

ge arc capacity of each network is tiny or small in comparison

H. Alipour, M.A. Muñoz and K. Smith-Miles European Journal of Operational Research 304 (2023) 411–428

w

a

t

o

i

i

i

a

o

u

g

w

f

e

t

H

p

n

s

c

l

t

s

p

a

P

p

p

m

s

n

n

i

a

i

P

i

g

s

4

t

p

s

t

p

s

a

a

P

c

o

a

g

w

a

r

r

i

p

s

f

t

Table 5

Linear regressions of CPU times in terms of the fundamental operation counts,

where s, p, and r denote the number of scans, pushes, and relabels respectively.

Algorithm Linear regression Adjusted R 2

Hi_PR CPU = 0 . 9221 × s + 0 . 0587 × p 0.9431

PAR CPU = 0 . 9367 × s + 0 . 0381 × p 0.9384

P2R CPU = 0 . 8096 × s + 0 . 1316 × p 0.8478

Pseudo_Hi_FIFO CPU = 0 . 3854 × s + 0 . 5749 × p + 0 . 0533 × r 0.9015

4

r

c

T

a

o

P

t

b

p

o

c

a

t

o

t

a

m

a

p

w

4

i

o

a

ith its median capacity according to the definitions of ScCapDens

nd ScAvCap (see Table 1). This implies that the normalised dis-

ribution of arc capacities is skewed to the left with a long tail

f small capacities, meaning that most arcs have small capacities

n each network. Moreover, cvNdDg is small or tiny for networks

n this area, implying that nodes have almost equal incident arcs

n each network. Therefore, it is most likely that these networks

re symmetric/pseudo-symmetric; thus, the constrained searches

f PAR and P2R are more effective there.

PAR and P2R use the similar constrained searches, while Hi_PR

ses a different constrained search. We first compare these al-

orithms with simple augmenting-path based algorithms (APBAs),

hich use DFS to find the augmenting paths. Simple APBAs per-

orm many unnecessary non-saturating push operations (see Ahuja

t al., 1993); working with preflows mitigates this drawback at

he cost of a weaker path search strategy, which is the case with

i_PR. Therefore, Hi_PR performs well only on networks where the

ath search is not essential, which is the case with some sparse

etworks with A v NdDg ∈ [4 . 7558 6 . 1397] according to Table 4 . In

uch networks, some nodes can have large degrees, leading to large

vNdDg (see Table 4 and Fig. 11), but most node degrees must be

ess than 5 to have A v NdDg ∈ [4 . 7558 6 . 1397] . This implies that

he number of paths in such networks are small, thus path search

trategies must be avoided as they are unnecessary and just ap-

ly additional computational costs; this coincides with the small

rea occupied by the Hi_PR’s footprint. On the other hand, PAR and

2R utilise preflows and use partial path searches instead of com-

lete path searches. Therefore, PAR and P2R avoid non-saturating

ushes like Hi_PR, but perform the path search better than Hi_PR,

aking them outperform Hi_PR almost everywhere that a con-

trained search is required. Moreover, the policy of avoiding un-

ecessary node activation helps P2R avoid some node excesses in

etworks with large AvScPotNetExcess , making P2R better than PAR

n such networks. This policy also enables decreasing arc scans

nd node relabels (see Appendix D), which is especially important

n networks with large and huge sizes, making P2R stronger than

AR there. Although these explain why PAR and P2R are successful

n specific regions, their overall performances are not well distin-

uishable (see Fig. 9 and Table 3) because of their similar searching

trategies.

.3.3. Insights from the fundamental operation counts

In this section, we utilise the fundamental operation counts

o compare the subtle differences of MFP algorithms. Here, we

resent only a summary of the insights and provide the full discus-

ion in Appendix D. The common fundamental operations among

he algorithms studied here are arc scans, node relabels , and flow

ushes (through single arcs), which consists of saturating and non-

aturating pushes.

The arc scanning strategy in Pseudo_Hi_FIFO avoids re-scanning

rcs efficiently such that it has the least arc scans among the tested

lgorithms. The monotonicity property (Appendix A.2) also enables

seudo_Hi_FIFO to avoid unnecessary relabels efficiently, making it

ompetitive with P2R in performing the least relabels. The policy

f avoiding some node activation in P2R enables it to perform less

rc scans and node relabels than Hi_PR and PAR. This policy to-

ether with the global relabeling heuristic makes P2R competitive

ith Pseudo_Hi_FIFO in minimising node relabels. Optimisations

pplied on the global relabeling heuristic used in PAR, make its

elabeling strategy more effective than that of Hi_PR. The global

elabeling heuristic and the short path used in PAR to push flows

n each iteration, enables PAR to perform the least non-saturating

ushes, and thus the least overall pushes among algorithms. Non-

aturating pushes are the major part of the overall pushes per-

ormed by the MFP algorithms, hence, they are more important

han saturating pushes in practice.
425
.3.4. Impacts of the fundamental operation counts on CPU times

Table 5 presents the coefficients and adjusted R 2 for the linear

egression of CPU times in terms of the fundamental operation

ounts (data is normalised and mean-centered). According to

able 5 , the greatest proportion of the CPU time in Push-Relabel

lgorithms is spent on arc scans, a small proportion is spent

n pushes, while the time spent on relabeling is negligible. In

seudo_Hi_FIFO, arc scans and pushes take the greatest propor-

ion of the CPU time, with the proportion of push operations

eing higher than that of arc scans, and relabeling takes a small

roportion of the CPU time. These insights identify potential

pportunities for improving MFP algorithms using strategies that

an reduce the number of scans in the Push-Relabel algorithms,

nd reduce the number of pushes and scans in Pseudo_Hi_FIFO.

Interpreting the correlation between the individual fundamen-

al operation counts and the features can be difficult because each

peration count is not just impacted by the problem characteris-

ics, but is also impacted by other operations. To handle this issues,

ll fundamental operations must be regarded in a unit performance

easure reflecting their counterpart in the overall performance;

nd the impact of the features must be investigated on this overall

erformance. We discussed the CPU time as such a measure in this

ork, while other options will be discussed in Section 5.2.1 .

.4. Summary of new insights obtained through the enhanced

nstance space analysis

The following insights would have been hard or impossible to

bserve with traditional reporting of which algorithm is best on

verage across the initial set of literature benchmarks.

Instances. The instances used in this study are diverse enough

to compare the performance of MFP algorithms fairly, but

there is still scope to extend the benchmarks into a more

comprehensive set of instances. Moreover, the set of in-

stances selected by our instance selection algorithm has an

acceptable uniformity, thus the conclusions about the al-

gorithms are not unduly influenced by representation bias.

Among these instances, tiny and small networks are quickly

solved by all tested algorithms, but most of the remaining

instances are more challenging, eliciting poor performance

from at least half of the tested algorithms. As such, the test

instances selected in this paper serve well as a comprehen-

sive, unbiased, and challenging set of benchmarks for study-

ing MFP algorithm performance.

Features. The performance of MFP algorithms can be well

explained by six key features: Ord er, Size , A v Nd Dg,

AV ScPot Net Excess , cv NdDg, and ScCapDens . Although the

value of r θ indicates the potential for additional features

to add value to the analyses, the ability of the selected

features to capture the behaviours of algorithms illustrates

their adequacy for practical analyses of MFP algorithms, and

enables insights into how instance features affect algorithm

performance as described in Section 4.3.2 and summarized

below.

Algorithms. Based on the size of each algorithm’s footprints, we

can objectively state that Pseudo_Hi_FIFO is the strongest

H. Alipour, M.A. Muñoz and K. Smith-Miles European Journal of Operational Research 304 (2023) 411–428

5

t

y

t

5

o

δ
f

t

p

t

w

g

o

t

s

t

t

w

Table 6

Adjusted R 2 for the linear regressions of CPU times in terms of the six selected

features versus two features Size and Order.

Algorithm Six features Two features

Hi_PR 0.7985 0.7637

PAR 0.8235 0.7596

P2R 0.8273 0.7680

Pseudo_Hi_FIFO 0.7986 0.7665

5

t

t

5

M

t

i

l

o

e

m

w

t

s

s

t

p

p

e

d

f

c

c

c

a

5

t

a

t

a

t

b

a

f

s

r

t

t

t

v

t

t

i

algorithm, P2R is slightly stronger than PAR, and Hi_PR is

the weakest algorithm across the broadest instance space

of MFP. However, the insights offered by ISA, as shown in

Table 4 and the footprints in Fig. 8 , enable us to draw more

nuanced conclusions at a per-instance level. We can sum-

marise in general terms the suitability of different algo-

rithms for various problem instance characteristics as fol-

lows. For a sparse symmetric/pseudo-symmetric network, or

a sparse network with tiny potential excesses on its nodes,

the Push-Relabel algorithms are preferred. For the remaining

networks, that is, when a network is non-symmetric, dense,

or it is sparse but the potential excesses on its nodes are

small on average, Pseudo_Hi_FIFO is the best option. From

the territory of the Push-Relabel family, when the size of the

network is large or huge, P2R is desirable, otherwise PAR is

better, though there is not a significant difference between

PAR and P2R in general.

ISA also offers the opportunity to gain insights, not only into

which algorithm has strengths or weaknesses for different

types of instances, but also to explore why the underlying

mechanism employed by the algorithm may or may not be

effective. The behaviour of the algorithms in the instance

space revealed that arc/path finding strategies are mostly re-

sponsible for the different behaviours of the algorithms in

practice, while other polices cause subtle and minor differ-

ences. Moreover, among the arc/path finding strategies in

MFP algorithms, DFS is more effective than BFS. Analysing

the fundamental operation counts of the algorithms through

the instance space also illustrated that Pseudo_Hi_FIFO has

the most effective arc scanning strategy, Pseudo_Hi_FIFO and

P2R have the most effective relabeling strategies, and PAR

has the best flow pushing strategy. Finally, Table 5 suggests

that improving the arc scanning strategies in Push-Relabel

algorithms may increase the efficiency of these algorithms,

while further improvements of arcs scanning and flow push-

ing strategies may make Pseudo_Hi_FIFO even more power-

ful.

. Discussion and future opportunities

In this section, we discuss the limitations of the instance selec-

ion procedure and the metadata that may still impact this anal-

sis. We also discuss the future opportunities that are revealed

hrough our analysis.

.1. Limitation of the instance selection procedure

In the instance selecting procedure, detecting the redundancy

f similar instances is done using the binary performance vector

i on x i ∈ I . Arguably, δi is a rough estimation, and the actual per-

ormance y i could be used instead. Unfortunately, the explicit rela-

ionship between f i and y i for all x i ∈ I is unknown, therefore the

erformance bounds under any feature perturbation cannot be de-

ermined, nor can a fair similarity threshold be established. This is

hy we used only δi to determine redundant instances.

Between two instances satisfying (6) and (7) , Algorithm 1 re-

ards both instances as the same and removes one of them based

n the way they are sorted in L . This makes C θ potentially sensi-

ive to the order of instances in L , although we did not observe a

ignificant sensitivity in practice. To overcome this potential limi-

ation, however, the following strategies could be explored in fu-

ure enhancements to the methodology to consider preferences for

hich instance to retain:

• Between the realistic and synthetic instances, keep the realistic

one;
426
• Regard the variance of the algorithm performance and keep the

instance that yields more variance;
• For each instance, consider the average distance from its sev-

eral nearest neighbours, then keep the instance with the bigger

average distance from its nearest neighbours.

.2. Limitations of the metadata

The collected metadata for this study has naturally influenced

he analysis, and we now discuss how future work could augment

he metadata to increase the possibility of additional insights.

.2.1. Performance measure

The common measure for the computational performance of

FP algorithms in the literature is CPU time. Nevertheless, CPU

ime has two major drawbacks. First, it tells us which algorithm

s faster but not why. Second, it depends greatly on the particu-

ar details of the computational environment, thus CPU times are

ften difficult to replicate, which is contrary to the spirit of sci-

ntific testing. Without considering different kinds of performance

easures, our knowledge about the capabilities of MFP algorithms

ill be shallow. The quality of the solution, generality of applica-

ion, memory usage, operation counts, etc. are other measures that

hould be regarded in future practical analyses.

Ahuja & Orlin (1996) proposed a method for performance mea-

urement based on representative operation counts (ROC) and

ested it on MFP algorithms (Ahuja et al., 1997). This approach

rovides both valuable insights into an algorithm’s efficiency, and

owerful tools to more fairly compare algorithms in practice. How-

ver, ROC has two weaknesses. Firstly, it is based only on the or-

er, size, and average node degree, thus ignores other important

eatures. Secondly, ROC is designed for asymptotic analyses and

annot be used on per-instance analysis, as in ISA. Therefore, ROC

annot be used for our purpose, although it could be adapted to

onsider more features and extend its suitability for per-instance

nalyses.

.2.2. Features

In this paper, we have introduced some new network features

o reveal the relationship between MFP algorithms’ performances

nd problem characteristics. Among the six features selected via

he automated feature selection process in MATILDA, three of them

re our newly introduced features. As observed in Section 4.3.2 ,

hese features play a crucial role in describing why the algorithms

ehave in specific ways. We also observed that though Density is

n important feature, since it can be obtained from two selected

eatures Order and AvNdDg , it is a redundant feature in the final

et, and the feature selection procedure of ISA removed it cor-

ectly. This illustrates the richness of the information carried by

he six selected features; the acceptable values of adjusted R 2 for

he linear regressions of the CPU times in terms of these six fu-

ures, presented in Table 6 acknowledge this fact too. The lower

alues of adjusted R 2 for the linear regressions with just two fea-

ures Size and Order also illustrate the necessity of using all six fea-

ures and possibly other new features, as discussed in Section 4.2 ,

n the practical analyses of MFP algorithms.

H. Alipour, M.A. Muñoz and K. Smith-Miles European Journal of Operational Research 304 (2023) 411–428

t

c

i

s

a

5

s

i

a

m

s

s

i

u

e

i

p

m

m

g

o

t

m

f

t

p

t

i

e

(

r

o

e

e

t

w

o

w

b

a

r

f

P

p

t

f

s

A

s

a

p

&

s

a

i

s

s

w

a

6

y

r

W

t

M

a

c

i

t

t

i

i

t

f

s

i

u

i

u

i

c

W

t

m

t

r

j

t

n

v

c

c

g

p

m

o

i

fi

a

c

m

i

r

m

m

h

d

s

o

w

l

b

I

t

m

b

As noted earlier, because of computational limitations and prac-

icalities, we have considered only simple features that can be cal-

ulated faster than finding the optimal solutions of the correspond-

ng instances. Nevertheless, it will be useful for future work to con-

ider more complicated features to obtain deeper insights into MFP

lgorithms.

.2.3. Benchmarks

Generating specific instances to fill sparse areas in the initial in-

tance space, and selecting a less-biased set of instances with the

nstance selection algorithm, we obtained an instance space with

n acceptable density distribution. Nevertheless, it is obvious that

ore benchmarks are required in order to generate a perfect in-

tance space for MFP, especially to handle any non-uniform den-

ity resulting from under-representation of the sample. However,

t may be difficult to fill some sparse areas in the instance space

sing the existing generators, since their reach through parameter

xploration is quite limited according to the effort s demonstrated

n this paper. Instead, we may be required to invoke other ap-

roaches to generate new benchmarks with controllable features. A

ethodology is proposed in Bowly, Smith-Miles, Baatar, & Mittel-

ann (2020) to generate benchmarks with controllable features for

eneral linear programming problems. More generally, a method-

logy has been proposed for evolving benchmarks that occupy

arget regions of the instance space using evolutionary program-

ing (Smith-Miles & Bowly, 2015). Utilising these methodologies

or generating specific benchmarks for MFP is a promising direc-

ion for future work.

New hard instances that enforce algorithms to reach their up-

er bound complexities are also interesting. It is observed that

he number of operations required by MFP algorithms to solve

nstances from the current families are much less than their

xpected worst-cases (Ahuja et al., 1997). Buzdalov & Shalyto

2015) conducted a study to bridge this gap using a genetic algo-

ithm. Their approach engages MFP algorithms to assess the quality

f each new generation of instances, making it impractical to gen-

rate medium or large instances. Nevertheless, their idea is worth

xploring to generate more challenging instances.

Without realistic instances relevant to many real-world applica-

ions of MFP, judging the practical performance of MFP algorithms

ill be difficult. Except for the computer vision family of instances,

ther benchmarks are synthetic, meaning that collating more real-

orld instances is crucial moving forward.

The benchmark generators proposed for MFP were developed

efore the appearance of the pseudoflow algorithms, with the

im of challenging the Push-Relabel or augmenting path algo-

ithms. Hence, it is likely that they are not challenging enough

or the pseudoflow algorithms. The excellent performance of

seudo_Hi_FIFO on most instances included in our metadata sup-

orts this concern. Accordingly, developing benchmark generators

hat can challenge the pseudoflow algorithms is necessary in the

uture.

Achieving a high uniformity of instances across the instance

pace is a vital goal when generating new benchmarks. Since

lgorithm 1 improves the uniformity by removing redundant in-

tances, it cannot be used to achieve a high uniformity if there

re inadequate instances in the metadata. In future work, we pro-

ose to adapt the instance generation methodology in Smith-Miles

 Bowly (2015) to combine with Algorithm 1 and achieve an in-

tance generation and selection methodology that fills sparse areas

nd achieves a a high uniform density of benchmarks across the

nstance space efficiently.

Finally, the instance diversity across the instance space is as-

essed visually in ISA, which is slightly subjective. Splitting the in-

tance space into equal bins and counting the number of instances
427
ithin each bin is a good idea for devising a statistical measure of

ssessing the sample diversity in the future work.

. Conclusions

In this paper, we bridged some major gaps in the practical anal-

ses of MFP algorithms. The lack of scientific testing of MFP algo-

ithms was addressed by the first instance space analysis of MFP.

e also introduced some new features of MFP instances to achieve

he goal of generating new insights into how the characteristics of

FP instances determine the effectiveness of MFP algorithms. To

chieve these aims, we have also collected and generated the most

omprehensive set of instances from 17 different families, reveal-

ng for the first time their locations in an instance space so that

heir diversity as a benchmark suite can be assessed and improved

o guide future studies of MFP.

We also enhanced the ISA methodology by introducing a new

nstance selection procedure to improve the uniform density of

nstances across the instance space, thereby reducing representa-

ion bias that can affect subsequent analysis. This procedure has

our main advantages. Firstly, it increases the uniformity of the in-

tance space, enabling less bias in feature selection, dimensional-

ty reduction, and the performance of machine learning classifiers

sed in ISA. Secondly, the instance selection procedure avoids los-

ng important information by regarding the trade-off between the

niformity and the information carried by the instances. Thirdly,

t decreases the number of instances remarkably, which ensures

omputational efficiency, especially in replicating the experiment.

hile the instance selection procedure does not utilise this advan-

age, as it considers all existing benchmarks, it returns a filtered

etadata set that includes only the most critical instances, re-

aining the most significant information within the metadata with

educed bias. This enables further experiments to be conducted

ust with the selected instances and provides a method to iden-

ify if any new instances are likely to be redundant. Finally, the

ew instance selection procedure enables strong tools to be de-

ised for posterior analyses, such as detecting the adequacy of the

urrent features or explaining the precision of machine learning

lassifiers.

Our analysis has provided new insights into MFP and its al-

orithms. We have scrutinised the suitability of MFP benchmarks;

roposed and assessed features that explain MFP algorithm perfor-

ance; visualised and understood the strengths and weaknesses

f the algorithms across the instance space; explored the hard

nstances for the tested algorithms; detected that the arc/path

nding strategies are responsible for the major differences of the

lgorithm’s behaviours; discovered why features may cause spe-

ific behaviours of algorithms; revealed the efficient strategies in

inimising the fundamental operations of MFP algorithms; spec-

fied the potential areas for further improvements of MFP algo-

ithms and their scientific testing, and provided a method for auto-

ated algorithm selection for unseen instances. The enhanced ISA

ethodology, that includes our new instance selection procedure,

as enabled such insights that are hard or impossible from tra-

itional reporting of which algorithm is best on average across a

et of benchmarks. We hope that this new per-instance approach

f analysing experimental performance via instance space analysis

ill inform future developments in MFP algorithms and other re-

ated topics.

Finally, we note that our instance selection procedure can

e extended to problems beyond MFP, and is not tied to

SA: it can be exploited in any experimental analysis to de-

ermine a critical minimum set of instances to achieve unifor-

ity across a feature space and thereby reduce representation

ias.

H. Alipour, M.A. Muñoz and K. Smith-Miles European Journal of Operational Research 304 (2023) 411–428

A

s

M

H

b

I

S

f

R

A

A

A

A

A

B

B

B

C

C

C

C

C

D

D

D

F

F

F

G

G

G

G

G

G

H

H

H

H

I

K

K

L

M

M

O

O

O

R

S

S

S

S

S

S

S

S

S

S

V

W

cknowledgements

Funding for this research was provided by the Australian Re-

earch Council through grant FL14010 0 012, and the University of

elbourne through a Melbourne Research Scholarship awarded to

. Alipour. This research was supported by The University of Mel-

ourne’s Research Computing Services and the Petascale Campus

nitiative.

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.ejor.2022.04.012

eferences

huja, R. K., Kodialam, M., Mishra, A. K., & Orlin, J. B. (1997). Computational investi-

gations of maximum flow algorithms. European Journal of Operational Research,
97 , 509–542 .

huja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: Theory, algorithms,
and applications . Englewood Cliffs, NJ: Prentice Hall .

huja, R. K., & Orlin, B. J. (1996). Use of representative operation counts in compu-
tational testing of algorithms. INFORMS Journal on Computing, 8 (3), pp.318–330 .

lipour, H. (2021). Halipour8463/ISA_MFP: Feb 2021 release. https://doi.org/10.

5281/zenodo.4922867 .
lipour, H., Muñoz, M. A., & Smith-Miles, K. (2021). Instance space analy-

sis for the maximum flow problem: metadata and source codes. https://
matilda.unimelb.edu.au/matilda/problems/opt/mfp-mfp . https://doi.org/10.6084/

m9.figshare.14761836.v2
owly, S., Smith-Miles, K., Baatar, D., & Mittelmann, H. (2020). Generation tech-

niques for linear programming instances with controllable properties. Mathe-

matical Programming Computation, 12 , 389–415 .
oykov, Y., & Kolmogorov, V. (2004). An experimental comparison of min–

cut/max-flow algorithms for energy minimization in computer vision. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 26 (9), 1124–1137 .

uzdalov, M., & Shalyto, A. (2015). Hard test generation for augmenting path max-
imum flow algorithms using genetic algorithms: Revisited. In IEEE Congress on

Evolutionary Computation (CEC) (pp. 2121–2128) .

handran, B., & Hochbaum, D. (2009). A computational study of the pseudoflow and
push-relabel algorithms for the maximum flow problem. Operations Research,

27 (2), 358–376 .
hang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM

Transactions on Intelligent Systems and Technology, 2 (3), 1–27 .
herkassky, B. V., & Goldberg, A. V. (1997). On implementing push-relabel method

for the maximum flow problem. Algorithmica, 19 (4), 390–410 .
heung, T. (1980). Computational comparison of eight methods for the maximum

network flow problem. ACM Transactions on Mathematical Software. Association

for Computing Machinery, 6 (1), 1–16 .
lemente, G. P., & Grassi, R. (2018). Directed clustering in weighted networks: A

new perspective. Chaos, Solitons, and Fractals, 107 , 26–38 .
antzig, G. B. (1951). Application of the simplex method to a transportation prob-

lem. Activity Analysis of Production and Allocation (pp. 359–373). John Wiley and
Sons, NY .

erigs, U., & Meier, W. (1989). Implementing Goldberg’s max-flow algorithm:

A computational investigation. ZOR - Zeitschrift für Operations Research, 33 ,
383–403 .

inic, E. A. (1970). Algorithm for solution of a problem of maximum flow in net-
works with power estimation. Soviet Mathematics - Docladi, 11 , 1277–1280 .

er ́nandez, A., García, S., Galar, M., Prati, R. C., Krawczyk, B., & Herrera, F. (2018).
Learning from imbalanced data sets . Cham: Springer .

ishbain, B., S, H. D., & Mueller, S. (2016). A competitive study of the pseudoflow

algorithm for the minimum s-t cut problem in vision. Journal of Real-Time Image
Processing, 11 , 589–609 .

ord, L. R., & Fulkerson, D. R. (1956). Maximal flow through a network. Canadian
Journal of Mathematics, 8 , 399–404 .

arcía, S., Luengo, J., & Herrera, F. (2015). Instance selection. Intelligent Systems Ref-
erence Library, Vol. 72. Springer, Cham. .

oldberg, A. V. (2008). The partial augment–relabel algorithm for the maximum

flow problem. In Algorithms - ESA 2008 (pp. 466–477). Berlin: Springer .
428
oldberg, A. V. (2009). Two-level push-relabel algorithm for the maximum flow

problem. Springer, Heidelberg, AAIM, LNCS, 5564 (09), 212–225 .

oldberg, A. V., Hed, S., Kaplan, H., Kohli, P., Tarjan, R. E., & Werneck, R. F. (2015).
Faster and more dynamic maximum flow by incremental breadth-first search.

In Algorithms - ESA, Berlin, Germany: Springer, pp. 619–630 .
oldberg, A. V., & Tarjan, R. E. (1988). A new approach to the maximum flow prob-

lem. Journal of the ACM, 35 (4), 921–940 .
unzburger, M., & Burkardt, J. (2004). Uniformity measures for point samples in

hypercubes. Technical Report . Florida State University .

arris, T. E., & Ross, F. S. (1955). Fundamentals of a method for evaluating rail net
capacities. Technical Report . RAND Corporation .

ochbaum, D. S. (2001). A new-old algorithm for minimum-cut and maximum-flow

in closure graphs. Networks, 37 (4), 171–193 .

ochbaum, D. S., & Orlin, J. B. (2013). Simplifications and speedups of the pseud-
oflow algorithm. Networks, 61.1 , 40–57 .

ooker, J. N. (1995). Testing heuristics: We have it all wrong. Journal of Heuristics, 1 ,

33–42 .
mai, H. (1983). On the practical efficiency of various maximum flow algorithms.

Journal of the Operations Research Society of Japan, 26 , 61–82 .
arzanov, A. V. (1974). Determining the maximal flow in a network by the method

of preflows. Soviet Mathematics Dokladi, 15 , 434–437 .
ing, V., Rao, S., & Tarjan, R. (1994). A faster deterministic maximum flow algorithm.

Journal of Algorithms, 23 , 447–474 .

afayette, L., Sauter, G., Vu, L., & Meade, B. (2016). Spartan performance and flex-
ibility: An HPC-Cloud chimera. OpenStack Summit, Barcelona . https://doi.org/10.

4225/49/58ead90dceaaa .
uñoz, M. A., Villanova, L., Baatar, D., & Smith-Miles, K. (2018). Instance spaces for

machine learning classification. Machine Learning, 107 (1), 109–147 .
uñoz, M. A., & Smith-Miles, K. (2020). Instance space analysis: A toolkit for the

assessment of algorithmic power. 10.5281/zenodo.4484108

ng, M. S., Kuang, Y. C., & Ooi, M. P. L. (2012). Statistical measures of two di-
mensional point set uniformity. Computational Statistics & Data Analysis, 56 ,

2159–2181 .
psahl, T., & Panzarasa, P. (2009). Clustering in weighted networks. Social Networks,

31 , 155–163 .
rlin, J. B. (2013). Max flows in O (nm) time, or better. In Proceedings of the 45th

Annual ACM Symposium on Theory of Computing (pp. 765–774). New York: ACM

Press .
ice, J. R. (1976). The algorithm selection problem. Advanced Computer, 15 , 65–118 .

edeño-Noda, A., González-Sierra, M. A., & González-Martín, C. (20 0 0). An algorith-
mic study of the maximum flow problem: A comparative statistical analysis.

Top, 8 (1), 135–162. https://doi.org/10.1007/BF02564832 .
mith-Miles, K., Christiansen, J., & Muñoz, M. A. (2020a). Revisiting “where are the

hard knapsack problems?” via instance space analysis. Computers & Operations

Research, 128 , 105184 .
mith-Miles, K., Muñoz, M. A., & Neelofar (2020b). Matilda: Melbourne Algorithm

Test Instance Library with Data Analytics. Available at https://matilda.unimelb.
edu.au .

mith-Miles, K. A. (2007). Generalising meta-learning concepts: from machine
learning to meta-heuristics. In Proceedings of the 7th Meta-heuristics International

Conference, Montreal .
mith-Miles, K. A. (2008a). Cross-disciplinary perspectives on meta-learning for al-

gorithm selection. ACM Computing Surveys, 41 (6), 1–25 .

mith-Miles, K. A. (2008b). Towards insightful algorithm selection for optimisation
using meta-learning concepts. IEEE International Joint Conference on Neural Net-

work , 4118–4124 .
mith-Miles, K. A., Battar, D., Wreford, B., & Lewis, R. (2014). Towards objective mea-

sures of algorithm performance across instance space. Computers & Operations
Research, 45 , 12–24 .

mith-Miles, K. A., & Bowly, S. (2015). Generating new test instances by evolving in

instance space. Computers & Operations Research, 63 , 102–113 .
mith-Miles, K. A., & Lopes, L. B. (2012). Measuring instance difficulty for combina-

torial optimization problems. Computers & Operations Research, 39 , 875–889 .
uresh, H., & V. Guttag, J. (2020). A framework for understanding unintended con-

sequences of machine learning. https://arxiv.org/abs/1901.10 0 02 .
erma, T., & Batra, D. (2012). Maxflow revisited: An empirical comparison of

maxflow algorithms for dense vision problems. BMVC , 1–12 .

olpert, D., & Macready, W. (1997). No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1 (1), 67–82 .

https://doi.org/10.1016/j.ejor.2022.04.012
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0001
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0002
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0003
https://doi.org/10.5281/zenodo.4922867
https://matilda.unimelb.edu.au/matilda/problems/opt/mfp-mfp
https://doi.org/10.6084/m9.figshare.14761836.v2
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0006
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0007
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0008
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0009
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0010
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0011
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0012
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0013
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0014
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0015
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0016
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0017
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0018
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0019
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0020
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0021
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0022
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0023
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0025
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0026
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0027
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0028
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0029
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0030
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0031
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0032
https://doi.org/10.4225/49/58ead90dceaaa
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0034
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0036
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0037
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0038
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0039
https://doi.org/10.1007/BF02564832
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0041
https://matilda.unimelb.edu.au
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0043
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0044
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0045
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0046
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0047
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0048
https://arxiv.org/abs/1901.10002
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0050
http://refhub.elsevier.com/S0377-2217(22)00310-1/sbref0051

	Enhanced instance space analysis for the maximum flow problem
	1 Introduction
	2 Maximum flow problem
	2.1 Definitions and notations
	2.2 Computational studies of MFP algorithms
	2.3 Limitations of MFP algorithm testing

	3 Instance space analysis for the maximum flow problem
	3.1 Background and framework
	3.2 Initial metadata
	3.2.1 Benchmark problems
	3.2.2 Algorithms
	3.2.3 Performance measure
	3.2.4 Features

	3.3 Initial results
	3.3.1 Experimental setup
	3.3.2 Results

	3.4 Generating new instances to fill sparse areas of the instance space

	4 An instance selection procedure for bias reduction
	4.1 Methodology
	4.1.1 Critical and redundant instances
	4.1.2 Instance selection algorithm
	4.1.3 When should the instance selection procedure be applied?

	4.2 Results
	4.3 Further insights into the algorithms’ behaviours
	4.3.1 The key difference in the behaviours of MFP algorithms
	4.3.2 Impact of instance features on the algorithm behaviour
	4.3.3 Insights from the fundamental operation counts
	4.3.4 Impacts of the fundamental operation counts on CPU times

	4.4 Summary of new insights obtained through the enhanced instance space analysis

	5 Discussion and future opportunities
	5.1 Limitation of the instance selection procedure
	5.2 Limitations of the metadata
	5.2.1 Performance measure
	5.2.2 Features
	5.2.3 Benchmarks

	6 Conclusions
	Acknowledgements
	Supplementary material
	References

